Oskar Weigl
/
Eurobot2013
We are going to win! wohoo
tvmet/VectorFunctions.h
- Committer:
- xiaxia686
- Date:
- 2012-11-14
- Revision:
- 4:698a3c538482
- Parent:
- 1:6799c07fe510
File content as of revision 4:698a3c538482:
/* * Tiny Vector Matrix Library * Dense Vector Matrix Libary of Tiny size using Expression Templates * * Copyright (C) 2001 - 2007 Olaf Petzold <opetzold@users.sourceforge.net> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: VectorFunctions.h,v 1.37 2007-06-23 15:58:58 opetzold Exp $ */ #ifndef TVMET_VECTOR_FUNCTIONS_H #define TVMET_VECTOR_FUNCTIONS_H #include <tvmet/Extremum.h> namespace tvmet { /********************************************************* * PART I: DECLARATION *********************************************************/ /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * Vector arithmetic functions add, sub, mul and div *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ /* * function(Vector<T1, Sz>, Vector<T2, Sz>) * function(Vector<T, Sz>, XprVector<E, Sz>) * function(XprVector<E, Sz>, Vector<T, Sz>) */ #define TVMET_DECLARE_MACRO(NAME) \ template<class T1, class T2, std::size_t Sz> \ XprVector< \ XprBinOp< \ Fcnl_##NAME<T1, T2>, \ VectorConstReference<T1, Sz>, \ VectorConstReference<T2, Sz> \ >, \ Sz \ > \ NAME (const Vector<T1, Sz>& lhs, \ const Vector<T2, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE; \ \ template<class E, class T, std::size_t Sz> \ XprVector< \ XprBinOp< \ Fcnl_##NAME<typename E::value_type, T>, \ XprVector<E, Sz>, \ VectorConstReference<T, Sz> \ >, \ Sz \ > \ NAME (const XprVector<E, Sz>& lhs, \ const Vector<T, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE; \ \ template<class E, class T, std::size_t Sz> \ XprVector< \ XprBinOp< \ Fcnl_##NAME<T, typename E::value_type>, \ VectorConstReference<T, Sz>, \ XprVector<E, Sz> \ >, \ Sz \ > \ NAME (const Vector<T, Sz>& lhs, \ const XprVector<E, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE; TVMET_DECLARE_MACRO(add) // per se element wise TVMET_DECLARE_MACRO(sub) // per se element wise TVMET_DECLARE_MACRO(mul) // per se element wise namespace element_wise { TVMET_DECLARE_MACRO(div) // not defined for vectors } #undef TVMET_DECLARE_MACRO /* * function(Vector<T, Sz>, POD) * function(POD, Vector<T, Sz>) * Note: - operations +,-,*,/ are per se element wise */ #define TVMET_DECLARE_MACRO(NAME, POD) \ template<class T, std::size_t Sz> \ XprVector< \ XprBinOp< \ Fcnl_##NAME< T, POD >, \ VectorConstReference<T, Sz>, \ XprLiteral< POD > \ >, \ Sz \ > \ NAME (const Vector<T, Sz>& lhs, \ POD rhs) TVMET_CXX_ALWAYS_INLINE; \ \ template<class T, std::size_t Sz> \ XprVector< \ XprBinOp< \ Fcnl_##NAME< POD, T>, \ XprLiteral< POD >, \ VectorConstReference<T, Sz> \ >, \ Sz \ > \ NAME (POD lhs, \ const Vector<T, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE; TVMET_DECLARE_MACRO(add, int) TVMET_DECLARE_MACRO(sub, int) TVMET_DECLARE_MACRO(mul, int) TVMET_DECLARE_MACRO(div, int) #if defined(TVMET_HAVE_LONG_LONG) TVMET_DECLARE_MACRO(add, long long int) TVMET_DECLARE_MACRO(sub, long long int) TVMET_DECLARE_MACRO(mul, long long int) TVMET_DECLARE_MACRO(div, long long int) #endif TVMET_DECLARE_MACRO(add, float) TVMET_DECLARE_MACRO(sub, float) TVMET_DECLARE_MACRO(mul, float) TVMET_DECLARE_MACRO(div, float) TVMET_DECLARE_MACRO(add, double) TVMET_DECLARE_MACRO(sub, double) TVMET_DECLARE_MACRO(mul, double) TVMET_DECLARE_MACRO(div, double) #if defined(TVMET_HAVE_LONG_DOUBLE) TVMET_DECLARE_MACRO(add, long double) TVMET_DECLARE_MACRO(sub, long double) TVMET_DECLARE_MACRO(mul, long double) TVMET_DECLARE_MACRO(div, long double) #endif #undef TVMET_DECLARE_MACRO #if defined(TVMET_HAVE_COMPLEX) /* * function(Vector<std::complex<T>, Sz>, std::complex<T>) * function(std::complex<T>, Vector<std::complex<T>, Sz>) * Note: per se element wise * \todo type promotion */ #define TVMET_DECLARE_MACRO(NAME) \ template<class T, std::size_t Sz> \ XprVector< \ XprBinOp< \ Fcnl_##NAME< std::complex<T>, std::complex<T> >, \ VectorConstReference< std::complex<T>, Sz>, \ XprLiteral< std::complex<T> > \ >, \ Sz \ > \ NAME (const Vector<std::complex<T>, Sz>& lhs, \ const std::complex<T>& rhs) TVMET_CXX_ALWAYS_INLINE; \ \ template<class T, std::size_t Sz> \ XprVector< \ XprBinOp< \ Fcnl_##NAME< std::complex<T>, std::complex<T> >, \ XprLiteral< std::complex<T> >, \ VectorConstReference< std::complex<T>, Sz> \ >, \ Sz \ > \ NAME (const std::complex<T>& lhs, \ const Vector< std::complex<T>, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE; TVMET_DECLARE_MACRO(add) TVMET_DECLARE_MACRO(sub) TVMET_DECLARE_MACRO(mul) TVMET_DECLARE_MACRO(div) #undef TVMET_DECLARE_MACRO #endif // defined(TVMET_HAVE_COMPLEX) /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * vector specific functions *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ template<class T, std::size_t Sz> typename NumericTraits<T>::sum_type sum(const Vector<T, Sz>& v) TVMET_CXX_ALWAYS_INLINE; template<class T, std::size_t Sz> typename NumericTraits<T>::sum_type product(const Vector<T, Sz>& v) TVMET_CXX_ALWAYS_INLINE; template<class T1, class T2, std::size_t Sz> typename PromoteTraits<T1, T2>::value_type dot(const Vector<T1, Sz>& lhs, const Vector<T2, Sz>& rhs) TVMET_CXX_ALWAYS_INLINE; template<class T1, class T2> Vector<typename PromoteTraits<T1, T2>::value_type, 3> cross(const Vector<T1, 3>& lhs, const Vector<T2, 3>& rhs) TVMET_CXX_ALWAYS_INLINE; template<class T, std::size_t Sz> typename NumericTraits<T>::sum_type norm1(const Vector<T, Sz>& v) TVMET_CXX_ALWAYS_INLINE; template<class T, std::size_t Sz> typename NumericTraits<T>::sum_type norm2(const Vector<T, Sz>& v) TVMET_CXX_ALWAYS_INLINE; template<class T, std::size_t Sz> XprVector< XprBinOp< Fcnl_div<T, T>, VectorConstReference<T, Sz>, XprLiteral< T > >, Sz > normalize(const Vector<T, Sz>& v) TVMET_CXX_ALWAYS_INLINE; /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * min/max unary functions *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ template<class E, std::size_t Sz> Extremum<typename E::value_type, std::size_t, vector_tag> maximum(const XprVector<E, Sz>& e); // NOT TVMET_CXX_ALWAYS_INLINE; template<class T, std::size_t Sz> Extremum<T, std::size_t, vector_tag> maximum(const Vector<T, Sz>& v) TVMET_CXX_ALWAYS_INLINE; template<class E, std::size_t Sz> Extremum<typename E::value_type, std::size_t, vector_tag> minimum(const XprVector<E, Sz>& e); // NOT TVMET_CXX_ALWAYS_INLINE; template<class T, std::size_t Sz> Extremum<T, std::size_t, vector_tag> minimum(const Vector<T, Sz>& v) TVMET_CXX_ALWAYS_INLINE; template<class E, std::size_t Sz> typename E::value_type max(const XprVector<E, Sz>& e); // NOT TVMET_CXX_ALWAYS_INLINE; template<class T, std::size_t Sz> T max(const Vector<T, Sz>& v) TVMET_CXX_ALWAYS_INLINE; template<class E, std::size_t Sz> typename E::value_type min(const XprVector<E, Sz>& e); // NOT TVMET_CXX_ALWAYS_INLINE; template<class T, std::size_t Sz> T min(const Vector<T, Sz>& v) TVMET_CXX_ALWAYS_INLINE; template<class T, std::size_t Sz> XprVector< VectorConstReference<T, Sz>, Sz > cvector_ref(const T* mem) TVMET_CXX_ALWAYS_INLINE; /********************************************************* * PART II: IMPLEMENTATION *********************************************************/ /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * Vector arithmetic functions add, sub, mul and div *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ /* * function(Vector<T1, Sz>, Vector<T2, Sz>) * function(Vector<T, Sz>, XprVector<E, Sz>) * function(XprVector<E, Sz>, Vector<T, Sz>) */ #define TVMET_IMPLEMENT_MACRO(NAME) \ template<class T1, class T2, std::size_t Sz> \ inline \ XprVector< \ XprBinOp< \ Fcnl_##NAME<T1, T2>, \ VectorConstReference<T1, Sz>, \ VectorConstReference<T2, Sz> \ >, \ Sz \ > \ NAME (const Vector<T1, Sz>& lhs, const Vector<T2, Sz>& rhs) { \ typedef XprBinOp < \ Fcnl_##NAME<T1, T2>, \ VectorConstReference<T1, Sz>, \ VectorConstReference<T2, Sz> \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(lhs.const_ref(), rhs.const_ref())); \ } \ \ template<class E, class T, std::size_t Sz> \ inline \ XprVector< \ XprBinOp< \ Fcnl_##NAME<typename E::value_type, T>, \ XprVector<E, Sz>, \ VectorConstReference<T, Sz> \ >, \ Sz \ > \ NAME (const XprVector<E, Sz>& lhs, const Vector<T, Sz>& rhs) { \ typedef XprBinOp< \ Fcnl_##NAME<typename E::value_type, T>, \ XprVector<E, Sz>, \ VectorConstReference<T, Sz> \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(lhs, rhs.const_ref())); \ } \ \ template<class E, class T, std::size_t Sz> \ inline \ XprVector< \ XprBinOp< \ Fcnl_##NAME<T, typename E::value_type>, \ VectorConstReference<T, Sz>, \ XprVector<E, Sz> \ >, \ Sz \ > \ NAME (const Vector<T, Sz>& lhs, const XprVector<E, Sz>& rhs) { \ typedef XprBinOp< \ Fcnl_##NAME<T, typename E::value_type>, \ VectorConstReference<T, Sz>, \ XprVector<E, Sz> \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(lhs.const_ref(), rhs)); \ } TVMET_IMPLEMENT_MACRO(add) // per se element wise TVMET_IMPLEMENT_MACRO(sub) // per se element wise TVMET_IMPLEMENT_MACRO(mul) // per se element wise namespace element_wise { TVMET_IMPLEMENT_MACRO(div) // not defined for vectors } #undef TVMET_IMPLEMENT_MACRO /* * function(Vector<T, Sz>, POD) * function(POD, Vector<T, Sz>) * Note: - operations +,-,*,/ are per se element wise */ #define TVMET_IMPLEMENT_MACRO(NAME, POD) \ template<class T, std::size_t Sz> \ inline \ XprVector< \ XprBinOp< \ Fcnl_##NAME< T, POD >, \ VectorConstReference<T, Sz>, \ XprLiteral< POD > \ >, \ Sz \ > \ NAME (const Vector<T, Sz>& lhs, POD rhs) { \ typedef XprBinOp< \ Fcnl_##NAME<T, POD >, \ VectorConstReference<T, Sz>, \ XprLiteral< POD > \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(lhs.const_ref(), XprLiteral< POD >(rhs))); \ } \ \ template<class T, std::size_t Sz> \ inline \ XprVector< \ XprBinOp< \ Fcnl_##NAME< POD, T>, \ XprLiteral< POD >, \ VectorConstReference<T, Sz> \ >, \ Sz \ > \ NAME (POD lhs, const Vector<T, Sz>& rhs) { \ typedef XprBinOp< \ Fcnl_##NAME< POD, T>, \ XprLiteral< POD >, \ VectorConstReference<T, Sz> \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(XprLiteral< POD >(lhs), rhs.const_ref())); \ } TVMET_IMPLEMENT_MACRO(add, int) TVMET_IMPLEMENT_MACRO(sub, int) TVMET_IMPLEMENT_MACRO(mul, int) TVMET_IMPLEMENT_MACRO(div, int) #if