Initial commit

Dependencies:   FastPWM

Revision:
0:bb348c97df44
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mbed-dev-master/targets/TARGET_STM/TARGET_STM32F4/device/stm32f4xx_hal_nand.c	Wed Sep 16 01:11:49 2020 +0000
@@ -0,0 +1,1816 @@
+/**
+  ******************************************************************************
+  * @file    stm32f4xx_hal_nand.c
+  * @author  MCD Application Team
+  * @brief   NAND HAL module driver.
+  *          This file provides a generic firmware to drive NAND memories mounted 
+  *          as external device.
+  *         
+  @verbatim
+  ==============================================================================
+                         ##### How to use this driver #####
+  ==============================================================================    
+    [..]
+      This driver is a generic layered driver which contains a set of APIs used to 
+      control NAND flash memories. It uses the FMC/FSMC layer functions to interface 
+      with NAND devices. This driver is used as follows:
+    
+      (+) NAND flash memory configuration sequence using the function HAL_NAND_Init() 
+          with control and timing parameters for both common and attribute spaces.
+            
+      (+) Read NAND flash memory maker and device IDs using the function
+          HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef 
+          structure declared by the function caller. 
+        
+      (+) Access NAND flash memory by read/write operations using the functions
+          HAL_NAND_Read_Page_8b()/HAL_NAND_Read_SpareArea_8b(), 
+          HAL_NAND_Write_Page_8b()/HAL_NAND_Write_SpareArea_8b(),
+          HAL_NAND_Read_Page_16b()/HAL_NAND_Read_SpareArea_16b(), 
+          HAL_NAND_Write_Page_16b()/HAL_NAND_Write_SpareArea_16b()
+          to read/write page(s)/spare area(s). These functions use specific device 
+          information (Block, page size..) predefined by the user in the HAL_NAND_Info_TypeDef 
+          structure. The read/write address information is contained by the Nand_Address_Typedef
+          structure passed as parameter.
+        
+      (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset().
+        
+      (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block().
+          The erase block address information is contained in the Nand_Address_Typedef 
+          structure passed as parameter.
+    
+      (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status().
+        
+      (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/
+          HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction
+          feature or the function HAL_NAND_GetECC() to get the ECC correction code. 
+       
+      (+) You can monitor the NAND device HAL state by calling the function
+          HAL_NAND_GetState()  
+
+    [..]
+      (@) This driver is a set of generic APIs which handle standard NAND flash operations.
+          If a NAND flash device contains different operations and/or implementations, 
+          it should be implemented separately.
+
+  @endverbatim
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************
+  */ 
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_hal.h"
+
+/** @addtogroup STM32F4xx_HAL_Driver
+  * @{
+  */
+
+
+#ifdef HAL_NAND_MODULE_ENABLED
+
+#if defined(STM32F405xx) || defined(STM32F415xx) || defined(STM32F407xx) || defined(STM32F417xx) ||\
+    defined(STM32F427xx) || defined(STM32F437xx) || defined(STM32F429xx) || defined(STM32F439xx) ||\
+    defined(STM32F446xx) || defined(STM32F469xx) || defined(STM32F479xx)
+
+/** @defgroup NAND NAND 
+  * @brief NAND HAL module driver
+  * @{
+  */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @defgroup NAND_Private_Constants NAND Private Constants
+  * @{
+  */
+
+/**
+  * @}
+  */
+
+/* Private macro -------------------------------------------------------------*/    
+/** @defgroup NAND_Private_Macros NAND Private Macros
+  * @{
+  */
+
+/**
+  * @}
+  */
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+/** @defgroup NAND_Exported_Functions NAND Exported Functions
+  * @{
+  */
+    
+/** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions 
+  * @brief    Initialization and Configuration functions 
+  *
+  @verbatim    
+  ==============================================================================
+            ##### NAND Initialization and de-initialization functions #####
+  ==============================================================================
+  [..]  
+    This section provides functions allowing to initialize/de-initialize
+    the NAND memory
+  
+@endverbatim
+  * @{
+  */
+    
+/**
+  * @brief  Perform NAND memory Initialization sequence
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  ComSpace_Timing pointer to Common space timing structure
+  * @param  AttSpace_Timing pointer to Attribute space timing structure
+  * @retval HAL status
+  */
+HAL_StatusTypeDef  HAL_NAND_Init(NAND_HandleTypeDef *hnand, FMC_NAND_PCC_TimingTypeDef *ComSpace_Timing, FMC_NAND_PCC_TimingTypeDef *AttSpace_Timing)
+{
+  /* Check the NAND handle state */
+  if(hnand == NULL)
+  {
+     return HAL_ERROR;
+  }
+
+  if(hnand->State == HAL_NAND_STATE_RESET)
+  {
+    /* Allocate lock resource and initialize it */
+    hnand->Lock = HAL_UNLOCKED;
+    /* Initialize the low level hardware (MSP) */
+    HAL_NAND_MspInit(hnand);
+  } 
+
+  /* Initialize NAND control Interface */
+  FMC_NAND_Init(hnand->Instance, &(hnand->Init));
+  
+  /* Initialize NAND common space timing Interface */  
+  FMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank);
+  
+  /* Initialize NAND attribute space timing Interface */  
+  FMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank);
+  
+  /* Enable the NAND device */
+  __FMC_NAND_ENABLE(hnand->Instance, hnand->Init.NandBank);
+  
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_READY;
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Perform NAND memory De-Initialization sequence
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand)  
+{
+  /* Initialize the low level hardware (MSP) */
+  HAL_NAND_MspDeInit(hnand);
+
+  /* Configure the NAND registers with their reset values */
+  FMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank);
+
+  /* Reset the NAND controller state */
+  hnand->State = HAL_NAND_STATE_RESET;
+
+  /* Release Lock */
+  __HAL_UNLOCK(hnand);
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  NAND MSP Init
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval None
+  */
+__weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hnand);
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_NAND_MspInit could be implemented in the user file
+   */ 
+}
+
+/**
+  * @brief  NAND MSP DeInit
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval None
+  */
+__weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hnand);
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_NAND_MspDeInit could be implemented in the user file
+   */ 
+}
+
+
+/**
+  * @brief  This function handles NAND device interrupt request.
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+*/
+void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand)
+{
+  /* Check NAND interrupt Rising edge flag */
+  if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE))
+  {
+    /* NAND interrupt callback*/
+    HAL_NAND_ITCallback(hnand);
+  
+    /* Clear NAND interrupt Rising edge pending bit */
+    __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_RISING_EDGE);
+  }
+  
+  /* Check NAND interrupt Level flag */
+  if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL))
+  {
+    /* NAND interrupt callback*/
+    HAL_NAND_ITCallback(hnand);
+  
+    /* Clear NAND interrupt Level pending bit */
+    __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_LEVEL);
+  }
+
+  /* Check NAND interrupt Falling edge flag */
+  if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE))
+  {
+    /* NAND interrupt callback*/
+    HAL_NAND_ITCallback(hnand);
+  
+    /* Clear NAND interrupt Falling edge pending bit */
+    __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FALLING_EDGE);
+  }
+  
+  /* Check NAND interrupt FIFO empty flag */
+  if(__FMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT))
+  {
+    /* NAND interrupt callback*/
+    HAL_NAND_ITCallback(hnand);
+  
+    /* Clear NAND interrupt FIFO empty pending bit */
+    __FMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FMC_FLAG_FEMPT);
+  }
+}
+
+/**
+  * @brief  NAND interrupt feature callback
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval None
+  */
+__weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hnand);
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_NAND_ITCallback could be implemented in the user file
+   */
+}
+ 
+/**
+  * @}
+  */
+  
+/** @defgroup NAND_Exported_Functions_Group2 Input and Output functions 
+  * @brief    Input Output and memory control functions 
+  *
+  @verbatim    
+  ==============================================================================
+                    ##### NAND Input and Output functions #####
+  ==============================================================================
+  [..]  
+    This section provides functions allowing to use and control the NAND 
+    memory
+  
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Read the NAND memory electronic signature
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pNAND_ID NAND ID structure
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID)
+{
+  __IO uint32_t data = 0U;
+  __IO uint32_t data1 = 0U;
+  uint32_t deviceaddress = 0U;
+
+  /* Process Locked */
+  __HAL_LOCK(hnand);  
+  
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+  
+  /* Update the NAND controller state */ 
+  hnand->State = HAL_NAND_STATE_BUSY;
+  
+  /* Send Read ID command sequence */   
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA))  = NAND_CMD_READID;
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+
+  /* Read the electronic signature from NAND flash */
+#ifdef FSMC_PCR2_PWID
+  if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8)
+#else /* FMC_PCR2_PWID is defined */
+  if (hnand->Init.MemoryDataWidth == FMC_NAND_PCC_MEM_BUS_WIDTH_8)
+#endif
+  {
+    data = *(__IO uint32_t *)deviceaddress;
+
+    /* Return the data read */
+    pNAND_ID->Maker_Id   = ADDR_1ST_CYCLE(data);
+    pNAND_ID->Device_Id  = ADDR_2ND_CYCLE(data);
+    pNAND_ID->Third_Id   = ADDR_3RD_CYCLE(data);
+    pNAND_ID->Fourth_Id  = ADDR_4TH_CYCLE(data);
+  }
+  else
+  {
+    data = *(__IO uint32_t *)deviceaddress;
+    data1 = *((__IO uint32_t *)deviceaddress + 4U);
+    
+    /* Return the data read */
+    pNAND_ID->Maker_Id   = ADDR_1ST_CYCLE(data);
+    pNAND_ID->Device_Id  = ADDR_3RD_CYCLE(data);
+    pNAND_ID->Third_Id   = ADDR_1ST_CYCLE(data1);
+    pNAND_ID->Fourth_Id  = ADDR_3RD_CYCLE(data1);
+  }
+  
+  /* Update the NAND controller state */ 
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);
+   
+  return HAL_OK;
+}
+
+/**
+  * @brief  NAND memory reset
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand)
+{
+  uint32_t deviceaddress = 0U;
+
+  /* Process Locked */
+  __HAL_LOCK(hnand);
+
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }  
+  
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_BUSY; 
+  
+  /* Send NAND reset command */  
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF;
+
+
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);
+
+  return HAL_OK;
+
+}
+
+/**
+  * @brief  Configure the device: Enter the physical parameters of the device
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pDeviceConfig  pointer to NAND_DeviceConfigTypeDef structure
+  * @retval HAL status
+  */
+HAL_StatusTypeDef  HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig)
+{
+  hnand->Config.PageSize           = pDeviceConfig->PageSize;
+  hnand->Config.SpareAreaSize      = pDeviceConfig->SpareAreaSize;
+  hnand->Config.BlockSize          = pDeviceConfig->BlockSize;
+  hnand->Config.BlockNbr           = pDeviceConfig->BlockNbr;
+  hnand->Config.PlaneSize          = pDeviceConfig->PlaneSize;
+  hnand->Config.PlaneNbr           = pDeviceConfig->PlaneNbr;
+  hnand->Config.ExtraCommandEnable = pDeviceConfig->ExtraCommandEnable;
+  
+  return HAL_OK;
+}
+  
+/**
+  * @brief  Read Page(s) from NAND memory block (8-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to destination read buffer
+  * @param  NumPageToRead  number of pages to read from block 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToRead)
+{   
+  __IO uint32_t index  = 0U;
+  uint32_t tickstart = 0U;
+  uint32_t deviceaddress = 0U, size = 0U, numPagesRead = 0U, nandaddress = 0U;
+  
+  /* Process Locked */
+  __HAL_LOCK(hnand); 
+  
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_BUSY;
+  
+  /* NAND raw address calculation */
+  nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+
+  /* Page(s) read loop */  
+  while((NumPageToRead != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+  {
+    /* update the buffer size */
+    size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesRead);
+    
+    /* Send read page command sequence */
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+   
+    /* Cards with page size <= 512 bytes */
+    if((hnand->Config.PageSize) <= 512U)
+    {
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+    else /* (hnand->Config.PageSize) > 512 */
+    {
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+  
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA))  = NAND_CMD_AREA_TRUE1;
+      
+    /* Check if an extra command is needed for reading pages  */
+    if(hnand->Config.ExtraCommandEnable == ENABLE)
+    {
+      /* Get tick */
+      tickstart = HAL_GetTick();
+      
+      /* Read status until NAND is ready */
+      while(HAL_NAND_Read_Status(hnand) != NAND_READY)
+      {
+        if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
+        {
+          return HAL_TIMEOUT; 
+        }
+      }
+      
+      /* Go back to read mode */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00);
+      __DSB();
+    }
+    
+    /* Get Data into Buffer */    
+    for(; index < size; index++)
+    {
+      *(uint8_t *)pBuffer++ = *(uint8_t *)deviceaddress;
+    }
+    
+    /* Increment read pages number */
+    numPagesRead++;
+    
+    /* Decrement pages to read */
+    NumPageToRead--;
+    
+    /* Increment the NAND address */
+    nandaddress = (uint32_t)(nandaddress + 1U);
+  }
+  
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Read Page(s) from NAND memory block (16-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to destination read buffer. pBuffer should be 16bits aligned
+  * @param  NumPageToRead  number of pages to read from block 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToRead)
+{   
+  __IO uint32_t index  = 0U;
+  uint32_t tickstart = 0U;
+  uint32_t deviceaddress = 0U, size = 0U, numPagesRead = 0U, nandaddress = 0U;
+  
+  /* Process Locked */
+  __HAL_LOCK(hnand); 
+  
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+
+  /* Update the NAND controller state */ 
+  hnand->State = HAL_NAND_STATE_BUSY;
+  
+  /* NAND raw address calculation */
+  nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+  
+  /* Page(s) read loop */  
+  while((NumPageToRead != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+  {
+    /* update the buffer size */
+    size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesRead);
+    
+    /* Send read page command sequence */
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;  
+    __DSB();
+    
+    /* Cards with page size <= 512 bytes */
+    if((hnand->Config.PageSize) <= 512U)
+    {
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+    else /* (hnand->Config.PageSize) > 512 */
+    {
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+  
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA))  = NAND_CMD_AREA_TRUE1;
+    
+    if(hnand->Config.ExtraCommandEnable == ENABLE)
+    {
+      /* Get tick */
+      tickstart = HAL_GetTick();
+      
+      /* Read status until NAND is ready */
+      while(HAL_NAND_Read_Status(hnand) != NAND_READY)
+      {
+        if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
+        {
+          return HAL_TIMEOUT; 
+        }
+      }
+      
+      /* Go back to read mode */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00);
+    }
+    
+    /* Get Data into Buffer */    
+    for(; index < size; index++)
+    {
+      *(uint16_t *)pBuffer++ = *(uint16_t *)deviceaddress;
+    }
+    
+    /* Increment read pages number */
+    numPagesRead++;
+    
+    /* Decrement pages to read */
+    NumPageToRead--;
+    
+    /* Increment the NAND address */
+    nandaddress = (uint32_t)(nandaddress + 1U);
+  }
+  
+  /* Update the NAND controller state */ 
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);  
+    
+  return HAL_OK;
+}
+
+/**
+  * @brief  Write Page(s) to NAND memory block (8-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to source buffer to write  
+  * @param  NumPageToWrite   number of pages to write to block 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumPageToWrite)
+{
+  __IO uint32_t index = 0U;
+  uint32_t tickstart = 0U;
+  uint32_t deviceaddress = 0U, size = 0U, numPagesWritten = 0U, nandaddress = 0U;
+  
+  /* Process Locked */
+  __HAL_LOCK(hnand);  
+
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+  
+  /* Update the NAND controller state */ 
+  hnand->State = HAL_NAND_STATE_BUSY;
+  
+  /* NAND raw address calculation */
+  nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+    
+  /* Page(s) write loop */
+  while((NumPageToWrite != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+  {
+    /* update the buffer size */
+    size = hnand->Config.PageSize + ((hnand->Config.PageSize) * numPagesWritten);
+    
+    /* Send write page command sequence */
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+
+    /* Cards with page size <= 512 bytes */
+    if((hnand->Config.PageSize) <= 512U)
+    {
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+    else /* (hnand->Config.PageSize) > 512 */
+    {
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        __DSB();
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+        __DSB();
+      }
+    }
+  
+
+    /* Write data to memory */
+    for(; index < size; index++)
+    {
+      *(__IO uint8_t *)deviceaddress = *(uint8_t *)pBuffer++;
+    }
+   
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
+    
+    /* Read status until NAND is ready */
+    while(HAL_NAND_Read_Status(hnand) != NAND_READY)
+    {
+      /* Get tick */
+      tickstart = HAL_GetTick();
+      
+      if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
+      {
+        return HAL_TIMEOUT; 
+      }
+    }
+ 
+    /* Increment written pages number */
+    numPagesWritten++;
+    
+    /* Decrement pages to write */
+    NumPageToWrite--;
+    
+    /* Increment the NAND address */
+    nandaddress = (uint32_t)(nandaddress + 1U);
+  }
+  
+  /* Update the NAND controller state */ 
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);
+  
+  return HAL_OK;
+}
+
+/**
+  * @brief  Write Page(s) to NAND memory block (16-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to source buffer to write. pBuffer should be 16bits aligned
+  * @param  NumPageToWrite   number of pages to write to block 
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumPageToWrite)
+{
+  __IO uint32_t index = 0U;
+  uint32_t tickstart = 0U;
+  uint32_t deviceaddress = 0U, size = 0U, numPagesWritten = 0U, nandaddress = 0U;
+  
+  /* Process Locked */
+  __HAL_LOCK(hnand);  
+
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+  
+  /* Update the NAND controller state */ 
+  hnand->State = HAL_NAND_STATE_BUSY;
+  
+  /* NAND raw address calculation */
+  nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+  
+  /* Page(s) write loop */
+  while((NumPageToWrite != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+  {
+    /* update the buffer size */
+    size = (hnand->Config.PageSize) + ((hnand->Config.PageSize) * numPagesWritten);
+ 
+    /* Send write page command sequence */
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+    __DSB();
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+    __DSB();
+
+    /* Cards with page size <= 512 bytes */
+    if((hnand->Config.PageSize) <= 512U)
+    {
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+    else /* (hnand->Config.PageSize) > 512 */
+    {
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+  
+    /* Write data to memory */
+    for(; index < size; index++)
+    {
+      *(__IO uint16_t *)deviceaddress = *(uint16_t *)pBuffer++;
+    }
+   
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
+    
+    /* Read status until NAND is ready */
+    while(HAL_NAND_Read_Status(hnand) != NAND_READY)
+    {
+      /* Get tick */
+      tickstart = HAL_GetTick();
+    
+      if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
+      {
+        return HAL_TIMEOUT; 
+      } 
+    }   
+ 
+    /* Increment written pages number */
+    numPagesWritten++;
+    
+    /* Decrement pages to write */
+    NumPageToWrite--;
+    
+    /* Increment the NAND address */
+    nandaddress = (uint32_t)(nandaddress + 1U);
+  }
+  
+  /* Update the NAND controller state */ 
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);      
+  
+  return HAL_OK;
+}
+
+/**
+  * @brief  Read Spare area(s) from NAND memory 
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer pointer to source buffer to write  
+  * @param  NumSpareAreaToRead Number of spare area to read  
+  * @retval HAL status
+*/
+HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaToRead)
+{
+  __IO uint32_t index = 0U;
+  uint32_t tickstart = 0U;
+  uint32_t deviceaddress = 0U, size = 0U, numSpareAreaRead = 0U, nandaddress = 0U, columnaddress = 0U;
+  
+  /* Process Locked */
+  __HAL_LOCK(hnand);  
+  
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+  
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_BUSY;
+  
+  /* NAND raw address calculation */
+  nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+  
+  /* Column in page address */
+  columnaddress = COLUMN_ADDRESS(hnand);
+  
+  /* Spare area(s) read loop */ 
+  while((NumSpareAreaToRead != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+  {     
+    /* update the buffer size */
+    size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaRead);
+
+    /* Cards with page size <= 512 bytes */
+    if((hnand->Config.PageSize) <= 512U)
+    {
+      /* Send read spare area command sequence */     
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
+      
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+    else /* (hnand->Config.PageSize) > 512 */
+    {
+      /* Send read spare area command sequence */ 
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+      
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
+    
+    if(hnand->Config.ExtraCommandEnable == ENABLE)
+    {
+      /* Get tick */
+      tickstart = HAL_GetTick();
+      
+      /* Read status until NAND is ready */
+      while(HAL_NAND_Read_Status(hnand) != NAND_READY)
+      {
+        if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
+        {
+          return HAL_TIMEOUT; 
+        }
+      }
+      
+      /* Go back to read mode */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00);
+    }
+    
+    /* Get Data into Buffer */
+    for(; index < size; index++)
+    {
+      *(uint8_t *)pBuffer++ = *(uint8_t *)deviceaddress;
+    }
+    
+    /* Increment read spare areas number */
+    numSpareAreaRead++;
+    
+    /* Decrement spare areas to read */
+    NumSpareAreaToRead--;
+    
+    /* Increment the NAND address */
+    nandaddress = (uint32_t)(nandaddress + 1U);
+  }
+  
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);
+
+  return HAL_OK;  
+}
+
+/**
+  * @brief  Read Spare area(s) from NAND memory (16-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned.
+  * @param  NumSpareAreaToRead Number of spare area to read  
+  * @retval HAL status
+*/
+HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaToRead)
+{
+  __IO uint32_t index = 0U; 
+  uint32_t tickstart = 0U;
+  uint32_t deviceaddress = 0U, size = 0U, numSpareAreaRead = 0U, nandaddress = 0U, columnaddress = 0U;
+  
+  /* Process Locked */
+  __HAL_LOCK(hnand);
+  
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+  
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_BUSY;
+  
+  /* NAND raw address calculation */
+  nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+  
+  /* Column in page address */
+  columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand) * 2U);
+  
+  /* Spare area(s) read loop */ 
+  while((NumSpareAreaToRead != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+  {
+    /* update the buffer size */
+    size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaRead);
+
+    /* Cards with page size <= 512 bytes */
+    if((hnand->Config.PageSize) <= 512U)
+    {
+      /* Send read spare area command sequence */     
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
+      
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+    else /* (hnand->Config.PageSize) > 512 */
+    {
+      /* Send read spare area command sequence */     
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+      
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
+
+    if(hnand->Config.ExtraCommandEnable == ENABLE)
+    {
+      /* Get tick */
+      tickstart = HAL_GetTick();
+      
+      /* Read status until NAND is ready */
+      while(HAL_NAND_Read_Status(hnand) != NAND_READY)
+      {
+        if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
+        {
+          return HAL_TIMEOUT; 
+        }
+      }
+      
+      /* Go back to read mode */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00);
+    }
+    
+    /* Get Data into Buffer */
+    for(; index < size; index++)
+    {
+      *(uint16_t *)pBuffer++ = *(uint16_t *)deviceaddress;
+    }
+    
+    /* Increment read spare areas number */
+    numSpareAreaRead++;
+    
+    /* Decrement spare areas to read */
+    NumSpareAreaToRead--;
+    
+    /* Increment the NAND address */
+    nandaddress = (uint32_t)(nandaddress + 1U);
+  }
+  
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);     
+
+  return HAL_OK;  
+}
+
+/**
+  * @brief  Write Spare area(s) to NAND memory 
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to source buffer to write  
+  * @param  NumSpareAreaTowrite   number of spare areas to write to block
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer, uint32_t NumSpareAreaTowrite)
+{
+  __IO uint32_t index = 0U;
+  uint32_t tickstart = 0U;
+  uint32_t deviceaddress = 0U, size = 0U, numSpareAreaWritten = 0U, nandaddress = 0U, columnaddress = 0U;
+
+  /* Process Locked */
+  __HAL_LOCK(hnand); 
+  
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+  
+  /* Update the FMC_NAND controller state */
+  hnand->State = HAL_NAND_STATE_BUSY;  
+  
+  /* Page address calculation */
+  nandaddress = ARRAY_ADDRESS(pAddress, hnand); 
+  
+  /* Column in page address */
+  columnaddress = COLUMN_ADDRESS(hnand);
+  
+  /* Spare area(s) write loop */
+  while((NumSpareAreaTowrite != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+  {
+    /* update the buffer size */
+    size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaWritten);
+
+    /* Cards with page size <= 512 bytes */
+    if((hnand->Config.PageSize) <= 512U)
+    {
+      /* Send write Spare area command sequence */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+      
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+    else /* (hnand->Config.PageSize) > 512 */
+    {
+      /* Send write Spare area command sequence */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+    
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+  
+    /* Write data to memory */
+    for(; index < size; index++)
+    {
+      *(__IO uint8_t *)deviceaddress = *(uint8_t *)pBuffer++;
+    }
+   
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
+    
+    /* Get tick */
+    tickstart = HAL_GetTick();
+    
+    /* Read status until NAND is ready */
+    while(HAL_NAND_Read_Status(hnand) != NAND_READY)
+    {
+      if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
+      {
+        return HAL_TIMEOUT; 
+      }
+    }
+
+    /* Increment written spare areas number */
+    numSpareAreaWritten++;
+    
+    /* Decrement spare areas to write */
+    NumSpareAreaTowrite--;
+    
+    /* Increment the NAND address */
+    nandaddress = (uint32_t)(nandaddress + 1U);
+  }
+
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_READY;
+
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);
+    
+  return HAL_OK;
+}
+
+/**
+  * @brief  Write Spare area(s) to NAND memory (16-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to source buffer to write. pBuffer should be 16bits aligned.  
+  * @param  NumSpareAreaTowrite   number of spare areas to write to block
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer, uint32_t NumSpareAreaTowrite)
+{
+  __IO uint32_t index = 0U;
+  uint32_t tickstart = 0U;
+  uint32_t deviceaddress = 0U, size = 0U, numSpareAreaWritten = 0U, nandaddress = 0U, columnaddress = 0U;
+
+  /* Process Locked */
+  __HAL_LOCK(hnand); 
+  
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+  
+  /* Update the FMC_NAND controller state */
+  hnand->State = HAL_NAND_STATE_BUSY;  
+  
+  /* NAND raw address calculation */
+  nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+  
+  /* Column in page address */
+  columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand) * 2U);
+  
+  /* Spare area(s) write loop */
+  while((NumSpareAreaTowrite != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+  {
+    /* update the buffer size */
+    size = (hnand->Config.SpareAreaSize) + ((hnand->Config.SpareAreaSize) * numSpareAreaWritten);
+
+    /* Cards with page size <= 512 bytes */
+    if((hnand->Config.PageSize) <= 512U)
+    {
+      /* Send write Spare area command sequence */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+    
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+    else /* (hnand->Config.PageSize) > 512 */
+    {
+      /* Send write Spare area command sequence */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+    
+      if (((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) <= 65535U)
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+      }
+      else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+      {
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+      }
+    }
+  
+    /* Write data to memory */
+    for(; index < size; index++)
+    {
+      *(__IO uint16_t *)deviceaddress = *(uint16_t *)pBuffer++;
+    }
+   
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
+   
+    /* Read status until NAND is ready */
+    while(HAL_NAND_Read_Status(hnand) != NAND_READY)
+    {
+      /* Get tick */
+      tickstart = HAL_GetTick();
+    
+      if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
+      {
+        return HAL_TIMEOUT; 
+      }
+    }
+
+    /* Increment written spare areas number */
+    numSpareAreaWritten++;
+    
+    /* Decrement spare areas to write */
+    NumSpareAreaTowrite--;
+    
+    /* Increment the NAND address */
+    nandaddress = (uint32_t)(nandaddress + 1U);
+  }
+
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_READY;
+
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);
+
+  return HAL_OK;  
+}
+
+/**
+  * @brief  NAND memory Block erase 
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
+{
+  uint32_t deviceaddress = 0U;
+  uint32_t tickstart = 0U;
+  
+  /* Process Locked */
+  __HAL_LOCK(hnand);
+  
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+  
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_BUSY;  
+  
+  /* Send Erase block command sequence */
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0;
+
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
+    
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1; 
+  
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  /* Get tick */
+  tickstart = HAL_GetTick();
+  
+  /* Read status until NAND is ready */
+  while(HAL_NAND_Read_Status(hnand) != NAND_READY)
+  {
+    if((HAL_GetTick() - tickstart ) > NAND_WRITE_TIMEOUT)
+    {
+      /* Process unlocked */
+      __HAL_UNLOCK(hnand);    
+  
+      return HAL_TIMEOUT; 
+    } 
+  }    
+ 
+  /* Process unlocked */
+  __HAL_UNLOCK(hnand);    
+  
+  return HAL_OK;  
+}
+
+/**
+  * @brief  NAND memory read status 
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval NAND status
+  */
+uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand)
+{
+  uint32_t data = 0U;
+  uint32_t deviceaddress = 0U;
+  
+  /* Identify the device address */
+  if(hnand->Init.NandBank == FMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  } 
+
+  /* Send Read status operation command */
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS;
+  
+  /* Read status register data */
+  data = *(__IO uint8_t *)deviceaddress;
+
+  /* Return the status */
+  if((data & NAND_ERROR) == NAND_ERROR)
+  {
+    return NAND_ERROR;
+  } 
+  else if((data & NAND_READY) == NAND_READY)
+  {
+    return NAND_READY;
+  }
+
+  return NAND_BUSY; 
+}
+
+/**
+  * @brief  Increment the NAND memory address
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param pAddress pointer to NAND address structure
+  * @retval The new status of the increment address operation. It can be:
+  *           - NAND_VALID_ADDRESS: When the new address is valid address
+  *           - NAND_INVALID_ADDRESS: When the new address is invalid address
+  */
+uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
+{
+  uint32_t status = NAND_VALID_ADDRESS;
+ 
+  /* Increment page address */
+  pAddress->Page++;
+
+  /* Check NAND address is valid */
+  if(pAddress->Page == hnand->Config.BlockSize)
+  {
+    pAddress->Page = 0U;
+    pAddress->Block++;
+    
+    if(pAddress->Block == hnand->Config.PlaneSize)
+    {
+      pAddress->Block = 0U;
+      pAddress->Plane++;
+
+      if(pAddress->Plane == (hnand->Config.PlaneNbr))
+      {
+        status = NAND_INVALID_ADDRESS;
+      }
+    }
+  } 
+  
+  return (status);
+}
+/**
+  * @}
+  */
+
+/** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions 
+ *  @brief   management functions 
+ *
+@verbatim   
+  ==============================================================================
+                         ##### NAND Control functions #####
+  ==============================================================================  
+  [..]
+    This subsection provides a set of functions allowing to control dynamically
+    the NAND interface.
+
+@endverbatim
+  * @{
+  */ 
+
+    
+/**
+  * @brief  Enables dynamically NAND ECC feature.
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+  */    
+HAL_StatusTypeDef  HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand)
+{
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+
+  /* Update the NAND state */
+  hnand->State = HAL_NAND_STATE_BUSY;
+   
+  /* Enable ECC feature */
+  FMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank);
+  
+  /* Update the NAND state */
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  return HAL_OK;
+}
+
+/**
+  * @brief  Disables dynamically FMC_NAND ECC feature.
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+  */  
+HAL_StatusTypeDef  HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand)
+{
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+
+  /* Update the NAND state */
+  hnand->State = HAL_NAND_STATE_BUSY;
+    
+  /* Disable ECC feature */
+  FMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank);
+  
+  /* Update the NAND state */
+  hnand->State = HAL_NAND_STATE_READY;
+  
+  return HAL_OK;  
+}
+
+/**
+  * @brief  Disables dynamically NAND ECC feature.
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  ECCval pointer to ECC value 
+  * @param  Timeout maximum timeout to wait    
+  * @retval HAL status
+  */
+HAL_StatusTypeDef  HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout)
+{
+  HAL_StatusTypeDef status = HAL_OK;
+  
+  /* Check the NAND controller state */
+  if(hnand->State == HAL_NAND_STATE_BUSY)
+  {
+     return HAL_BUSY;
+  }
+  
+  /* Update the NAND state */
+  hnand->State = HAL_NAND_STATE_BUSY;  
+   
+  /* Get NAND ECC value */
+  status = FMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout);
+  
+  /* Update the NAND state */
+  hnand->State = HAL_NAND_STATE_READY;
+
+  return status;  
+}
+
+/**
+  * @}
+  */
+  
+    
+/** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions 
+ *  @brief   Peripheral State functions 
+ *
+@verbatim   
+  ==============================================================================
+                         ##### NAND State functions #####
+  ==============================================================================  
+  [..]
+    This subsection permits to get in run-time the status of the NAND controller 
+    and the data flow.
+
+@endverbatim
+  * @{
+  */
+  
+/**
+  * @brief  return the NAND state
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL state
+  */
+HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand)
+{
+  return hnand->State;
+}
+
+/**
+  * @}
+  */  
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+#endif /* STM32F405xx || STM32F415xx || STM32F407xx || STM32F417xx ||\
+          STM32F427xx || STM32F437xx || STM32F429xx || STM32F439xx ||\
+          STM32F446xx || STM32F469xx || STM32F479xx */
+#endif /* HAL_NAND_MODULE_ENABLED  */
+
+/**
+  * @}
+  */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/