Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Gamepad2/Gamepad.cpp
- Committer:
- lukeocarwright
- Date:
- 2020-04-07
- Revision:
- 4:9b7ea5528a5c
- Parent:
- 3:b7df72682b81
- Child:
- 19:08862f49cd9e
File content as of revision 4:9b7ea5528a5c:
#include "Gamepad.h"
#include "mbed.h"
//////////// constructor/destructor ////////////
Gamepad::Gamepad()
:
_led1(new PwmOut(PTA2)),
_led2(new PwmOut(PTC2)),
_led3(new PwmOut(PTC3)),
_led4(new PwmOut(PTA1)),
_led5(new PwmOut(PTC10)),
_led6(new PwmOut(PTC11)),
_button_A(new InterruptIn(PTC7)),
_button_B(new InterruptIn(PTC9)),
_button_X(new InterruptIn(PTC5)),
_button_Y(new InterruptIn(PTC0)),
_button_start(new InterruptIn(PTC8)),
_vert(new AnalogIn(PTB11)),
_horiz(new AnalogIn(PTB10)),
_pot1(new AnalogIn(PTB2)),
_pot2(new AnalogIn(PTB3)),
//rca(new PwmOut(PTE25)),
dac(new AnalogOut(DAC0_OUT)),
ticker(new Ticker),
timeout(new Timeout),
note_timeout(new Timeout),
_x0(0),
_y0(0)
{}
///////////////// public methods /////////////////
void Gamepad::init()
{
leds_off();
// read centred values of joystick
_x0 = _horiz->read();
_y0 = _vert->read();
// Set all buttons to PullUp
_button_A->mode(PullUp);
_button_B->mode(PullUp);
_button_X->mode(PullUp);
_button_Y->mode(PullUp);
_button_start->mode(PullUp);
// Set up interrupts for the fall of buttons
_button_A->fall(callback(this,&Gamepad::A_fall_interrupt));
_button_B->fall(callback(this,&Gamepad::B_fall_interrupt));
_button_X->fall(callback(this,&Gamepad::X_fall_interrupt));
_button_Y->fall(callback(this,&Gamepad::Y_fall_interrupt));
_button_start->fall(callback(this,&Gamepad::start_fall_interrupt));
// initalise button flags
reset_buttons();
// number of samples
_n = 16;
_sample_array = new float[_n];
// create sample array for one period between 0.0 and 1.0
for (int i = 0; i < _n ; i++) {
_sample_array[i] = 0.5f + 0.5f*sin(i*2*PI/_n);
//printf("y[%i] = %f\n",i,_sample_array[i]);
}
}
void Gamepad::leds_off()
{
leds(0.0);
}
void Gamepad::leds_on()
{
leds(1.0);
}
void Gamepad::leds(float val) const
{
if (val < 0.0f) {
val = 0.0f;
}
if (val > 1.0f) {
val = 1.0f;
}
// leds are active-low, so subtract from 1.0
// 0.0 corresponds to fully-off, 1.0 to fully-on
val = 1.0f - val;
_led1->write(val);
_led2->write(val);
_led3->write(val);
_led4->write(val);
_led5->write(val);
_led6->write(val);
}
void Gamepad::led(int n,float val) const
{
// ensure they are within valid range
if (val < 0.0f) {
val = 0.0f;
}
if (val > 1.0f) {
val = 1.0f;
}
switch (n) {
// check for valid LED number and set value
case 1:
_led1->write(1.0f-val); // active-low so subtract from 1
break;
case 2:
_led2->write(1.0f-val); // active-low so subtract from 1
break;
case 3:
_led3->write(1.0f-val); // active-low so subtract from 1
break;
case 4:
_led4->write(1.0f-val); // active-low so subtract from 1
break;
case 5:
_led5->write(1.0f-val); // active-low so subtract from 1
break;
case 6:
_led6->write(1.0f-val); // active-low so subtract from 1
break;
}
}
float Gamepad::read_pot1() const
{
return _pot1->read();
}
float Gamepad::read_pot2() const
{
return _pot2->read();
}
// this method gets the magnitude of the joystick movement
float Gamepad::get_mag()
{
Polar p = get_polar();
return p.mag;
}
// this method gets the angle of joystick movement (0 to 360, 0 North)
float Gamepad::get_angle()
{
Polar p = get_polar();
return p.angle;
}
Direction Gamepad::get_direction()
{
float angle = get_angle(); // 0 to 360, -1 for centred
Direction d;
// partition 360 into segments and check which segment the angle is in
if (angle < 0.0f) {
d = CENTRE; // check for -1.0 angle
} else if (angle < 22.5f) { // then keep going in 45 degree increments
d = N;
} else if (angle < 67.5f) {
d = NE;
} else if (angle < 112.5f) {
d = E;
} else if (angle < 157.5f) {
d = SE;
} else if (angle < 202.5f) {
d = S;
} else if (angle < 247.5f) {
d = SW;
} else if (angle < 292.5f) {
d = W;
} else if (angle < 337.5f) {
d = NW;
} else {
d = N;
}
return d;
}
void Gamepad::reset_buttons()
{
A_fall = B_fall = X_fall = Y_fall = start_fall = false;
}
bool Gamepad::A_pressed()
{
if (A_fall) {
A_fall = false;
return true;
} else {
return false;
}
}
bool Gamepad::B_pressed()
{
if (B_fall) {
B_fall = false;
return true;
} else {
return false;
}
}
bool Gamepad::X_pressed()
{
if (X_fall) {
X_fall = false;
return true;
} else {
return false;
}
}
bool Gamepad::Y_pressed()
{
if (Y_fall) {
Y_fall = false;
return true;
} else {
return false;
}
}
bool Gamepad::start_pressed()
{
if (start_fall) {
start_fall = false;
return true;
} else {
return false;
}
}
bool Gamepad::A_held()
{
// Buttons are configured as PullUp hence the not
return !_button_A->read();
}
bool Gamepad::B_held()
{
return !_button_B->read();
}
bool Gamepad::X_held()
{
return !_button_X->read();
}
bool Gamepad::Y_held()
{
return !_button_Y->read();
}
bool Gamepad::start_held()
{
return !_button_start->read();
}
///////////////////// private methods ////////////////////////
// get raw joystick coordinate in range -1 to 1
// Direction (x,y)
// North (0,1)
// East (1,0)
// South (0,-1)
// West (-1,0)
Vector2D Gamepad::get_coord()
{
// read() returns value in range 0.0 to 1.0 so is scaled and centre value
// substracted to get values in the range -1.0 to 1.0
float x = 2.0f*( _horiz->read() - _x0 );
float y = 2.0f*( _vert->read() - _y0 );
// Note: the y value here is inverted to ensure the positive y is up
Vector2D coord = {x,-y};
return coord;
}
// This maps the raw x,y coord onto a circular grid.
// See: http://mathproofs.blogspot.co.uk/2005/07/mapping-square-to-circle.html
Vector2D Gamepad::get_mapped_coord()
{
Vector2D coord = get_coord();
// do the transformation
float x = coord.x*sqrt(1.0f-pow(coord.y,2.0f)/2.0f);
float y = coord.y*sqrt(1.0f-pow(coord.x,2.0f)/2.0f);
Vector2D mapped_coord = {x,y};
return mapped_coord;
}
// this function converts the mapped coordinates into polar form
Polar Gamepad::get_polar()
{
// get the mapped coordinate
Vector2D coord = get_mapped_coord();
// at this point, 0 degrees (i.e. x-axis) will be defined to the East.
// We want 0 degrees to correspond to North and increase clockwise to 359
// like a compass heading, so we need to swap the axis and invert y
float x = coord.y;
float y = coord.x;
float mag = sqrt(x*x+y*y); // pythagoras
float angle = RAD2DEG*atan2(y,x);
// angle will be in range -180 to 180, so add 360 to negative angles to
// move to 0 to 360 range
if (angle < 0.0f) {
angle+=360.0f;
}
// the noise on the ADC causes the values of x and y to fluctuate slightly
// around the centred values. This causes the random angle values to get
// calculated when the joystick is centred and untouched. This is also when
// the magnitude is very small, so we can check for a small magnitude and then
// set the angle to -1. This will inform us when the angle is invalid and the
// joystick is centred
if (mag < TOL) {
mag = 0.0f;
angle = -1.0f;
}
Polar p = {mag,angle};
return p;
}
// ISRs for buttons
void Gamepad::A_fall_interrupt()
{
A_fall = true;
}
void Gamepad::B_fall_interrupt()
{
B_fall = true;
}
void Gamepad::X_fall_interrupt()
{
X_fall = true;
}
void Gamepad::Y_fall_interrupt()
{
Y_fall = true;
}
void Gamepad::start_fall_interrupt()
{
start_fall = true;
}
void Gamepad::set_bpm(float bpm)
{
_bpm = bpm;
}
void Gamepad::tone(float frequency,float duration)
{
// calculate time step between samples
float dt = 1.0f/(frequency*_n);
// start from beginning of LUT
_sample = 0;
// setup ticker and timeout to stop ticker
// the ticker repeats every dt to plat each sample in turn
ticker->attach(callback(this, &Gamepad::ticker_isr), dt);
// the timeout stops the ticker after the required duration
timeout->attach(callback(this, &Gamepad::timeout_isr), duration );
}
void Gamepad::play_melody(int length,const int *notes,const int *durations,float bpm,bool repeat)
{
// copy arguments to member variables
_bpm = bpm;
_notes = notes; // pointer for array
_durations = durations; // pointer for array
_melody_length = length;
_repeat = repeat;
_note = 0; // start from first note
play_next_note(); // play the next note in the melody
}
void Gamepad::write_dac(float val)
{
if (val < 0.0f) {
val = 0.0f;
} else if (val > 1.0f) {
val = 1.0f;
}
dac->write(val);
}
//writes DAC value in uint format
void Gamepad::write_u16(unsigned short val)
{
if (val > 65535) {
val = 65535;
}
dac->write_u16(val);
}
void Gamepad::play_next_note()
{
// _note is the note index to play
// calculate the duration and frequency of the note
float duration = 60.0f/(_bpm*_durations[_note]);
float frequency = float(_notes[_note]);
//printf("[%i] f = %f d = %f\n",_note,frequency,duration);
// check if the note is not a space and if not then play the note
if (frequency > 0) {
tone(frequency,duration);
}
// the timeout goes to the next note in the melody
// double the duration to leave a bit of a gap in between notes to be better
// able to distinguish them
note_timeout->attach(callback(this, &Gamepad::note_timeout_isr), duration*2.0f );
}
// called when the next note needs playing
void Gamepad::note_timeout_isr()
{
_note++; // go onto next note
// if in repeat mode then reset the note counter when get to end of melody
if (_repeat && _note == _melody_length) {
_note=0;
}
// check if note is within the melody
if (_note < _melody_length) {
play_next_note();
}
}
void Gamepad::ticker_isr()
{
dac->write(_sample_array[_sample%_n]); // use modulo to get index to play
_sample++; // increment the sample ready for next time
}
void Gamepad::timeout_isr()
{
// stops the ticker to end the note
ticker->detach();
}