defined(TVMET_HAVE_LONG_LONG) TVMET_IMPLEMENT_MACRO(add, long long int) TVMET_IMPLEMENT_MACRO(sub, long long int) TVMET_IMPLEMENT_MACRO(mul, long long int) TVMET_IMPLEMENT_MACRO(div, long long int) #endif TVMET_IMPLEMENT_MACRO(add, float) TVMET_IMPLEMENT_MACRO(sub, float) TVMET_IMPLEMENT_MACRO(mul, float) TVMET_IMPLEMENT_MACRO(div, float) TVMET_IMPLEMENT_MACRO(add, double) TVMET_IMPLEMENT_MACRO(sub, double) TVMET_IMPLEMENT_MACRO(mul, double) TVMET_IMPLEMENT_MACRO(div, double) #if defined(TVMET_HAVE_LONG_DOUBLE) TVMET_IMPLEMENT_MACRO(add, long double) TVMET_IMPLEMENT_MACRO(sub, long double) TVMET_IMPLEMENT_MACRO(mul, long double) TVMET_IMPLEMENT_MACRO(div, long double) #endif #undef TVMET_IMPLEMENT_MACRO #if defined(TVMET_HAVE_COMPLEX) /* * function(Vector<std::complex<T>, Sz>, std::complex<T>) * function(std::complex<T>, Vector<std::complex<T>, Sz>) * Note: per se element wise * \todo type promotion */ #define TVMET_IMPLEMENT_MACRO(NAME) \ template<class T, std::size_t Sz> \ inline \ XprVector< \ XprBinOp< \ Fcnl_##NAME< std::complex<T>, std::complex<T> >, \ VectorConstReference< std::complex<T>, Sz>, \ XprLiteral< std::complex<T> > \ >, \ Sz \ > \ NAME (const Vector<std::complex<T>, Sz>& lhs, const std::complex<T>& rhs) { \ typedef XprBinOp< \ Fcnl_##NAME< std::complex<T>, std::complex<T> >, \ VectorConstReference< std::complex<T>, Sz>, \ XprLiteral< std::complex<T> > \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(lhs.const_ref(), XprLiteral< std::complex<T> >(rhs))); \ } \ \ template<class T, std::size_t Sz> \ inline \ XprVector< \ XprBinOp< \ Fcnl_##NAME< std::complex<T>, std::complex<T> >, \ XprLiteral< std::complex<T> >, \ VectorConstReference< std::complex<T>, Sz> \ >, \ Sz \ > \ NAME (const std::complex<T>& lhs, const Vector< std::complex<T>, Sz>& rhs) { \ typedef XprBinOp< \ Fcnl_##NAME< std::complex<T>, std::complex<T> >, \ XprLiteral< std::complex<T> >, \ VectorConstReference< std::complex<T>, Sz> \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(XprLiteral< std::complex<T> >(lhs), rhs.const_ref())); \ } TVMET_IMPLEMENT_MACRO(add) TVMET_IMPLEMENT_MACRO(sub) TVMET_IMPLEMENT_MACRO(mul) TVMET_IMPLEMENT_MACRO(div) #undef TVMET_IMPLEMENT_MACRO #endif // defined(TVMET_HAVE_COMPLEX) /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * vector specific functions *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ /** * \fn sum(const Vector<T, Sz>& v) * \brief Compute the sum of the vector. * \ingroup _unary_function * * Simply compute the sum of the given vector as: * \f[ * \sum_{i = 0}^{Sz-1} v[i] * \f] */ template<class T, std::size_t Sz> inline typename NumericTraits<T>::sum_type sum(const Vector<T, Sz>& v) { return meta::Vector<Sz>::sum(v); } /** * \fn product(const Vector<T, Sz>& v) * \brief Compute the product of the vector elements. * \ingroup _unary_function * * Simply computer the product of the given vector as: * \f[ * \prod_{i = 0}^{Sz - 1} v[i] * \f] */ template<class T, std::size_t Sz> inline typename NumericTraits<T>::sum_type product(const Vector<T, Sz>& v) { return meta::Vector<Sz>::product(v); } /** * \fn dot(const Vector<T1, Sz>& lhs, const Vector<T2, Sz>& rhs) * \brief Compute the dot/inner product * \ingroup _binary_function * * Compute the dot product as: * \f[ * \sum_{i = 0}^{Sz - 1} ( lhs[i] * rhs[i] ) * \f] * where lhs is a column vector and rhs is a row vector, both vectors * have the same dimension. */ template<class T1, class T2, std::size_t Sz> inline typename PromoteTraits<T1, T2>::value_type dot(const Vector<T1, Sz>& lhs, const Vector<T2, Sz>& rhs) { return meta::Vector<Sz>::dot(lhs, rhs); } /** * \fn cross(const Vector<T1, 3>& lhs, const Vector<T2, 3>& rhs) * \brief Compute the cross/outer product * \ingroup _binary_function * \note working only for vectors of size = 3 * \todo Implement vector outer product as ET and MT, returning a XprVector */ template<class T1, class T2> inline Vector<typename PromoteTraits<T1, T2>::value_type, 3> cross(const Vector<T1, 3>& lhs, const Vector<T2, 3>& rhs) { typedef typename PromoteTraits<T1, T2>::value_type value_type; return Vector<value_type, 3>(lhs(1)*rhs(2) - rhs(1)*lhs(2), rhs(0)*lhs(2) - lhs(0)*rhs(2), lhs(0)*rhs(1) - rhs(0)*lhs(1)); } /** * \fn norm1(const Vector<T, Sz>& v) * \brief The \f$l_1\f$ norm of a vector v. * \ingroup _unary_function * The norm of any vector is just the square root of the dot product of * a vector with itself, or * * \f[ * |Vector<T, Sz> v| = |v| = \sum_{i=0}^{Sz-1}\,|v[i]| * \f] */ template<class T, std::size_t Sz> inline typename NumericTraits<T>::sum_type norm1(const Vector<T, Sz>& v) { return sum(abs(v)); } /** * \fn norm2(const Vector<T, Sz>& v) * \brief The euklidian norm (or \f$l_2\f$ norm) of a vector v. * \ingroup _unary_function * The norm of any vector is just the square root of the dot product of * a vector with itself, or * * \f[ * |Vector<T, Sz> v| = |v| = \sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 } * \f] * * \note The internal cast for Vector<int> avoids warnings on sqrt. */ template<class T, std::size_t Sz> inline typename NumericTraits<T>::sum_type norm2(const Vector<T, Sz>& v) { return static_cast<T>( std::sqrt(static_cast<typename NumericTraits<T>::float_type>(dot(v, v))) ); } /** * \fn normalize(const Vector<T, Sz>& v) * \brief Normalize the given vector. * \ingroup _unary_function * \sa norm2 * * using the equation: * \f[ * \frac{Vector<T, Sz> v}{\sqrt{ \sum_{i=0}^{Sz-1}\,v[i]^2 }} * \f] */ template<class T, std::size_t Sz> inline XprVector< XprBinOp< Fcnl_div<T, T>, VectorConstReference<T, Sz>, XprLiteral< T > >, Sz > normalize(const Vector<T, Sz>& v) { typedef XprBinOp< Fcnl_div<T, T>, VectorConstReference<T, Sz>, XprLiteral< T > > expr_type; return XprVector<expr_type, Sz>( expr_type(v.const_ref(), XprLiteral< T >(norm2(v)))); } /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * min/max unary functions *+++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ /** * \fn maximum(const XprVector<E, Sz>& e) * \brief Find the maximum of a vector expression * \ingroup _unary_function */ template<class E, std::size_t Sz> inline Extremum<typename E::value_type, std::size_t, vector_tag> maximum(const XprVector<E, Sz>& e) { typedef typename E::value_type value_type; value_type m_max(e(0)); std::size_t m_idx(0); // this loop is faster than meta templates! for(std::size_t i = 1; i != Sz; ++i) { if(e(i) > m_max) { m_max = e(i); m_idx = i; } } return Extremum<value_type, std::size_t, vector_tag>(m_max, m_idx); } /** * \fn maximum(const Vector<T, Sz>& v) * \brief Find the maximum of a vector * \ingroup _unary_function */ template<class T, std::size_t Sz> inline Extremum<T, std::size_t, vector_tag> maximum(const Vector<T, Sz>& v) { return maximum(v.as_expr()); } /** * \fn minimum(const XprVector<E, Sz>& e) * \brief Find the minimum of a vector expression * \ingroup _unary_function */ template<class E, std::size_t Sz> inline Extremum<typename E::value_type, std::size_t, vector_tag> minimum(const XprVector<E, Sz>& e) { typedef typename E::value_type value_type; value_type m_min(e(0)); std::size_t m_idx(0); // this loop is faster than meta templates! for(std::size_t i = 1; i != Sz; ++i) { if(e(i) < m_min) { m_min = e(i); m_idx = i; } } return Extremum<value_type, std::size_t, vector_tag>(m_min, m_idx); } /** * \fn minimum(const Vector<T, Sz>& v) * \brief Find the minimum of a vector * \ingroup _unary_function */ template<class T, std::size_t Sz> inline Extremum<T, std::size_t, vector_tag> minimum(const Vector<T, Sz>& v) { return minimum(v.as_expr()); } /** * \fn max(const XprVector<E, Sz>& e) * \brief Find the maximum of a vector expression * \ingroup _unary_function */ template<class E, std::size_t Sz> inline typename E::value_type max(const XprVector<E, Sz>& e) { typedef typename E::value_type value_type; value_type m_max(e(0)); // this loop is faster than meta templates! for(std::size_t i = 1; i != Sz; ++i) if(e(i) > m_max) m_max = e(i); return m_max; } /** * \fn max(const Vector<T, Sz>& v) * \brief Find the maximum of a vector * \ingroup _unary_function */ template<class T, std::size_t Sz> inline T max(const Vector<T, Sz>& v) { typedef T value_type; typedef typename Vector<T, Sz>::const_iterator const_iterator; const_iterator iter(v.begin()); const_iterator last(v.end()); value_type temp(*iter); for( ; iter != last; ++iter) if(*iter > temp) temp = *iter; return temp; } /** * \fn min(const XprVector<E, Sz>& e) * \brief Find the minimum of a vector expression * \ingroup _unary_function */ template<class E, std::size_t Sz> inline typename E::value_type min(const XprVector<E, Sz>& e) { typedef typename E::value_type value_type; value_type m_min(e(0)); // this loop is faster than meta templates! for(std::size_t i = 1; i != Sz; ++i) if(e(i) < m_min) m_min = e(i); return m_min; } /** * \fn min(const Vector<T, Sz>& v) * \brief Find the minimum of a vector * \ingroup _unary_function */ template<class T, std::size_t Sz> inline T min(const Vector<T, Sz>& v) { typedef T value_type; typedef typename Vector<T, Sz>::const_iterator const_iterator; const_iterator iter(v.begin()); const_iterator last(v.end()); value_type temp(*iter); for( ; iter != last; ++iter) if(*iter < temp) temp = *iter; return temp; } /** * \fn cvector_ref(const T* mem) * \brief Creates an expression wrapper for a C like vector arrays. * \ingroup _unary_function * * This is like creating a vector of external data, as described * at \ref construct. With this function you wrap an expression * around a C style vector array and you can operate directly with it * as usual. * * \par Example: * \code * static float vertices[N][3] = { * {-1, 0, 1}, { 1, 0, 1}, ... * }; * ... * typedef Vector<float, 3> vector_type; * ... * vector_type V( cross(cvector_ref<float, 3>(&vertices[0][0]), * cvector_ref<float, 3>(&vertices[1][0])) ); * \endcode * * \since release 1.6.0 */ template<class T, std::size_t Sz> inline XprVector< VectorConstReference<T, Sz>, Sz > cvector_ref(const T* mem) { typedef VectorConstReference<T, Sz> expr_type; return XprVector<expr_type, Sz>(expr_type(mem)); } } // namespace tvmet #endif // TVMET_VECTOR_FUNCTIONS_H // Local Variables: // mode:C++ // tab-width:8 // End: