NOT FINISHED YET!!! My first try to get a self built fully working Quadrocopter based on an mbed, a self built frame and some other more or less cheap parts.
main.cpp
- Committer:
- maetugr
- Date:
- 2013-04-04
- Revision:
- 33:fd98776b6cc7
- Parent:
- 32:e2e02338805e
- Child:
- 34:3aa1cbcde59d
File content as of revision 33:fd98776b6cc7:
#include "mbed.h" // Standard Library #include "LED.h" // LEDs framework for blinking ;) #include "PC.h" // Serial Port via USB by Roland Elmiger for debugging with Terminal (driver needed: https://mbed.org/media/downloads/drivers/mbedWinSerial_16466.exe) #include "L3G4200D.h" // Gyro (Gyroscope) #include "ADXL345.h" // Acc (Accelerometer) #include "HMC5883.h" // Comp (Compass) #include "BMP085_old.h" // Alt (Altitude sensor) #include "RC_Channel.h" // RemoteControl Channels with PPM #include "Servo_PWM.h" // Motor PPM using PwmOut #include "PID.h" // PID Library by Aaron Berk #include "IMU_Filter.h" // Class to calculate position angles #include "Mixer.h" // Class to calculate motorspeeds from Angles, Regulation and RC-Signals #define RATE 0.002 // speed of the interrupt for Sensors and PID #define PPM_FREQU 495 // Hz Frequency of PPM Signal for ESCs (maximum <500Hz) #define RC_SENSITIVITY 30 // maximal angle from horizontal that the PID is aming for #define YAWSPEED 2 // maximal speed of yaw rotation in degree per Rate float P = 1.1; // PID values float I = 0.3; float D = 0.8; #define PC_CONNECTED // decoment if you want to debug per USB/Bluetooth and your PC Timer GlobalTimer; // global time to calculate processing speed Ticker Dutycycler; // timecontrolled interrupt to get data form IMU and RC // initialisation of hardware (see includes for more info) LED LEDs; #ifdef PC_CONNECTED //PC pc(USBTX, USBRX, 115200); // USB PC pc(p9, p10, 115200); // Bluetooth #endif L3G4200D Gyro(p28, p27); ADXL345 Acc(p28, p27); HMC5883 Comp(p28, p27); BMP085_old Alt(p28, p27); RC_Channel RC[] = {RC_Channel(p11,1), RC_Channel(p12,2), RC_Channel(p13,4), RC_Channel(p14,3)}; // no p19/p20 ! Servo_PWM ESC[] = {Servo_PWM(p21,PPM_FREQU), Servo_PWM(p22,PPM_FREQU), Servo_PWM(p23,PPM_FREQU), Servo_PWM(p24,PPM_FREQU)}; // p21 - p26 only because PWM needed! IMU_Filter IMU; // don't write () after constructor for no arguments! Mixer MIX(1); // 1 for X-Formation // 0:X:Roll 1:Y:Pitch 2:Z:Yaw PID Controller[] = {PID(P, I, D, 1000), PID(P, I, D, 1000), PID(0.5, 0.01, 0, 1000)}; // global variables bool armed = false; // this variable is for security (when false no motor rotates any more) float dt = 0; float time_for_dt = 0; float dt_read_sensors = 0; float time_read_sensors = 0; float controller_value[] = {0,0,0}; // The calculated answer form the Controller float RC_angle[] = {0,0,0}; // Angle of the RC Sticks, to steer the QC void dutycycle() // method which is called by the Ticker Dutycycler every RATE seconds { time_read_sensors = GlobalTimer.read(); // start time measure for sensors // read data from sensors // ATTENTION! the I2C option repeated true is important because otherwise interrupts while bus communications cause crashes Gyro.read(); Acc.read(); // TODO: nicht jeder Sensor immer? höhe nicht so wichtig //Comp.read(); //Alt.Update(); TODO braucht zu lange zum auslesen! dt_read_sensors = GlobalTimer.read() - time_read_sensors; // stop time measure for sensors // meassure dt for the filter dt = GlobalTimer.read() - time_for_dt; // time in us since last loop time_for_dt = GlobalTimer.read(); // set new time for next measurement IMU.compute(dt, Gyro.data, Acc.data); // Arming / disarming if(RC[3].read() < 20 && RC[2].read() > 850) { armed = true; } if((RC[3].read() < 30 && RC[2].read() < 30) || RC[2].read() < -10 || RC[3].read() < -10 || RC[1].read() < -10 || RC[0].read() < -10) { armed = false; } for(int i=0;i<2;i++) { // calculate new angle we want the QC to have RC_angle[i] = (RC[i].read()-500)*RC_SENSITIVITY/500.0; if (RC_angle[i] < -RC_SENSITIVITY-2) RC_angle[i] = 0; } //RC_angle[2] += (RC[3].read()-500)*YAWSPEED/500; // for yaw angle is integrated for(int i=0;i<3;i++) { Controller[i].setIntegrate(armed); // only integrate in controller when armed, so the value is not totally odd from not flying controller_value[i] = Controller[i].compute(RC_angle[i], IMU.angle[i]); // give the controller the actual angle and get his advice to correct } if (armed) // for SECURITY! { // RC controlling /*for(int i=0;i<3;i++) AnglePosition[i] -= (RC[i].read()-500)*2/500.0;*/ /*virt_angle[0] = IMU.angle[0] + (RC[0].read()-500)*MAXPITCH/500.0; // TODO: zuerst RC calibration virt_angle[1] = IMU.angle[1] + (RC[1].read()-500)*MAXPITCH/500.0; yawposition += (RC[3].read()-500)*YAWSPEED/500; virt_angle[2] = IMU.angle[2] + yawposition;*/ MIX.compute(RC[3].read(), controller_value); // let the Mixer compute motorspeeds based on throttle and controller output for(int i=0;i<4;i++) // Set new motorspeeds ESC[i] = (int)MIX.Motor_speed[i]; } else { for(int i=0;i<4;i++) // for security reason, set every motor to zero speed ESC[i] = 0; } } void commandexecuter(char* command) { // take new PID values on the fly if (command[0] == 'p') P = atof(&command[1]); if (command[0] == 'i') I = atof(&command[1]); if (command[0] == 'd') D = atof(&command[1]); for(int i=0;i<2;i++) { Controller[i].setPID(P,I,D); // give the controller the new PID values } } int main() { // main programm for initialisation and debug output NVIC_SetPriority(TIMER3_IRQn, 1); // set priorty of tickers below hardware interrupts (standard priority is 0)(this is to prevent the RC interrupt from waiting until ticker is finished) #ifdef PC_CONNECTED // init screen pc.locate(10,5); pc.printf("Flybed v0.2"); #endif LEDs.roll(2); Gyro.calibrate(50, 0.02); Acc.calibrate(50, 0.02); // Start! GlobalTimer.start(); Dutycycler.attach(&dutycycle, RATE); // start to process all RATEms while(1) { if (pc.readable()) // Get Serial input (polled because interrupts disturb I2C) pc.readcommand(&commandexecuter); //pc.printf("%f %f %f %f %f %f\r\n", IMU.angle[0], IMU.angle[1], IMU.angle[2], controller_value[0], controller_value[1], controller_value[2]); // For live plot in MATLAB of IMU #if 1 //pc.cls(); pc.locate(20,0); // PC output pc.printf("dt:%3.5fs dt_sensors:%3.5fs Altitude:%6.1fm ", dt, dt_read_sensors, Alt.CalcAltitude(Alt.Pressure)); pc.locate(5,1); if(armed) pc.printf("ARMED!!!!!!!!!!!!!"); else pc.printf("DIS_ARMED "); pc.locate(5,3); pc.printf("Roll:%6.1f Pitch:%6.1f Yaw:%6.1f ", IMU.angle[0], IMU.angle[1], IMU.angle[2]); pc.locate(5,4); pc.printf("q0:%6.1f q1:%6.1f q2:%6.1f q3:%6.1f ", IMU.q0, IMU.q1, IMU.q2, IMU.q3); pc.locate(5,5); pc.printf("Gyro.data: X:%6.1f Y:%6.1f Z:%6.1f", Gyro.data[0], Gyro.data[1], Gyro.data[2]); pc.locate(5,6); pc.printf("Acc.data: X:%6.1f Y:%6.1f Z:%6.1f", Acc.data[0], Acc.data[1], Acc.data[2]); pc.locate(5,8); pc.printf("P:%6.1f I:%6.1f D:%6.1f ", P, I, D); pc.locate(5,11); pc.printf("PID Result:"); for(int i=0;i<3;i++) pc.printf(" %d: %6.1f", i, controller_value[i]); pc.locate(5,14); pc.printf("RC angle: roll: %f pitch: %f yaw: %f ", RC_angle[0], RC_angle[1], RC_angle[2]); pc.locate(5,16); pc.printf("Motor: 0:%d 1:%d 2:%d 3:%d ", (int)MIX.Motor_speed[0], (int)MIX.Motor_speed[1], (int)MIX.Motor_speed[2], (int)MIX.Motor_speed[3]); // RC pc.locate(10,19); pc.printf("RC0: %4d RC1: %4d RC2: %4d RC3: %4d ", RC[0].read(), RC[1].read(), RC[2].read(), RC[3].read()); pc.locate(10,21); pc.printf("Commandline: %s ", pc.command); #endif if(armed){ LEDs.rollnext(); } else { for(int i=1;i<=4;i++) LEDs.set(i); } wait(0.05); } }