NOT FINISHED YET!!! My first try to get a self built fully working Quadrocopter based on an mbed, a self built frame and some other more or less cheap parts.
main.cpp
- Committer:
- maetugr
- Date:
- 2013-03-30
- Revision:
- 31:872d8b8c7812
- Parent:
- 30:021e13b62575
- Child:
- 32:e2e02338805e
File content as of revision 31:872d8b8c7812:
#include "mbed.h" // Standard Library #include "LED.h" // LEDs framework for blinking ;) #include "PC.h" // Serial Port via USB by Roland Elmiger for debugging with Terminal (driver needed: https://mbed.org/media/downloads/drivers/mbedWinSerial_16466.exe) #include "L3G4200D.h" // Gyro (Gyroscope) #include "ADXL345.h" // Acc (Accelerometer) #include "HMC5883.h" // Comp (Compass) #include "BMP085_old.h" // Alt (Altitude sensor) #include "RC_Channel.h" // RemoteControl Channels with PPM #include "Servo_PWM.h" // Motor PPM using PwmOut #include "PID.h" // PID Library by Aaron Berk #include "IMU_Filter.h" // Class to calculate position angles #include "Mixer.h" // Class to calculate motorspeeds from Angles, Regulation and RC-Signals #define RATE 0.002 // speed of the interrupt for Sensors and PID #define PPM_FREQU 495 // Hz Frequency of PPM Signal for ESCs (maximum <500Hz) #define MAXPITCH 40 // maximal angle from horizontal that the PID is aming for #define RC_SENSITIVITY 20 #define YAWSPEED 2 // maximal speed of yaw rotation in degree per Rate float P = 1.5; // PID values float I = 0; float D = 1; //#define COMPASSCALIBRATE // decomment if you want to calibrate the Compass on start #define PC_CONNECTED // decoment if you want to debug per USB/Bluetooth and your PC Timer GlobalTimer; // global time to calculate processing speed Ticker Dutycycler; // timecontrolled interrupt to get data form IMU and RC // initialisation of hardware (see includes for more info) LED LEDs; #ifdef PC_CONNECTED PC pc(USBTX, USBRX, 115200); // USB //PC pc(p9, p10, 115200); // Bluetooth #endif LocalFileSystem local("local"); // Create the local filesystem under the name "local" //FILE *Logger; L3G4200D Gyro(p28, p27); ADXL345 Acc(p28, p27); HMC5883 Comp(p28, p27); BMP085_old Alt(p28, p27); RC_Channel RC[] = {RC_Channel(p11,1), RC_Channel(p12,2), RC_Channel(p13,4), RC_Channel(p14,3)}; // no p19/p20 ! Servo_PWM ESC[] = {Servo_PWM(p21,PPM_FREQU), Servo_PWM(p22,PPM_FREQU), Servo_PWM(p23,PPM_FREQU), Servo_PWM(p24,PPM_FREQU)}; // p21 - p26 only because PWM needed! IMU_Filter IMU; // don't write () after constructor for no arguments! Mixer MIX(1); // 0:X:Roll 1:Y:Pitch 2:Z:Yaw PID Controller[] = {PID(P, I, D, 1000), PID(P, I, D, 1000), PID(0.2, 0, 0.1, 1000)}; // global variables bool armed = false; // this variable is for security (when false no motor rotates any more) unsigned long dt = 0; unsigned long time_for_dt = 0; unsigned long dt_read_sensors = 0; unsigned long time_read_sensors = 0; float tempangle = 0; // temporärer winkel für yaw mit kompass float controller_value[] = {0,0,0}; // The calculated answer form the Controller float RC_angle[] = {0,0,0}; // Angle of the RC Sticks, to steer the QC char command[300]; //= {'\0'}; void dutycycle() // method which is called by the Ticker Dutycycler every RATE seconds { time_read_sensors = GlobalTimer.read_us(); // read data from sensors // ATTENTION! the I2C option repeated true is important because otherwise interrupts while bus communications cause crashes Gyro.read(); Acc.read(); // TODO: nicht jeder Sensor immer? höhe nicht so wichtig //Comp.read(); //Alt.Update(); TODO braucht zu lange zum auslesen! dt_read_sensors = GlobalTimer.read_us() - time_read_sensors; // meassure dt dt = GlobalTimer.read_us() - time_for_dt; // time in us since last loop time_for_dt = GlobalTimer.read_us(); // set new time for next measurement IMU.compute(dt, Gyro.data, Acc.data); // Arming / disarming if(RC[3].read() < 20 && RC[2].read() > 850) { armed = true; #ifdef LOGGER if(Logger == NULL) Logger = fopen("/local/log.csv", "a"); #endif } if((RC[3].read() < 30 && RC[2].read() < 30) || RC[2].read() < -10 || RC[3].read() < -10 || RC[1].read() < -10 || RC[0].read() < -10) { armed = false; #ifdef LOGGER if(Logger != NULL) { fclose(Logger); Logger = NULL; } #endif } for(int i=0;i<2;i++) // calculate new angle we want the QC to have RC_angle[i] = (RC[i].read()-500)*RC_SENSITIVITY/500.0; //RC_angle[2] += (RC[3].read()-500)*YAWSPEED/500; for(int i=0;i<3;i++) { Controller[i].setIntegrate(armed); // only integrate in controller when armed, so the value is not totally odd from not flying controller_value[i] = Controller[i].compute(RC_angle[i], IMU.angle[i]); // give the controller the actual angle and get his advice to correct } if (armed) // for SECURITY! { // RC controlling /*for(int i=0;i<3;i++) AnglePosition[i] -= (RC[i].read()-500)*2/500.0;*/ /*virt_angle[0] = IMU.angle[0] + (RC[0].read()-500)*MAXPITCH/500.0; // TODO: zuerst RC calibration virt_angle[1] = IMU.angle[1] + (RC[1].read()-500)*MAXPITCH/500.0; yawposition += (RC[3].read()-500)*YAWSPEED/500; virt_angle[2] = IMU.angle[2] + yawposition;*/ // PID controlling /*if (!(RC[0].read() == -100)) { // the RC must be there to controll // alte version mit setpoint, nicht nötig? granzen bei yaw los? :) Controller[0].setSetPoint(-((RC[0].read()-500)*MAXPITCH/500.0)); // set angles based on RC input Controller[1].setSetPoint(-((RC[1].read()-500)*MAXPITCH/500.0)); Controller[2].setSetPoint(-((RC[3].read()-500)*180.0/500.0)); }*/ MIX.compute(dt, RC[3].read(), controller_value); // let the Mixer compute motorspeeds based on throttle and controller output for(int i=0;i<4;i++) // Set new motorspeeds ESC[i] = (int)MIX.Motor_speed[i]; #ifdef LOGGER // Writing Log for(int i = 0; i < 3; i++) { fprintf(Logger, "%f;", angle[i]); fprintf(Logger, "%f;", controller_value[i]); } fprintf(Logger, "\r\n"); #endif } else { for(int i=0;i<4;i++) // for security reason, set every motor to zero speed ESC[i] = 0; } } void execute() { if (command[0] == 'p') P = atoi(&command[1]); if (command[0] == 'i') I = atoi(&command[1]); if (command[0] == 'd') D = atoi(&command[1]); } void pc_worker() { char input = pc.getc(); if (input == '\r') { execute(); command[0] = '\0'; } else { int i = 0; while(command[i] != '\0'){ i++; LEDs.rollnext(); } command[i] = input; command[i+1] = '\0'; } } int main() { // main programm for initialisation and debug output NVIC_SetPriority(TIMER3_IRQn, 1); // set priorty of tickers below hardware interrupts (standard priority is 0)(this is to prevent the RC interrupt from waiting until ticker is finished) //pc.attach(&pc_worker); // zum Befehle geben #ifdef LOGGER Logger = fopen("/local/log.csv", "w"); // Prepare Logfile for(int i = 0; i < 3; i++) { fprintf(Logger, "angle[%d];", i); fprintf(Logger, "controller_value[%d];", i); } fprintf(Logger, "\r\n"); fclose(Logger); Logger = NULL; #endif #ifdef PC_CONNECTED #ifdef COMPASSCALIBRATE pc.locate(10,5); pc.printf("CALIBRATING"); Comp.calibrate(60); #endif // init screen pc.locate(10,5); pc.printf("Flybed v0.2"); #endif LEDs.roll(2); // Start! GlobalTimer.start(); Dutycycler.attach(&dutycycle, RATE); // start to process all RATEms while(1) { //pc.printf("%f,%f,%f,%f,%f,%f\r\n", IMU.angle[0], IMU.angle[1], IMU.angle[2], controller_value[0], controller_value[1], controller_value[2]); // serialplot of IMU #if 1 //pc.cls(); pc.locate(30,0); // PC output pc.printf("dt:%3.3fms dt_sensors:%dus Altitude:%6.1fm ", dt/1000.0, dt_read_sensors, Alt.CalcAltitude(Alt.Pressure)); pc.locate(5,1); if(armed) pc.printf("ARMED!!!!!!!!!!!!!"); else pc.printf("DIS_ARMED "); pc.locate(5,3); pc.printf("Roll:%6.1f Pitch:%6.1f Yaw:%6.1f ", IMU.angle[0], IMU.angle[1], IMU.angle[2]); pc.locate(5,4); pc.printf("P:%6.1f I:%6.1f D:%6.1f ", P, I, D); pc.locate(5,5); pc.printf("Gyro.data: X:%6.1f Y:%6.1f Z:%6.1f", Gyro.data[0], Gyro.data[1], Gyro.data[2]); pc.locate(5,6); pc.printf("Acc.data: X:%6d Y:%6d Z:%6d", Acc.data[0], Acc.data[1], Acc.data[2]); pc.locate(5,11); pc.printf("PID Result:"); for(int i=0;i<3;i++) pc.printf(" %d: %6.1f", i, controller_value[i]); pc.locate(5,14); pc.printf("RC angle: roll: %f pitch: %f yaw: %f ", RC_angle[0], RC_angle[1], RC_angle[2]); pc.locate(5,16); pc.printf("Motor: 0:%d 1:%d 2:%d 3:%d ", (int)MIX.Motor_speed[0], (int)MIX.Motor_speed[1], (int)MIX.Motor_speed[2], (int)MIX.Motor_speed[3]); // RC pc.locate(10,19); pc.printf("RC0: %4d ", RC[0].read()); pc.printf("RC1: %4d ", RC[1].read()); pc.printf("RC2: %4d ", RC[2].read()); pc.printf("RC3: %4d ", RC[3].read()); pc.locate(10,21); pc.printf("Commandline: %s ", command); #endif if(armed){ LEDs.rollnext(); } else { for(int i=1;i<=4;i++) LEDs.set(i); } wait(0.05); } }