Oskar Weigl
/
Eurobot2013
We are going to win! wohoo
Diff: tvmet/MatrixEval.h
- Revision:
- 1:6799c07fe510
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/tvmet/MatrixEval.h Wed Nov 07 14:37:35 2012 +0000 @@ -0,0 +1,387 @@ +/* + * Tiny Vector Matrix Library + * Dense Vector Matrix Libary of Tiny size using Expression Templates + * + * Copyright (C) 2001 - 2007 Olaf Petzold <opetzold@users.sourceforge.net> + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * lesser General Public License for more details. + * + * You should have received a copy of the GNU lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * + * $Id: MatrixEval.h,v 1.18 2007-06-23 15:58:58 opetzold Exp $ + */ + +#ifndef TVMET_MATRIX_EVAL_H +#define TVMET_MATRIX_EVAL_H + +namespace tvmet { + + +/** + * \fn bool all_elements(const XprMatrix<E, Rows, Cols>& e) + * \brief check on statements for all elements + * \ingroup _unary_function + * This is for use with boolean operators like + * \par Example: + * \code + * all_elements(matrix > 0) { + * // true branch + * } else { + * // false branch + * } + * \endcode + * \sa \ref compare + */ +template<class E, std::size_t Rows, std::size_t Cols> +inline +bool all_elements(const XprMatrix<E, Rows, Cols>& e) { + return meta::Matrix<Rows, Cols, 0, 0>::all_elements(e); +} + + +/** + * \fn bool any_elements(const XprMatrix<E, Rows, Cols>& e) + * \brief check on statements for any elements + * \ingroup _unary_function + * This is for use with boolean operators like + * \par Example: + * \code + * any_elements(matrix > 0) { + * // true branch + * } else { + * // false branch + * } + * \endcode + * \sa \ref compare + */ +template<class E, std::size_t Rows, std::size_t Cols> +inline +bool any_elements(const XprMatrix<E, Rows, Cols>& e) { + return meta::Matrix<Rows, Cols, 0, 0>::any_elements(e); +} + + +/* + * trinary evaluation functions with matrizes and xpr of + * + * XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : Matrix<T3, Rows, Cols> + * XprMatrix<E1, Rows, Cols> ? Matrix<T2, Rows, Cols> : XprMatrix<E3, Rows, Cols> + * XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : Matrix<T3, Rows, Cols> + * XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : XprMatrix<E3, Rows, Cols> + */ + +/** + * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const Matrix<T3, Rows, Cols>& m3) + * \brief Evals the matrix expressions. + * \ingroup _trinary_function + * This eval is for the a?b:c syntax, since it's not allowed to overload + * these operators. + */ +template<class E1, class T2, class T3, std::size_t Rows, std::size_t Cols> +inline +XprMatrix< + XprEval< + XprMatrix<E1, Rows, Cols>, + MatrixConstReference<T2, Rows, Cols>, + MatrixConstReference<T3, Rows, Cols> + >, + Rows, Cols +> +eval(const XprMatrix<E1, Rows, Cols>& e1, + const Matrix<T2, Rows, Cols>& m2, + const Matrix<T3, Rows, Cols>& m3) { + typedef XprEval< + XprMatrix<E1, Rows, Cols>, + MatrixConstReference<T2, Rows, Cols>, + MatrixConstReference<T3, Rows, Cols> + > expr_type; + return XprMatrix<expr_type, Rows, Cols>( + expr_type(e1, m2.const_ref(), m3.const_ref())); +} + + +/** + * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const Matrix<T2, Rows, Cols>& m2, const XprMatrix<E3, Rows, Cols>& e3) + * \brief Evals the matrix expressions. + * \ingroup _trinary_function + * This eval is for the a?b:c syntax, since it's not allowed to overload + * these operators. + */ +template<class E1, class T2, class E3, std::size_t Rows, std::size_t Cols> +inline +XprMatrix< + XprEval< + XprMatrix<E1, Rows, Cols>, + MatrixConstReference<T2, Rows, Cols>, + XprMatrix<E3, Rows, Cols> + >, + Rows, Cols +> +eval(const XprMatrix<E1, Rows, Cols>& e1, + const Matrix<T2, Rows, Cols>& m2, + const XprMatrix<E3, Rows, Cols>& e3) { + typedef XprEval< + XprMatrix<E1, Rows, Cols>, + MatrixConstReference<T2, Rows, Cols>, + XprMatrix<E3, Rows, Cols> + > expr_type; + return XprMatrix<expr_type, Rows, Cols>( + expr_type(e1, m2.const_ref(), e3)); +} + + +/** + * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const Matrix<T3, Rows, Cols>& m3) + * \brief Evals the matrix expressions. + * \ingroup _trinary_function + * This eval is for the a?b:c syntax, since it's not allowed to overload + * these operators. + */ +template<class E1, class E2, class T3, std::size_t Rows, std::size_t Cols> +inline +XprMatrix< + XprEval< + XprMatrix<E1, Rows, Cols>, + XprMatrix<E2, Rows, Cols>, + MatrixConstReference<T3, Rows, Cols> + >, + Rows, Cols +> +eval(const XprMatrix<E1, Rows, Cols>& e1, + const XprMatrix<E2, Rows, Cols>& e2, + const Matrix<T3, Rows, Cols>& m3) { + typedef XprEval< + XprMatrix<E1, Rows, Cols>, + XprMatrix<E2, Rows, Cols>, + MatrixConstReference<T3, Rows, Cols> + > expr_type; + return XprMatrix<expr_type, Rows, Cols>( + expr_type(e1, e2, m3.const_ref())); +} + + +/** + * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const XprMatrix<E3, Rows, Cols>& e3) + * \brief Evals the matrix expressions. + * \ingroup _trinary_function + * This eval is for the a?b:c syntax, since it's not allowed to overload + * these operators. + */ +template<class E1, class E2, class E3, std::size_t Rows, std::size_t Cols> +inline +XprMatrix< + XprEval< + XprMatrix<E1, Rows, Cols>, + XprMatrix<E2, Rows, Cols>, + XprMatrix<E3, Rows, Cols> + >, + Rows, Cols +> +eval(const XprMatrix<E1, Rows, Cols>& e1, + const XprMatrix<E2, Rows, Cols>& e2, + const XprMatrix<E3, Rows, Cols>& e3) { + typedef XprEval< + XprMatrix<E1, Rows, Cols>, + XprMatrix<E2, Rows, Cols>, + XprMatrix<E3, Rows, Cols> + > expr_type; + return XprMatrix<expr_type, Rows, Cols>(expr_type(e1, e2, e3)); +} + + +/* + * trinary evaluation functions with matrizes, xpr of and POD + * + * XprMatrix<E, Rows, Cols> ? POD1 : POD2 + * XprMatrix<E1, Rows, Cols> ? POD : XprMatrix<E3, Rows, Cols> + * XprMatrix<E1, Rows, Cols> ? XprMatrix<E2, Rows, Cols> : POD + */ +#define TVMET_IMPLEMENT_MACRO(POD) \ +template<class E, std::size_t Rows, std::size_t Cols> \ +inline \ +XprMatrix< \ + XprEval< \ + XprMatrix<E, Rows, Cols>, \ + XprLiteral< POD >, \ + XprLiteral< POD > \ + >, \ + Rows, Cols \ +> \ +eval(const XprMatrix<E, Rows, Cols>& e, POD x2, POD x3) { \ + typedef XprEval< \ + XprMatrix<E, Rows, Cols>, \ + XprLiteral< POD >, \ + XprLiteral< POD > \ + > expr_type; \ + return XprMatrix<expr_type, Rows, Cols>( \ + expr_type(e, XprLiteral< POD >(x2), XprLiteral< POD >(x3))); \ +} \ + \ +template<class E1, class E3, std::size_t Rows, std::size_t Cols> \ +inline \ +XprMatrix< \ + XprEval< \ + XprMatrix<E1, Rows, Cols>, \ + XprLiteral< POD >, \ + XprMatrix<E3, Rows, Cols> \ + >, \ + Rows, Cols \ +> \ +eval(const XprMatrix<E1, Rows, Cols>& e1, POD x2, const XprMatrix<E3, Rows, Cols>& e3) { \ + typedef XprEval< \ + XprMatrix<E1, Rows, Cols>, \ + XprLiteral< POD >, \ + XprMatrix<E3, Rows, Cols> \ + > expr_type; \ + return XprMatrix<expr_type, Rows, Cols>( \ + expr_type(e1, XprLiteral< POD >(x2), e3)); \ +} \ + \ +template<class E1, class E2, std::size_t Rows, std::size_t Cols> \ +inline \ +XprMatrix< \ + XprEval< \ + XprMatrix<E1, Rows, Cols>, \ + XprMatrix<E2, Rows, Cols>, \ + XprLiteral< POD > \ + >, \ + Rows, Cols \ +> \ +eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, POD x3) { \ + typedef XprEval< \ + XprMatrix<E1, Rows, Cols>, \ + XprMatrix<E2, Rows, Cols>, \ + XprLiteral< POD > \ + > expr_type; \ + return XprMatrix<expr_type, Rows, Cols>( \ + expr_type(e1, e2, XprLiteral< POD >(x3))); \ +} + +TVMET_IMPLEMENT_MACRO(int) + +#if defined(TVMET_HAVE_LONG_LONG) +TVMET_IMPLEMENT_MACRO(long long int) +#endif + +TVMET_IMPLEMENT_MACRO(float) +TVMET_IMPLEMENT_MACRO(double) + +#if defined(TVMET_HAVE_LONG_DOUBLE) +TVMET_IMPLEMENT_MACRO(long double) +#endif + +#undef TVMET_IMPLEMENT_MACRO + + +/* + * trinary evaluation functions with matrizes, xpr of and complex<> types + * + * XprMatrix<E, Rows, Cols> e, std::complex<T> z2, std::complex<T> z3 + * XprMatrix<E1, Rows, Cols> e1, std::complex<T> z2, XprMatrix<E3, Rows, Cols> e3 + * XprMatrix<E1, Rows, Cols> e1, XprMatrix<E2, Rows, Cols> e2, std::complex<T> z3 + */ +#if defined(TVMET_HAVE_COMPLEX) + +/** + * \fn eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3) + * \brief Evals the matrix expressions. + * \ingroup _trinary_function + * This eval is for the a?b:c syntax, since it's not allowed to overload + * these operators. + */ +template<class E, std::size_t Rows, std::size_t Cols, class T> +inline +XprMatrix< + XprEval< + XprMatrix<E, Rows, Cols>, + XprLiteral< std::complex<T> >, + XprLiteral< std::complex<T> > + >, + Rows, Cols +> +eval(const XprMatrix<E, Rows, Cols>& e, const std::complex<T>& x2, const std::complex<T>& x3) { + typedef XprEval< + XprMatrix<E, Rows, Cols>, + XprLiteral< std::complex<T> >, + XprLiteral< std::complex<T> > + > expr_type; + return XprMatrix<expr_type, Rows, Cols>( + expr_type(e, XprLiteral< std::complex<T> >(x2), XprLiteral< std::complex<T> >(x3))); +} + + +/** + * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3) + * \brief Evals the matrix expressions. + * \ingroup _trinary_function + * This eval is for the a?b:c syntax, since it's not allowed to overload + * these operators. + */ +template<class E1, class E3, std::size_t Rows, std::size_t Cols, class T> +inline +XprMatrix< + XprEval< + XprMatrix<E1, Rows, Cols>, + XprLiteral< std::complex<T> >, + XprMatrix<E3, Rows, Cols> + >, + Rows, Cols +> +eval(const XprMatrix<E1, Rows, Cols>& e1, const std::complex<T>& x2, const XprMatrix<E3, Rows, Cols>& e3) { + typedef XprEval< + XprMatrix<E1, Rows, Cols>, + XprLiteral< std::complex<T> >, + XprMatrix<E3, Rows, Cols> + > expr_type; + return XprMatrix<expr_type, Rows, Cols>( + expr_type(e1, XprLiteral< std::complex<T> >(x2), e3)); +} + + +/** + * \fn eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3) + * \brief Evals the matrix expressions. + * \ingroup _trinary_function + * This eval is for the a?b:c syntax, since it's not allowed to overload + * these operators. + */ +template<class E1, class E2, std::size_t Rows, std::size_t Cols, class T> +inline +XprMatrix< + XprEval< + XprMatrix<E1, Rows, Cols>, + XprMatrix<E2, Rows, Cols>, + XprLiteral< std::complex<T> > + >, + Rows, Cols +> +eval(const XprMatrix<E1, Rows, Cols>& e1, const XprMatrix<E2, Rows, Cols>& e2, const std::complex<T>& x3) { + typedef XprEval< + XprMatrix<E1, Rows, Cols>, + XprMatrix<E2, Rows, Cols>, + XprLiteral< std::complex<T> > + > expr_type; + return XprMatrix<expr_type, Rows, Cols>( + expr_type(e1, e2, XprLiteral< std::complex<T> >(x3))); +} +#endif // defined(TVMET_HAVE_COMPLEX) + + +} // namespace tvmet + +#endif // TVMET_MATRIX_EVAL_H + +// Local Variables: +// mode:C++ +// tab-width:8 +// End: