Oskar Weigl
/
Eurobot2013
We are going to win! wohoo
tvmet/VectorEval.h
- Committer:
- xiaxia686
- Date:
- 2012-11-14
- Revision:
- 4:698a3c538482
- Parent:
- 1:6799c07fe510
File content as of revision 4:698a3c538482:
/* * Tiny Vector Matrix Library * Dense Vector Matrix Libary of Tiny size using Expression Templates * * Copyright (C) 2001 - 2007 Olaf Petzold <opetzold@users.sourceforge.net> * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: VectorEval.h,v 1.18 2007-06-23 15:58:58 opetzold Exp $ */ #ifndef TVMET_VECTOR_EVAL_H #define TVMET_VECTOR_EVAL_H namespace tvmet { /******************************************************************** * functions all_elements/any_elements ********************************************************************/ /** * \fn bool all_elements(const XprVector<E, Sz>& e) * \brief check on statements for all elements * \ingroup _unary_function * This is for use with boolean operators like * \par Example: * \code * all_elements(vector > 0) { * // true branch * } else { * // false branch * } * \endcode * \sa \ref compare */ template<class E, std::size_t Sz> inline bool all_elements(const XprVector<E, Sz>& e) { return meta::Vector<Sz>::all_elements(e); } /** * \fn bool any_elements(const XprVector<E, Sz>& e) * \brief check on statements for any elements * \ingroup _unary_function * This is for use with boolean operators like * \par Example: * \code * any_elements(vector > 0) { * // true branch * } else { * // false branch * } * \endcode * \sa \ref compare */ template<class E, std::size_t Sz> inline bool any_elements(const XprVector<E, Sz>& e) { return meta::Vector<Sz>::any_elements(e); } /* * trinary evaluation functions with vectors and xpr of * XprVector<E1, Sz> ? Vector<T2, Sz> : Vector<T3, Sz> * XprVector<E1, Sz> ? Vector<T2, Sz> : XprVector<E3, Sz> * XprVector<E1, Sz> ? XprVector<E2, Sz> : Vector<T3, Sz> * XprVector<E1, Sz> ? XprVector<E2, Sz> : XprVector<E3, Sz> */ /** * eval(const XprVector<E1, Sz>& e1, const Vector<T2, Sz>& v2, const Vector<T3, Sz>& v3) * \brief Evals the vector expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class T2, class T3, std::size_t Sz> inline XprVector< XprEval< XprVector<E1, Sz>, VectorConstReference<T2, Sz>, VectorConstReference<T3, Sz> >, Sz > eval(const XprVector<E1, Sz>& e1, const Vector<T2, Sz>& v2, const Vector<T3, Sz>& v3) { typedef XprEval< XprVector<E1, Sz>, VectorConstReference<T2, Sz>, VectorConstReference<T3, Sz> > expr_type; return XprVector<expr_type, Sz>( expr_type(e1, v2.const_ref(), v3.const_ref())); } /** * eval(const XprVector<E1, Sz>& e1, const Vector<T2, Sz>& v2, const XprVector<E3, Sz>& e3) * \brief Evals the vector expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class T2, class E3, std::size_t Sz> inline XprVector< XprEval< XprVector<E1, Sz>, VectorConstReference<T2, Sz>, XprVector<E3, Sz> >, Sz > eval(const XprVector<E1, Sz>& e1, const Vector<T2, Sz>& v2, const XprVector<E3, Sz>& e3) { typedef XprEval< XprVector<E1, Sz>, VectorConstReference<T2, Sz>, XprVector<E3, Sz> > expr_type; return XprVector<expr_type, Sz>( expr_type(e1, v2.const_ref(), e3)); } /** * eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, const Vector<T3, Sz>& v3) * \brief Evals the vector expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class E2, class T3, std::size_t Sz> inline XprVector< XprEval< XprVector<E1, Sz>, XprVector<E2, Sz>, VectorConstReference<T3, Sz> >, Sz > eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, const Vector<T3, Sz>& v3) { typedef XprEval< XprVector<E1, Sz>, XprVector<E2, Sz>, VectorConstReference<T3, Sz> > expr_type; return XprVector<expr_type, Sz>( expr_type(e1, e2, v3.const_ref())); } /** * eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, const XprVector<E3, Sz>& e3) * \brief Evals the vector expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class E2, class E3, std::size_t Sz> inline XprVector< XprEval< XprVector<E1, Sz>, XprVector<E2, Sz>, XprVector<E3, Sz> >, Sz > eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, const XprVector<E3, Sz>& e3) { typedef XprEval< XprVector<E1, Sz>, XprVector<E2, Sz>, XprVector<E3, Sz> > expr_type; return XprVector<expr_type, Sz>(expr_type(e1, e2, e3)); } /* * trinary evaluation functions with vectors, xpr of and POD * * XprVector<E, Sz> ? POD1 : POD2 * XprVector<E1, Sz> ? POD : XprVector<E3, Sz> * XprVector<E1, Sz> ? XprVector<E2, Sz> : POD */ #define TVMET_IMPLEMENT_MACRO(POD) \ template<class E, std::size_t Sz> \ inline \ XprVector< \ XprEval< \ XprVector<E, Sz>, \ XprLiteral< POD >, \ XprLiteral< POD > \ >, \ Sz \ > \ eval(const XprVector<E, Sz>& e, POD x2, POD x3) { \ typedef XprEval< \ XprVector<E, Sz>, \ XprLiteral< POD >, \ XprLiteral< POD > \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(e, XprLiteral< POD >(x2), XprLiteral< POD >(x3))); \ } \ \ template<class E1, class E3, std::size_t Sz> \ inline \ XprVector< \ XprEval< \ XprVector<E1, Sz>, \ XprLiteral< POD >, \ XprVector<E3, Sz> \ >, \ Sz \ > \ eval(const XprVector<E1, Sz>& e1, POD x2, const XprVector<E3, Sz>& e3) { \ typedef XprEval< \ XprVector<E1, Sz>, \ XprLiteral< POD >, \ XprVector<E3, Sz> \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(e1, XprLiteral< POD >(x2), e3)); \ } \ \ template<class E1, class E2, std::size_t Sz> \ inline \ XprVector< \ XprEval< \ XprVector<E1, Sz>, \ XprVector<E2, Sz>, \ XprLiteral< POD > \ >, \ Sz \ > \ eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, POD x3) { \ typedef XprEval< \ XprVector<E1, Sz>, \ XprVector<E2, Sz>, \ XprLiteral< POD > \ > expr_type; \ return XprVector<expr_type, Sz>( \ expr_type(e1, e2, XprLiteral< POD >(x3))); \ } TVMET_IMPLEMENT_MACRO(int) #if defined(TVMET_HAVE_LONG_LONG) TVMET_IMPLEMENT_MACRO(long long int) #endif // defined(TVMET_HAVE_LONG_LONG) TVMET_IMPLEMENT_MACRO(float) TVMET_IMPLEMENT_MACRO(double) #if defined(TVMET_HAVE_LONG_DOUBLE) TVMET_IMPLEMENT_MACRO(long double) #endif // defined(TVMET_HAVE_LONG_DOUBLE) #undef TVMET_IMPLEMENT_MACRO /* * trinary evaluation functions with vectors, xpr of and complex<> types * * XprVector<E, Sz> e, std::complex<T> z2, std::complex<T> z3 * XprVector<E1, Sz> e1, std::complex<T> z2, XprVector<E3, Sz> e3 * XprVector<E1, Sz> e1, XprVector<E2, Sz> e2, std::complex<T> z3 */ #if defined(TVMET_HAVE_COMPLEX) /** * eval(const XprVector<E, Sz>& e, std::complex<T> z2, std::complex<T> z3) * \brief Evals the vector expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E, std::size_t Sz, class T> inline XprVector< XprEval< XprVector<E, Sz>, XprLiteral< std::complex<T> >, XprLiteral< std::complex<T> > >, Sz > eval(const XprVector<E, Sz>& e, std::complex<T> z2, std::complex<T> z3) { typedef XprEval< XprVector<E, Sz>, XprLiteral< std::complex<T> >, XprLiteral< std::complex<T> > > expr_type; return XprVector<expr_type, Sz>( expr_type(e, XprLiteral< std::complex<T> >(z2), XprLiteral< std::complex<T> >(z3))); } /** * eval(const XprVector<E1, Sz>& e1, std::complex<T> z2, const XprVector<E3, Sz>& e3) * \brief Evals the vector expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class E3, std::size_t Sz, class T> inline XprVector< XprEval< XprVector<E1, Sz>, XprLiteral< std::complex<T> >, XprVector<E3, Sz> >, Sz > eval(const XprVector<E1, Sz>& e1, std::complex<T> z2, const XprVector<E3, Sz>& e3) { typedef XprEval< XprVector<E1, Sz>, XprLiteral< std::complex<T> >, XprVector<E3, Sz> > expr_type; return XprVector<expr_type, Sz>( expr_type(e1, XprLiteral< std::complex<T> >(z2), e3)); } /** * eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, std::complex<T> z3) * \brief Evals the vector expressions. * \ingroup _trinary_function * This eval is for the a?b:c syntax, since it's not allowed to overload * these operators. */ template<class E1, class E2, std::size_t Sz, class T> inline XprVector< XprEval< XprVector<E1, Sz>, XprVector<E2, Sz>, XprLiteral< std::complex<T> > >, Sz > eval(const XprVector<E1, Sz>& e1, const XprVector<E2, Sz>& e2, std::complex<T> z3) { typedef XprEval< XprVector<E1, Sz>, XprVector<E2, Sz>, XprLiteral< std::complex<T> > > expr_type; return XprVector<expr_type, Sz>( expr_type(e1, e2, XprLiteral< std::complex<T> >(z3))); } #endif // defined(TVMET_HAVE_COMPLEX) } // namespace tvmet #endif // TVMET_VECTOR_EVAL_H // Local Variables: // mode:C++ // tab-width:8 // End: