Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of Micromouse by
Motion.cpp
- Committer:
- Helvis
- Date:
- 2018-05-07
- Revision:
- 17:8a8758bfe3c5
- Parent:
- 16:c5b864804632
- Child:
- 18:3309329d5f42
File content as of revision 17:8a8758bfe3c5:
#include <cmath> #include "Motion.h" using namespace std; const float Motion::LEFT_MID_VAL = 41.73f; //44.73 const float Motion::RIGHT_MID_VAL = 44.03f; //47.03 const float Motion::KP = 2.5; const float Motion::KD = 0.0f; const int Motion::MOVE_DIST = 1605; const float Motion::MOVE_SPEED = 50.0f; const float Motion::SCAN_SPEED = 50.0f; const float Motion::ROTATE_SPEED = 80.0f; const float Motion::ACCEL_CONST = 2.5f; //2.212f Motion::Motion(Controller& controller, EncoderCounter& counterLeft, EncoderCounter& counterRight, IRSensor& irSensorL, IRSensor& irSensorC, IRSensor& irSensorR, AnalogIn& lineSensor, DigitalOut& enableMotorDriver) : controller(controller), counterLeft(counterLeft), counterRight(counterRight), irSensorL(irSensorL), irSensorC(irSensorC), irSensorR(irSensorR), lineSensor(lineSensor), enableMotorDriver(enableMotorDriver) {} Motion::~Motion() {} /** * Eine Feldstrecke druchführen */ void Motion::move() { countsLOld = counterLeft.read(); countsROld = counterRight.read(); countsL = counterLeft.read(); countsR = counterRight.read(); speedLeft = MOVE_SPEED; speedRight = -MOVE_SPEED; //controller.setDesiredSpeedLeft(actSpeed); //controller.setDesiredSpeedRight(-actSpeed); avgSpeed = ( abs(controller.getSpeedLeft()) + abs(controller.getSpeedRight()) ) * 0.5f; /*int partytime; if (avgSpeed == 0.0f) partytime = 1; else partytime = 0;*/ t.start(); while ((countsL - countsLOld) < MOVE_DIST || (countsR - countsROld) > -MOVE_DIST) { countsL = counterLeft.read(); countsR = counterRight.read(); distanceC = irSensorC.readC(); distanceL = irSensorL.readL(); distanceR = irSensorR.readR(); if (enableMotorDriver == 0) {enableMotorDriver = 1;} avgSpeed = ( abs(controller.getSpeedLeft()) + abs(controller.getSpeedRight()) ) * 0.5f; // if (partytime == 1) accel(MOVE_SPEED); control(); /* accel(MOVE_SPEED); controller.setDesiredSpeedLeft(actSpeed); controller.setDesiredSpeedRight(-actSpeed); */ if ((distanceC) < 40.0f) { countsLOld = countsL; countsROld = countsR; while ((countsL - countsLOld) < 70 || (countsR - countsROld) > -70) { countsL = counterLeft.read(); countsR = counterRight.read(); } stop(); break; }else if ( ((countsL - countsLOld) >= MOVE_DIST || (countsR - countsROld) <= -MOVE_DIST) && (distanceC < 130.0f) && (distanceC > 40.0f)) { countsLOld += 500; countsROld += 500; }/* else if ( distanceL < 80.0f || distanceR < 80.0f ) { countsLOld = countsL; countsROld = countsR; while ((countsL - countsLOld) < MOVE_DIST*0.5f || (countsR - countsROld) > -0.5f*MOVE_DIST) { countsL = counterLeft.read(); countsR = counterRight.read(); } stop(); break; }*/ } t.stop(); t.reset(); } /** * Eine Feldstrecke mit höherer Geschwindigkeit fahren */ void Motion::moveFast() { countsLOld = counterLeft.read(); countsROld = counterRight.read(); countsL = counterLeft.read(); countsR = counterRight.read(); speedLeft = 100.0f; speedRight = -100.0f; controller.setDesiredSpeedLeft(speedLeft); controller.setDesiredSpeedRight(speedRight); while ((countsL - countsLOld) < 1647 || (countsR - countsROld) > -1647) { countsL = counterLeft.read(); countsR = counterRight.read(); distanceC = irSensorC.readC(); if (enableMotorDriver == 0) {enableMotorDriver = 1;} control(); if (distanceC < 40.0f) { stop(); break; } } } /** * Eine Feldstrecke mit überprüfung der Ziellinie fahren */ void Motion::scanMove() { acceleration = false; deceleration = false; countsLOld = counterLeft.read(); countsROld = counterRight.read(); countsL = counterLeft.read(); countsR = counterRight.read(); speedLeft = SCAN_SPEED; speedRight = -SCAN_SPEED; //controller.setDesiredSpeedLeft(actSpeed); //controller.setDesiredSpeedRight(-actSpeed); distanceC = irSensorC.readC(); t.start(); while ((countsL - countsLOld) < MOVE_DIST || (countsR - countsROld) > -MOVE_DIST) { countsL = counterLeft.read(); countsR = counterRight.read(); distanceC = irSensorC.readC(); distanceL = irSensorL.readL(); distanceR = irSensorR.readR(); if (enableMotorDriver == 0) { enableMotorDriver = 1; } if (lineSensor.read() == 1.0f) { line = 1; } accel(SCAN_SPEED); control(); //controller.setDesiredSpeedLeft(actSpeed); //controller.setDesiredSpeedRight(-actSpeed); if ((distanceC) < 40.0f) { countsLOld = countsL; countsROld = countsR; while ((countsL - countsLOld) < 70 || (countsR - countsROld) > -70) { countsL = counterLeft.read(); countsR = counterRight.read(); } stop(); break; }else if ( ((countsL - countsLOld) >= MOVE_DIST || (countsR - countsROld) <= -MOVE_DIST) && (distanceC < 100.0f) && (distanceC > 40.0f)) { countsLOld += 500; countsROld += 500; }/*else if ( distanceL > 80.0f || distanceR > 80.0f ) { countsLOld = countsL; countsROld = countsR; while ((countsL - countsLOld) < MOVE_DIST*0.5f + 330.0f || (countsR - countsROld) > -0.5f*MOVE_DIST - 330.0f) { countsL = counterLeft.read(); countsR = counterRight.read(); } stop(); break; }*/ } t.stop(); t.reset(); } /** * 90° Rotation nach Links */ void Motion::rotateL() { stop(); controller.counterReset(); countsLOld = counterLeft.read(); countsROld = counterRight.read(); countsL = counterLeft.read(); countsR = counterRight.read(); controller.setDesiredSpeedLeft(-ROTATE_SPEED); controller.setDesiredSpeedRight(-ROTATE_SPEED); while ((countsL - countsLOld) > -870 || (countsR - countsROld) > -870) { //accel(); countsL = counterLeft.read(); countsR = counterRight.read(); if (enableMotorDriver == 0) {enableMotorDriver = 1;} } stop(); } /** * 90° Rotation nach Rechts */ void Motion::rotateR() { stop(); controller.counterReset(); countsLOld = counterLeft.read(); countsROld = counterRight.read(); countsL = counterLeft.read(); countsR = counterRight.read(); controller.setDesiredSpeedLeft(ROTATE_SPEED); controller.setDesiredSpeedRight(ROTATE_SPEED); while ((countsL - countsLOld) < 870 || (countsR - countsROld) < 870) { //accel(); countsL = counterLeft.read(); countsR = counterRight.read(); if (enableMotorDriver == 0) {enableMotorDriver = 1;} } stop(); } /** * Links abbiegen */ void Motion::turnL() { controller.counterReset(); countsLOld = counterLeft.read(); countsROld = counterRight.read(); countsL = counterLeft.read(); countsR = counterRight.read(); controller.setDesiredSpeedLeft(17.0f); controller.setDesiredSpeedRight(-83.0f); while ((countsL - countsLOld) < 440 || (countsR - countsROld) > -2148) { countsL = counterLeft.read(); countsR = counterRight.read(); if (enableMotorDriver == 0) {enableMotorDriver = 1;} } } /** * Rechts abbiegen */ void Motion::turnR() { controller.counterReset(); countsLOld = counterLeft.read(); countsROld = counterRight.read(); countsL = counterLeft.read(); countsR = counterRight.read(); controller.setDesiredSpeedLeft(83.0f); controller.setDesiredSpeedRight(-17.0f); while ((countsL - countsLOld) < 2148 || (countsR - countsROld) > -440) { countsL = counterLeft.read(); countsR = counterRight.read(); if (enableMotorDriver == 0) {enableMotorDriver = 1;} } } /** * Motor Stop */ void Motion::stop() { controller.setDesiredSpeedLeft(0.0f); controller.setDesiredSpeedRight(0.0f); actSpeed = 0.0f; float sL = controller.getSpeedLeft(); float ticks = 0.08f*sL; waitStop = 0; while( waitStop < ticks) { controller.setDesiredSpeedLeft(0.0f); controller.setDesiredSpeedRight(0.0f); waitStop+= 1; } } /** * 180° Rotation */ void Motion::rotate180() { //1723 stop(); controller.counterReset(); countsLOld = counterLeft.read(); countsROld = counterRight.read(); countsL = counterLeft.read(); countsR = counterRight.read(); //controller.setDesiredSpeedLeft(-ROTATE_SPEED); //controller.setDesiredSpeedRight(-ROTATE_SPEED); t.start(); while ((countsL - countsLOld) > -900 || (countsR - countsROld) > -900) { actSpeed = 3.5f * t.read()*60.0f; controller.setDesiredSpeedLeft(-actSpeed); controller.setDesiredSpeedRight(-actSpeed); countsL = counterLeft.read(); countsR = counterRight.read(); if (enableMotorDriver == 0) {enableMotorDriver = 1;} } t.reset(); avgSpeed = ( abs(controller.getSpeedLeft()) + abs(controller.getSpeedRight()) ) * 0.5f; while ((countsL - countsLOld) > -1720 || (countsR - countsROld) > -1720) { actSpeed = avgSpeed + (-3.5f * t.read()*60.0f); controller.setDesiredSpeedLeft(-actSpeed); controller.setDesiredSpeedRight(-actSpeed); countsL = counterLeft.read(); countsR = counterRight.read(); if (enableMotorDriver == 0) {enableMotorDriver = 1;} } t.stop(); t.reset(); stop(); } void Motion::control() { float wallLeft = 48.73f; float wallRight = 51.03f; distanceL = irSensorL.readL(); distanceR = irSensorR.readR(); if (distanceL < wallLeft && distanceR < wallRight) { errorP = distanceL - distanceR + 2.30f; }else if (distanceL < LEFT_MID_VAL && distanceR > RIGHT_MID_VAL) { errorP = distanceL - LEFT_MID_VAL; }else if (distanceL > LEFT_MID_VAL && distanceR < RIGHT_MID_VAL) { errorP = RIGHT_MID_VAL - distanceR; }else{ errorP = 0; errorD = 0; } errorD = errorP - oldErrorP; oldErrorP = errorP; if (abs(errorP) < 80.0f) { totalError = KP*errorP + KD*errorD; }else{ totalError = 0; } controller.setDesiredSpeedLeft(actSpeed - totalError); controller.setDesiredSpeedRight(-actSpeed - totalError); } void Motion::runTask(int path[],int task, bool reverse) { switch(path[task]) { case 1: if ( reverse == true && path[task-1] == path[task] && path[task+1] != path[task]) { acceleration = true; deceleration = false; }else if (reverse == false && path[task+1] == path[task] && path[task-1] != path[task]) { acceleration = true; deceleration = false; }else{ acceleration = false; deceleration = false; avgSpeed = ( abs(controller.getSpeedLeft()) + abs(controller.getSpeedRight()) ) * 0.5f; } if (reverse == true && path[task-1] != path[task] && avgSpeed > 2.4f*MOVE_SPEED) { deceleration = true; acceleration = false; }else if (reverse == false && path[task+1] != path[task] && avgSpeed > 2.4f*MOVE_SPEED) { deceleration = true; acceleration = false; }else{ deceleration = false; } //printf("\nSchritt: %d Befehl: %d Reverse: %d acceleration: %d deceleration: %d\n", task, path[task], reverse, acceleration, deceleration); //printf("\nVor: %d Nach: %d Speed: %f\n\n", path[task+1], path[task-1], avgSpeed); move(); break; case 2: rotateL(); break; case 3: rotateR(); break; case 4: moveFast(); break; case 5: stop(); break; } } int Motion::finish() { return line; } void Motion::accel(float targetSpeed) { avgCounts = ( abs(countsL - countsLOld) + abs(countsR - countsROld)) * 0.5f; avgSpeed = ( abs(controller.getSpeedLeft()) + abs(controller.getSpeedRight()) ) * 0.5f; if ( avgSpeed < targetSpeed && deceleration == false) { actSpeed = ACCEL_CONST * t.read()*60.0f; }else if (avgSpeed < targetSpeed*2.6f && acceleration == true) { actSpeed = 2.5f * t.read()*60.0f; }else if ( avgSpeed > targetSpeed && deceleration == true) { actSpeed = targetSpeed*2.6f - ACCEL_CONST * t.read()*60.0f; } }