NOT FINISHED YET!!! My first try to get a self built fully working Quadrocopter based on an mbed, a self built frame and some other more or less cheap parts.
main.cpp
- Committer:
- maetugr
- Date:
- 2012-11-05
- Revision:
- 20:e116e596e540
- Parent:
- 19:40c252b4a792
- Child:
- 21:c2a2e7cbabdd
File content as of revision 20:e116e596e540:
#include "mbed.h" // Standard Library #include "LED.h" // LEDs framework for blinking ;) #include "PC.h" // Serial Port via USB by Roland Elmiger for debugging with Terminal (driver needed: https://mbed.org/media/downloads/drivers/mbedWinSerial_16466.exe) #include "L3G4200D.h" // Gyro (Gyroscope) #include "ADXL345.h" // Acc (Accelerometer) #include "HMC5883.h" // Comp (Compass) #include "BMP085_old.h" // Alt (Altitude sensor) #include "RC_Channel.h" // RemoteControl Chnnels with PPM #include "Servo_PWM.h" // Motor PPM using PwmOut #include "PID.h" // PID Library by Aaron Berk #define PI 3.1415926535897932384626433832795 // ratio of a circle's circumference to its diameter #define RAD2DEG 57.295779513082320876798154814105 // ratio between radians and degree (360/2Pi) #define RATE 0.02 // speed of the interrupt for Sensors and PID #define P_VALUE 0.05 // PID values #define I_VALUE 5 #define D_VALUE 0.015 //#define COMPASSCALIBRATE // decomment if you want to calibrate the Compass on start Timer GlobalTimer; // global time to calculate processing speed Ticker Datagetter; // timecontrolled interrupt to get data form IMU and RC // initialisation of hardware (see includes for more info) LED LEDs; PC pc(USBTX, USBRX, 115200); L3G4200D Gyro(p28, p27); ADXL345 Acc(p28, p27); HMC5883 Comp(p28, p27); BMP085_old Alt(p28, p27); RC_Channel RC[] = {(p11), (p12), (p13), (p14)}; // noooo p19/p20 ! Servo_PWM Motor[] = {(p21), (p22), (p23), (p24)}; // p21 - p26 only ! //PID Controller[] = {(P_VALUE, I_VALUE, D_VALUE, RATE), (P_VALUE, I_VALUE, D_VALUE, RATE), (P_VALUE, I_VALUE, D_VALUE, RATE)}; // TODO: RATE != dt immer anpassen //PID P:3,0 bis 3,5 I:0,010 und 0,050 D:5 und 25 PID Controller(P_VALUE, I_VALUE, D_VALUE, RATE); // global varibles bool armed = false; // this variable is for security unsigned long dt_get_data = 0; // TODO: dt namen unsigned long time_get_data = 0; unsigned long dt_read_sensors = 0; unsigned long time_read_sensors = 0; float angle[3] = {0,0,0}; // calculated values of the position [0: x,roll | 1: y,pitch | 2: z,yaw] float tempangle = 0; // temporärer winkel für yaw ohne kompass float Gyro_angle[3] ={0,0,0}; float co; // PID test void get_Data() // method which is called by the Ticker Datagetter every RATE seconds { time_read_sensors = GlobalTimer.read_us(); // read data from sensors // ATTENTION! the I2C option repeated true is important because otherwise interrupts while bus communications cause crashes Gyro.read(); Acc.read(); // TODO: nicht jeder Sensor immer? höhe nicht so wichtig Comp.read(); //Alt.Update(); TODO braucht zu lange zum auslesen! dt_read_sensors = GlobalTimer.read_us() - time_read_sensors; // meassure dt dt_get_data = GlobalTimer.read_us() - time_get_data; // time in us since last loop time_get_data = GlobalTimer.read_us(); // set new time for next measurement Gyro_angle[0] += Gyro.data[0] *dt_get_data/15000000.0; Gyro_angle[1] += Gyro.data[1] *dt_get_data/15000000.0; Gyro_angle[2] += Gyro.data[2] *dt_get_data/15000000.0; // calculate angles for roll, pitch an yaw angle[0] += (Acc.angle[0] - angle[0])/50 + Gyro.data[0] *dt_get_data/15000000.0; angle[1] += (Acc.angle[1]+3 - angle[1])/50 + Gyro.data[1] *dt_get_data/15000000.0;// TODO Offset accelerometer einstellen tempangle += (Comp.get_angle() - tempangle)/50 + Gyro.data[2] *dt_get_data/15000000.0; angle[2] = Gyro_angle[2]; // gyro only here // PID controlling Controller.setProcessValue(angle[1]); // Aming/ disarming if(RC[2].read() < 1020 && RC[3].read() < 1020) armed = false; if(RC[2].read() < 500 || RC[1].read() < 500 || RC[0].read() < 500) armed = false; if(RC[2].read() < 1020 && RC[3].read() > 1850) armed = true; // calculate new motorspeeds co = Controller.compute() - 1000; if (armed) // zur SICHERHEIT! { #if 0 Motor[0] = RC[2].read(); Motor[1] = RC[2].read(); Motor[2] = RC[2].read(); Motor[3] = RC[2].read(); #else Motor[0] = RC[2].read()+co; Motor[2] = RC[2].read()-co; #endif /*Motor[0] = RC[2].read()+((RC[0].read() - 1500)/10.0)+40; Motor[2] = RC[2].read()-((RC[0].read() - 1500)/10.0)-40;*/ /**/ } else { Motor[0] = 1000; Motor[1] = 1000; Motor[2] = 1000; Motor[3] = 1000; } /*Motor[0] = 1000 + (100 - (angle[1] * 500/90)) * (RC[2].read() - 1000) / 1000; // test für erste reaktion der motoren entgegen der Auslenkung Motor[1] = 1000 + (100 - (angle[0] * 500/90)) * (RC[2].read() - 1000) / 1000; Motor[2] = 1000 + (100 + (angle[1] * 500/90)) * (RC[2].read() - 1000) / 1000; Motor[3] = 1000 + (100 + (angle[0] * 500/90)) * (RC[2].read() - 1000) / 1000;*/ } int main() { // main programm only used for initialisation and debug output NVIC_SetPriority(TIMER3_IRQn, 1); // set priorty of tickers below hardware interrupts (standard priority is 0) //for(int i=0;i<3;i++) Controller.setInputLimits(-90.0, 90.0); Controller.setOutputLimits(0.0, 2000.0); Controller.setBias(1000); Controller.setMode(MANUAL_MODE);//AUTO_MODE); Controller.setSetPoint(0); #ifdef COMPASSCALIBRATE pc.locate(10,5); pc.printf("CALIBRATING"); Comp.calibrate(60); #endif // init screen pc.locate(10,5); pc.printf("Flybed v0.2"); LEDs.roll(2); // Start! TODO: Motor und RC start (armed....?) GlobalTimer.start(); Datagetter.attach(&get_Data, RATE); // start to get data all RATEms while(1) { pc.locate(30,0); // PC output pc.printf("dt:%dms dt_sensors:%dus Altitude:%6.1fm ", dt_get_data/1000, dt_read_sensors, Alt.CalcAltitude(Alt.Pressure)); pc.locate(5,1); if(armed) pc.printf("ARMED!!!!!!!!!!!!!"); else pc.printf("DIS_ARMED "); pc.locate(5,3); pc.printf("Roll:%6.1f Pitch:%6.1f Yaw:%6.1f ", angle[0], angle[1], angle[2]); pc.locate(5,5); pc.printf("Gyro.data: X:%6.1f Y:%6.1f Z:%6.1f", Gyro.data[0], Gyro.data[1], Gyro.data[2]); pc.locate(5,6); pc.printf("Gyro_angle: X:%6.1f Y:%6.1f Z:%6.1f", Gyro_angle[0], Gyro_angle[1], Gyro_angle[2]); pc.locate(5,8); pc.printf("Acc.data: X:%6d Y:%6d Z:%6d", Acc.data[0], Acc.data[1], Acc.data[2]); pc.locate(5,9); pc.printf("Acc.angle: Roll:%6.1f Pitch:%6.1f Yaw:%6.1f ", Acc.angle[0], Acc.angle[1], Acc.angle[2]); pc.locate(5,11); pc.printf("PID Test: %6.1f", co); pc.locate(10,15); pc.printf("Debug_Yaw: Comp:%6.1f tempangle:%6.1f ", Comp.get_angle(), tempangle); pc.locate(10,16); pc.printf("Comp_data: %6.1f %6.1f %6.1f |||| %6.1f ", Comp.data[0], Comp.data[1], Comp.data[2], Comp.get_angle()); pc.locate(10,17); //pc.printf("Comp_scale: %6.4f %6.4f %6.4f ", Comp.scale[0], Comp.scale[1], Comp.scale[2]); no more accessible its private pc.locate(10,18); pc.printf("Comp_data: %6.1f %6.1f %6.1f |||| %6.1f ", Comp.data[0], Comp.data[1], Comp.data[2], Comp.get_angle()); pc.locate(10,19); pc.printf("RC0: %4d :[", RC[0].read()); for (int i = 0; i < (RC[0].read() - 1000)/17; i++) pc.printf("="); pc.printf(" "); pc.locate(10,20); pc.printf("RC1: %4d :[", RC[1].read()); for (int i = 0; i < (RC[1].read() - 1000)/17; i++) pc.printf("="); pc.printf(" "); pc.locate(10,21); pc.printf("RC2: %4d :[", RC[2].read()); for (int i = 0; i < (RC[2].read() - 1000)/17; i++) pc.printf("="); pc.printf(" "); pc.locate(10,22); pc.printf("RC3: %4d :[", RC[3].read()); for (int i = 0; i < (RC[3].read() - 1000)/17; i++) pc.printf("="); pc.printf(" "); LEDs.rollnext(); } }