ECE 4180 Final Project MP3 player code

Dependencies:   mbed mbed-rtos wave_player_appbd 4DGL-uLCD-SE SDFileSystem PinDetect

Committer:
lfink6
Date:
Fri Dec 10 17:59:57 2021 +0000
Revision:
3:8fd82fb378d5
Parent:
0:57a32b7102e8
test again;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
lfink6 0:57a32b7102e8 1 /******************************************************************************
lfink6 0:57a32b7102e8 2 SFE_LSM9DS1.cpp
lfink6 0:57a32b7102e8 3 SFE_LSM9DS1 Library Source File
lfink6 0:57a32b7102e8 4 Jim Lindblom @ SparkFun Electronics
lfink6 0:57a32b7102e8 5 Original Creation Date: February 27, 2015
lfink6 0:57a32b7102e8 6 https://github.com/sparkfun/LSM9DS1_Breakout
lfink6 0:57a32b7102e8 7
lfink6 0:57a32b7102e8 8 This file implements all functions of the LSM9DS1 class. Functions here range
lfink6 0:57a32b7102e8 9 from higher level stuff, like reading/writing LSM9DS1 registers to low-level,
lfink6 0:57a32b7102e8 10 hardware reads and writes. Both SPI and I2C handler functions can be found
lfink6 0:57a32b7102e8 11 towards the bottom of this file.
lfink6 0:57a32b7102e8 12
lfink6 0:57a32b7102e8 13 Development environment specifics:
lfink6 0:57a32b7102e8 14 IDE: Arduino 1.6
lfink6 0:57a32b7102e8 15 Hardware Platform: Arduino Uno
lfink6 0:57a32b7102e8 16 LSM9DS1 Breakout Version: 1.0
lfink6 0:57a32b7102e8 17
lfink6 0:57a32b7102e8 18 This code is beerware; if you see me (or any other SparkFun employee) at the
lfink6 0:57a32b7102e8 19 local, and you've found our code helpful, please buy us a round!
lfink6 0:57a32b7102e8 20
lfink6 0:57a32b7102e8 21 Distributed as-is; no warranty is given.
lfink6 0:57a32b7102e8 22 ******************************************************************************/
lfink6 0:57a32b7102e8 23
lfink6 0:57a32b7102e8 24 #include "LSM9DS1.h"
lfink6 0:57a32b7102e8 25 #include "LSM9DS1_Registers.h"
lfink6 0:57a32b7102e8 26 #include "LSM9DS1_Types.h"
lfink6 0:57a32b7102e8 27 //#include <Wire.h> // Wire library is used for I2C
lfink6 0:57a32b7102e8 28 //#include <SPI.h> // SPI library is used for...SPI.
lfink6 0:57a32b7102e8 29
lfink6 0:57a32b7102e8 30 //#if defined(ARDUINO) && ARDUINO >= 100
lfink6 0:57a32b7102e8 31 // #include "Arduino.h"
lfink6 0:57a32b7102e8 32 //#else
lfink6 0:57a32b7102e8 33 // #include "WProgram.h"
lfink6 0:57a32b7102e8 34 //#endif
lfink6 0:57a32b7102e8 35
lfink6 0:57a32b7102e8 36 #define LSM9DS1_COMMUNICATION_TIMEOUT 1000
lfink6 0:57a32b7102e8 37
lfink6 0:57a32b7102e8 38 float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058};
lfink6 0:57a32b7102e8 39 extern Serial pc;
lfink6 0:57a32b7102e8 40
lfink6 0:57a32b7102e8 41 LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr)
lfink6 0:57a32b7102e8 42 :i2c(sda, scl)
lfink6 0:57a32b7102e8 43 {
lfink6 0:57a32b7102e8 44 init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B
lfink6 0:57a32b7102e8 45 }
lfink6 0:57a32b7102e8 46 /*
lfink6 0:57a32b7102e8 47 LSM9DS1::LSM9DS1()
lfink6 0:57a32b7102e8 48 {
lfink6 0:57a32b7102e8 49 init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1));
lfink6 0:57a32b7102e8 50 }
lfink6 0:57a32b7102e8 51
lfink6 0:57a32b7102e8 52 LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
lfink6 0:57a32b7102e8 53 {
lfink6 0:57a32b7102e8 54 init(interface, xgAddr, mAddr);
lfink6 0:57a32b7102e8 55 }
lfink6 0:57a32b7102e8 56 */
lfink6 0:57a32b7102e8 57
lfink6 0:57a32b7102e8 58 void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr)
lfink6 0:57a32b7102e8 59 {
lfink6 0:57a32b7102e8 60 settings.device.commInterface = interface;
lfink6 0:57a32b7102e8 61 settings.device.agAddress = xgAddr;
lfink6 0:57a32b7102e8 62 settings.device.mAddress = mAddr;
lfink6 0:57a32b7102e8 63
lfink6 0:57a32b7102e8 64 settings.gyro.enabled = true;
lfink6 0:57a32b7102e8 65 settings.gyro.enableX = true;
lfink6 0:57a32b7102e8 66 settings.gyro.enableY = true;
lfink6 0:57a32b7102e8 67 settings.gyro.enableZ = true;
lfink6 0:57a32b7102e8 68 // gyro scale can be 245, 500, or 2000
lfink6 0:57a32b7102e8 69 settings.gyro.scale = 245;
lfink6 0:57a32b7102e8 70 // gyro sample rate: value between 1-6
lfink6 0:57a32b7102e8 71 // 1 = 14.9 4 = 238
lfink6 0:57a32b7102e8 72 // 2 = 59.5 5 = 476
lfink6 0:57a32b7102e8 73 // 3 = 119 6 = 952
lfink6 0:57a32b7102e8 74 settings.gyro.sampleRate = 6;
lfink6 0:57a32b7102e8 75 // gyro cutoff frequency: value between 0-3
lfink6 0:57a32b7102e8 76 // Actual value of cutoff frequency depends
lfink6 0:57a32b7102e8 77 // on sample rate.
lfink6 0:57a32b7102e8 78 settings.gyro.bandwidth = 0;
lfink6 0:57a32b7102e8 79 settings.gyro.lowPowerEnable = false;
lfink6 0:57a32b7102e8 80 settings.gyro.HPFEnable = false;
lfink6 0:57a32b7102e8 81 // Gyro HPF cutoff frequency: value between 0-9
lfink6 0:57a32b7102e8 82 // Actual value depends on sample rate. Only applies
lfink6 0:57a32b7102e8 83 // if gyroHPFEnable is true.
lfink6 0:57a32b7102e8 84 settings.gyro.HPFCutoff = 0;
lfink6 0:57a32b7102e8 85 settings.gyro.flipX = false;
lfink6 0:57a32b7102e8 86 settings.gyro.flipY = false;
lfink6 0:57a32b7102e8 87 settings.gyro.flipZ = false;
lfink6 0:57a32b7102e8 88 settings.gyro.orientation = 0;
lfink6 0:57a32b7102e8 89 settings.gyro.latchInterrupt = true;
lfink6 0:57a32b7102e8 90
lfink6 0:57a32b7102e8 91 settings.accel.enabled = true;
lfink6 0:57a32b7102e8 92 settings.accel.enableX = true;
lfink6 0:57a32b7102e8 93 settings.accel.enableY = true;
lfink6 0:57a32b7102e8 94 settings.accel.enableZ = true;
lfink6 0:57a32b7102e8 95 // accel scale can be 2, 4, 8, or 16
lfink6 0:57a32b7102e8 96 settings.accel.scale = 2;
lfink6 0:57a32b7102e8 97 // accel sample rate can be 1-6
lfink6 0:57a32b7102e8 98 // 1 = 10 Hz 4 = 238 Hz
lfink6 0:57a32b7102e8 99 // 2 = 50 Hz 5 = 476 Hz
lfink6 0:57a32b7102e8 100 // 3 = 119 Hz 6 = 952 Hz
lfink6 0:57a32b7102e8 101 settings.accel.sampleRate = 6;
lfink6 0:57a32b7102e8 102 // Accel cutoff freqeuncy can be any value between -1 - 3.
lfink6 0:57a32b7102e8 103 // -1 = bandwidth determined by sample rate
lfink6 0:57a32b7102e8 104 // 0 = 408 Hz 2 = 105 Hz
lfink6 0:57a32b7102e8 105 // 1 = 211 Hz 3 = 50 Hz
lfink6 0:57a32b7102e8 106 settings.accel.bandwidth = -1;
lfink6 0:57a32b7102e8 107 settings.accel.highResEnable = false;
lfink6 0:57a32b7102e8 108 // accelHighResBandwidth can be any value between 0-3
lfink6 0:57a32b7102e8 109 // LP cutoff is set to a factor of sample rate
lfink6 0:57a32b7102e8 110 // 0 = ODR/50 2 = ODR/9
lfink6 0:57a32b7102e8 111 // 1 = ODR/100 3 = ODR/400
lfink6 0:57a32b7102e8 112 settings.accel.highResBandwidth = 0;
lfink6 0:57a32b7102e8 113
lfink6 0:57a32b7102e8 114 settings.mag.enabled = true;
lfink6 0:57a32b7102e8 115 // mag scale can be 4, 8, 12, or 16
lfink6 0:57a32b7102e8 116 settings.mag.scale = 4;
lfink6 0:57a32b7102e8 117 // mag data rate can be 0-7
lfink6 0:57a32b7102e8 118 // 0 = 0.625 Hz 4 = 10 Hz
lfink6 0:57a32b7102e8 119 // 1 = 1.25 Hz 5 = 20 Hz
lfink6 0:57a32b7102e8 120 // 2 = 2.5 Hz 6 = 40 Hz
lfink6 0:57a32b7102e8 121 // 3 = 5 Hz 7 = 80 Hz
lfink6 0:57a32b7102e8 122 settings.mag.sampleRate = 7;
lfink6 0:57a32b7102e8 123 settings.mag.tempCompensationEnable = false;
lfink6 0:57a32b7102e8 124 // magPerformance can be any value between 0-3
lfink6 0:57a32b7102e8 125 // 0 = Low power mode 2 = high performance
lfink6 0:57a32b7102e8 126 // 1 = medium performance 3 = ultra-high performance
lfink6 0:57a32b7102e8 127 settings.mag.XYPerformance = 3;
lfink6 0:57a32b7102e8 128 settings.mag.ZPerformance = 3;
lfink6 0:57a32b7102e8 129 settings.mag.lowPowerEnable = false;
lfink6 0:57a32b7102e8 130 // magOperatingMode can be 0-2
lfink6 0:57a32b7102e8 131 // 0 = continuous conversion
lfink6 0:57a32b7102e8 132 // 1 = single-conversion
lfink6 0:57a32b7102e8 133 // 2 = power down
lfink6 0:57a32b7102e8 134 settings.mag.operatingMode = 0;
lfink6 0:57a32b7102e8 135
lfink6 0:57a32b7102e8 136 settings.temp.enabled = true;
lfink6 0:57a32b7102e8 137 for (int i=0; i<3; i++)
lfink6 0:57a32b7102e8 138 {
lfink6 0:57a32b7102e8 139 gBias[i] = 0;
lfink6 0:57a32b7102e8 140 aBias[i] = 0;
lfink6 0:57a32b7102e8 141 mBias[i] = 0;
lfink6 0:57a32b7102e8 142 gBiasRaw[i] = 0;
lfink6 0:57a32b7102e8 143 aBiasRaw[i] = 0;
lfink6 0:57a32b7102e8 144 mBiasRaw[i] = 0;
lfink6 0:57a32b7102e8 145 }
lfink6 0:57a32b7102e8 146 _autoCalc = false;
lfink6 0:57a32b7102e8 147 }
lfink6 0:57a32b7102e8 148
lfink6 0:57a32b7102e8 149
lfink6 0:57a32b7102e8 150 uint16_t LSM9DS1::begin()
lfink6 0:57a32b7102e8 151 {
lfink6 0:57a32b7102e8 152 //! Todo: don't use _xgAddress or _mAddress, duplicating memory
lfink6 0:57a32b7102e8 153 _xgAddress = settings.device.agAddress;
lfink6 0:57a32b7102e8 154 _mAddress = settings.device.mAddress;
lfink6 0:57a32b7102e8 155
lfink6 0:57a32b7102e8 156 constrainScales();
lfink6 0:57a32b7102e8 157 // Once we have the scale values, we can calculate the resolution
lfink6 0:57a32b7102e8 158 // of each sensor. That's what these functions are for. One for each sensor
lfink6 0:57a32b7102e8 159 calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
lfink6 0:57a32b7102e8 160 calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
lfink6 0:57a32b7102e8 161 calcaRes(); // Calculate g / ADC tick, stored in aRes variable
lfink6 0:57a32b7102e8 162
lfink6 0:57a32b7102e8 163 // Now, initialize our hardware interface.
lfink6 0:57a32b7102e8 164 if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C
lfink6 0:57a32b7102e8 165 initI2C(); // Initialize I2C
lfink6 0:57a32b7102e8 166 else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI
lfink6 0:57a32b7102e8 167 initSPI(); // Initialize SPI
lfink6 0:57a32b7102e8 168
lfink6 0:57a32b7102e8 169 // To verify communication, we can read from the WHO_AM_I register of
lfink6 0:57a32b7102e8 170 // each device. Store those in a variable so we can return them.
lfink6 0:57a32b7102e8 171 uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I
lfink6 0:57a32b7102e8 172 uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I
lfink6 0:57a32b7102e8 173 pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress);
lfink6 0:57a32b7102e8 174 uint16_t whoAmICombined = (xgTest << 8) | mTest;
lfink6 0:57a32b7102e8 175
lfink6 0:57a32b7102e8 176 if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP))
lfink6 0:57a32b7102e8 177 return 0;
lfink6 0:57a32b7102e8 178
lfink6 0:57a32b7102e8 179 // Gyro initialization stuff:
lfink6 0:57a32b7102e8 180 initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
lfink6 0:57a32b7102e8 181
lfink6 0:57a32b7102e8 182 // Accelerometer initialization stuff:
lfink6 0:57a32b7102e8 183 initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
lfink6 0:57a32b7102e8 184
lfink6 0:57a32b7102e8 185 // Magnetometer initialization stuff:
lfink6 0:57a32b7102e8 186 initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
lfink6 0:57a32b7102e8 187
lfink6 0:57a32b7102e8 188 // Once everything is initialized, return the WHO_AM_I registers we read:
lfink6 0:57a32b7102e8 189 return whoAmICombined;
lfink6 0:57a32b7102e8 190 }
lfink6 0:57a32b7102e8 191
lfink6 0:57a32b7102e8 192 void LSM9DS1::initGyro()
lfink6 0:57a32b7102e8 193 {
lfink6 0:57a32b7102e8 194 uint8_t tempRegValue = 0;
lfink6 0:57a32b7102e8 195
lfink6 0:57a32b7102e8 196 // CTRL_REG1_G (Default value: 0x00)
lfink6 0:57a32b7102e8 197 // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0]
lfink6 0:57a32b7102e8 198 // ODR_G[2:0] - Output data rate selection
lfink6 0:57a32b7102e8 199 // FS_G[1:0] - Gyroscope full-scale selection
lfink6 0:57a32b7102e8 200 // BW_G[1:0] - Gyroscope bandwidth selection
lfink6 0:57a32b7102e8 201
lfink6 0:57a32b7102e8 202 // To disable gyro, set sample rate bits to 0. We'll only set sample
lfink6 0:57a32b7102e8 203 // rate if the gyro is enabled.
lfink6 0:57a32b7102e8 204 if (settings.gyro.enabled)
lfink6 0:57a32b7102e8 205 {
lfink6 0:57a32b7102e8 206 tempRegValue = (settings.gyro.sampleRate & 0x07) << 5;
lfink6 0:57a32b7102e8 207 }
lfink6 0:57a32b7102e8 208 switch (settings.gyro.scale)
lfink6 0:57a32b7102e8 209 {
lfink6 0:57a32b7102e8 210 case 500:
lfink6 0:57a32b7102e8 211 tempRegValue |= (0x1 << 3);
lfink6 0:57a32b7102e8 212 break;
lfink6 0:57a32b7102e8 213 case 2000:
lfink6 0:57a32b7102e8 214 tempRegValue |= (0x3 << 3);
lfink6 0:57a32b7102e8 215 break;
lfink6 0:57a32b7102e8 216 // Otherwise we'll set it to 245 dps (0x0 << 4)
lfink6 0:57a32b7102e8 217 }
lfink6 0:57a32b7102e8 218 tempRegValue |= (settings.gyro.bandwidth & 0x3);
lfink6 0:57a32b7102e8 219 xgWriteByte(CTRL_REG1_G, tempRegValue);
lfink6 0:57a32b7102e8 220
lfink6 0:57a32b7102e8 221 // CTRL_REG2_G (Default value: 0x00)
lfink6 0:57a32b7102e8 222 // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0]
lfink6 0:57a32b7102e8 223 // INT_SEL[1:0] - INT selection configuration
lfink6 0:57a32b7102e8 224 // OUT_SEL[1:0] - Out selection configuration
lfink6 0:57a32b7102e8 225 xgWriteByte(CTRL_REG2_G, 0x00);
lfink6 0:57a32b7102e8 226
lfink6 0:57a32b7102e8 227 // CTRL_REG3_G (Default value: 0x00)
lfink6 0:57a32b7102e8 228 // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G]
lfink6 0:57a32b7102e8 229 // LP_mode - Low-power mode enable (0: disabled, 1: enabled)
lfink6 0:57a32b7102e8 230 // HP_EN - HPF enable (0:disabled, 1: enabled)
lfink6 0:57a32b7102e8 231 // HPCF_G[3:0] - HPF cutoff frequency
lfink6 0:57a32b7102e8 232 tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0;
lfink6 0:57a32b7102e8 233 if (settings.gyro.HPFEnable)
lfink6 0:57a32b7102e8 234 {
lfink6 0:57a32b7102e8 235 tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F);
lfink6 0:57a32b7102e8 236 }
lfink6 0:57a32b7102e8 237 xgWriteByte(CTRL_REG3_G, tempRegValue);
lfink6 0:57a32b7102e8 238
lfink6 0:57a32b7102e8 239 // CTRL_REG4 (Default value: 0x38)
lfink6 0:57a32b7102e8 240 // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1]
lfink6 0:57a32b7102e8 241 // Zen_G - Z-axis output enable (0:disable, 1:enable)
lfink6 0:57a32b7102e8 242 // Yen_G - Y-axis output enable (0:disable, 1:enable)
lfink6 0:57a32b7102e8 243 // Xen_G - X-axis output enable (0:disable, 1:enable)
lfink6 0:57a32b7102e8 244 // LIR_XL1 - Latched interrupt (0:not latched, 1:latched)
lfink6 0:57a32b7102e8 245 // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used)
lfink6 0:57a32b7102e8 246 tempRegValue = 0;
lfink6 0:57a32b7102e8 247 if (settings.gyro.enableZ) tempRegValue |= (1<<5);
lfink6 0:57a32b7102e8 248 if (settings.gyro.enableY) tempRegValue |= (1<<4);
lfink6 0:57a32b7102e8 249 if (settings.gyro.enableX) tempRegValue |= (1<<3);
lfink6 0:57a32b7102e8 250 if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1);
lfink6 0:57a32b7102e8 251 xgWriteByte(CTRL_REG4, tempRegValue);
lfink6 0:57a32b7102e8 252
lfink6 0:57a32b7102e8 253 // ORIENT_CFG_G (Default value: 0x00)
lfink6 0:57a32b7102e8 254 // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0]
lfink6 0:57a32b7102e8 255 // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative)
lfink6 0:57a32b7102e8 256 // Orient [2:0] - Directional user orientation selection
lfink6 0:57a32b7102e8 257 tempRegValue = 0;
lfink6 0:57a32b7102e8 258 if (settings.gyro.flipX) tempRegValue |= (1<<5);
lfink6 0:57a32b7102e8 259 if (settings.gyro.flipY) tempRegValue |= (1<<4);
lfink6 0:57a32b7102e8 260 if (settings.gyro.flipZ) tempRegValue |= (1<<3);
lfink6 0:57a32b7102e8 261 xgWriteByte(ORIENT_CFG_G, tempRegValue);
lfink6 0:57a32b7102e8 262 }
lfink6 0:57a32b7102e8 263
lfink6 0:57a32b7102e8 264 void LSM9DS1::initAccel()
lfink6 0:57a32b7102e8 265 {
lfink6 0:57a32b7102e8 266 uint8_t tempRegValue = 0;
lfink6 0:57a32b7102e8 267
lfink6 0:57a32b7102e8 268 // CTRL_REG5_XL (0x1F) (Default value: 0x38)
lfink6 0:57a32b7102e8 269 // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0]
lfink6 0:57a32b7102e8 270 // DEC[0:1] - Decimation of accel data on OUT REG and FIFO.
lfink6 0:57a32b7102e8 271 // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples
lfink6 0:57a32b7102e8 272 // Zen_XL - Z-axis output enabled
lfink6 0:57a32b7102e8 273 // Yen_XL - Y-axis output enabled
lfink6 0:57a32b7102e8 274 // Xen_XL - X-axis output enabled
lfink6 0:57a32b7102e8 275 if (settings.accel.enableZ) tempRegValue |= (1<<5);
lfink6 0:57a32b7102e8 276 if (settings.accel.enableY) tempRegValue |= (1<<4);
lfink6 0:57a32b7102e8 277 if (settings.accel.enableX) tempRegValue |= (1<<3);
lfink6 0:57a32b7102e8 278
lfink6 0:57a32b7102e8 279 xgWriteByte(CTRL_REG5_XL, tempRegValue);
lfink6 0:57a32b7102e8 280
lfink6 0:57a32b7102e8 281 // CTRL_REG6_XL (0x20) (Default value: 0x00)
lfink6 0:57a32b7102e8 282 // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0]
lfink6 0:57a32b7102e8 283 // ODR_XL[2:0] - Output data rate & power mode selection
lfink6 0:57a32b7102e8 284 // FS_XL[1:0] - Full-scale selection
lfink6 0:57a32b7102e8 285 // BW_SCAL_ODR - Bandwidth selection
lfink6 0:57a32b7102e8 286 // BW_XL[1:0] - Anti-aliasing filter bandwidth selection
lfink6 0:57a32b7102e8 287 tempRegValue = 0;
lfink6 0:57a32b7102e8 288 // To disable the accel, set the sampleRate bits to 0.
lfink6 0:57a32b7102e8 289 if (settings.accel.enabled)
lfink6 0:57a32b7102e8 290 {
lfink6 0:57a32b7102e8 291 tempRegValue |= (settings.accel.sampleRate & 0x07) << 5;
lfink6 0:57a32b7102e8 292 }
lfink6 0:57a32b7102e8 293 switch (settings.accel.scale)
lfink6 0:57a32b7102e8 294 {
lfink6 0:57a32b7102e8 295 case 4:
lfink6 0:57a32b7102e8 296 tempRegValue |= (0x2 << 3);
lfink6 0:57a32b7102e8 297 break;
lfink6 0:57a32b7102e8 298 case 8:
lfink6 0:57a32b7102e8 299 tempRegValue |= (0x3 << 3);
lfink6 0:57a32b7102e8 300 break;
lfink6 0:57a32b7102e8 301 case 16:
lfink6 0:57a32b7102e8 302 tempRegValue |= (0x1 << 3);
lfink6 0:57a32b7102e8 303 break;
lfink6 0:57a32b7102e8 304 // Otherwise it'll be set to 2g (0x0 << 3)
lfink6 0:57a32b7102e8 305 }
lfink6 0:57a32b7102e8 306 if (settings.accel.bandwidth >= 0)
lfink6 0:57a32b7102e8 307 {
lfink6 0:57a32b7102e8 308 tempRegValue |= (1<<2); // Set BW_SCAL_ODR
lfink6 0:57a32b7102e8 309 tempRegValue |= (settings.accel.bandwidth & 0x03);
lfink6 0:57a32b7102e8 310 }
lfink6 0:57a32b7102e8 311 xgWriteByte(CTRL_REG6_XL, tempRegValue);
lfink6 0:57a32b7102e8 312
lfink6 0:57a32b7102e8 313 // CTRL_REG7_XL (0x21) (Default value: 0x00)
lfink6 0:57a32b7102e8 314 // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1]
lfink6 0:57a32b7102e8 315 // HR - High resolution mode (0: disable, 1: enable)
lfink6 0:57a32b7102e8 316 // DCF[1:0] - Digital filter cutoff frequency
lfink6 0:57a32b7102e8 317 // FDS - Filtered data selection
lfink6 0:57a32b7102e8 318 // HPIS1 - HPF enabled for interrupt function
lfink6 0:57a32b7102e8 319 tempRegValue = 0;
lfink6 0:57a32b7102e8 320 if (settings.accel.highResEnable)
lfink6 0:57a32b7102e8 321 {
lfink6 0:57a32b7102e8 322 tempRegValue |= (1<<7); // Set HR bit
lfink6 0:57a32b7102e8 323 tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5;
lfink6 0:57a32b7102e8 324 }
lfink6 0:57a32b7102e8 325 xgWriteByte(CTRL_REG7_XL, tempRegValue);
lfink6 0:57a32b7102e8 326 }
lfink6 0:57a32b7102e8 327
lfink6 0:57a32b7102e8 328 // This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average
lfink6 0:57a32b7102e8 329 // them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch
lfink6 0:57a32b7102e8 330 // for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store
lfink6 0:57a32b7102e8 331 // the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to
lfink6 0:57a32b7102e8 332 // subtract the biases ourselves. This results in a more accurate measurement in general and can
lfink6 0:57a32b7102e8 333 // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner
lfink6 0:57a32b7102e8 334 // is good practice.
lfink6 0:57a32b7102e8 335 void LSM9DS1::calibrate(bool autoCalc)
lfink6 0:57a32b7102e8 336 {
lfink6 0:57a32b7102e8 337 uint8_t data[6] = {0, 0, 0, 0, 0, 0};
lfink6 0:57a32b7102e8 338 uint8_t samples = 0;
lfink6 0:57a32b7102e8 339 int ii;
lfink6 0:57a32b7102e8 340 int32_t aBiasRawTemp[3] = {0, 0, 0};
lfink6 0:57a32b7102e8 341 int32_t gBiasRawTemp[3] = {0, 0, 0};
lfink6 0:57a32b7102e8 342
lfink6 0:57a32b7102e8 343 // Turn on FIFO and set threshold to 32 samples
lfink6 0:57a32b7102e8 344 enableFIFO(true);
lfink6 0:57a32b7102e8 345 setFIFO(FIFO_THS, 0x1F);
lfink6 0:57a32b7102e8 346 while (samples < 0x1F)
lfink6 0:57a32b7102e8 347 {
lfink6 0:57a32b7102e8 348 samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples
lfink6 0:57a32b7102e8 349 }
lfink6 0:57a32b7102e8 350 for(ii = 0; ii < samples ; ii++)
lfink6 0:57a32b7102e8 351 { // Read the gyro data stored in the FIFO
lfink6 0:57a32b7102e8 352 readGyro();
lfink6 0:57a32b7102e8 353 gBiasRawTemp[0] += gx;
lfink6 0:57a32b7102e8 354 gBiasRawTemp[1] += gy;
lfink6 0:57a32b7102e8 355 gBiasRawTemp[2] += gz;
lfink6 0:57a32b7102e8 356 readAccel();
lfink6 0:57a32b7102e8 357 aBiasRawTemp[0] += ax;
lfink6 0:57a32b7102e8 358 aBiasRawTemp[1] += ay;
lfink6 0:57a32b7102e8 359 aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up!
lfink6 0:57a32b7102e8 360 }
lfink6 0:57a32b7102e8 361 for (ii = 0; ii < 3; ii++)
lfink6 0:57a32b7102e8 362 {
lfink6 0:57a32b7102e8 363 gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
lfink6 0:57a32b7102e8 364 gBias[ii] = calcGyro(gBiasRaw[ii]);
lfink6 0:57a32b7102e8 365 aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
lfink6 0:57a32b7102e8 366 aBias[ii] = calcAccel(aBiasRaw[ii]);
lfink6 0:57a32b7102e8 367 }
lfink6 0:57a32b7102e8 368
lfink6 0:57a32b7102e8 369 enableFIFO(false);
lfink6 0:57a32b7102e8 370 setFIFO(FIFO_OFF, 0x00);
lfink6 0:57a32b7102e8 371
lfink6 0:57a32b7102e8 372 if (autoCalc) _autoCalc = true;
lfink6 0:57a32b7102e8 373 }
lfink6 0:57a32b7102e8 374
lfink6 0:57a32b7102e8 375 void LSM9DS1::calibrateMag(bool loadIn)
lfink6 0:57a32b7102e8 376 {
lfink6 0:57a32b7102e8 377 int i, j;
lfink6 0:57a32b7102e8 378 int16_t magMin[3] = {0, 0, 0};
lfink6 0:57a32b7102e8 379 int16_t magMax[3] = {0, 0, 0}; // The road warrior
lfink6 0:57a32b7102e8 380
lfink6 0:57a32b7102e8 381 for (i=0; i<128; i++)
lfink6 0:57a32b7102e8 382 {
lfink6 0:57a32b7102e8 383 while (!magAvailable())
lfink6 0:57a32b7102e8 384 ;
lfink6 0:57a32b7102e8 385 readMag();
lfink6 0:57a32b7102e8 386 int16_t magTemp[3] = {0, 0, 0};
lfink6 0:57a32b7102e8 387 magTemp[0] = mx;
lfink6 0:57a32b7102e8 388 magTemp[1] = my;
lfink6 0:57a32b7102e8 389 magTemp[2] = mz;
lfink6 0:57a32b7102e8 390 for (j = 0; j < 3; j++)
lfink6 0:57a32b7102e8 391 {
lfink6 0:57a32b7102e8 392 if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j];
lfink6 0:57a32b7102e8 393 if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j];
lfink6 0:57a32b7102e8 394 }
lfink6 0:57a32b7102e8 395 }
lfink6 0:57a32b7102e8 396 for (j = 0; j < 3; j++)
lfink6 0:57a32b7102e8 397 {
lfink6 0:57a32b7102e8 398 mBiasRaw[j] = (magMax[j] + magMin[j]) / 2;
lfink6 0:57a32b7102e8 399 mBias[j] = calcMag(mBiasRaw[j]);
lfink6 0:57a32b7102e8 400 if (loadIn)
lfink6 0:57a32b7102e8 401 magOffset(j, mBiasRaw[j]);
lfink6 0:57a32b7102e8 402 }
lfink6 0:57a32b7102e8 403
lfink6 0:57a32b7102e8 404 }
lfink6 0:57a32b7102e8 405 void LSM9DS1::magOffset(uint8_t axis, int16_t offset)
lfink6 0:57a32b7102e8 406 {
lfink6 0:57a32b7102e8 407 if (axis > 2)
lfink6 0:57a32b7102e8 408 return;
lfink6 0:57a32b7102e8 409 uint8_t msb, lsb;
lfink6 0:57a32b7102e8 410 msb = (offset & 0xFF00) >> 8;
lfink6 0:57a32b7102e8 411 lsb = offset & 0x00FF;
lfink6 0:57a32b7102e8 412 mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb);
lfink6 0:57a32b7102e8 413 mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb);
lfink6 0:57a32b7102e8 414 }
lfink6 0:57a32b7102e8 415
lfink6 0:57a32b7102e8 416 void LSM9DS1::initMag()
lfink6 0:57a32b7102e8 417 {
lfink6 0:57a32b7102e8 418 uint8_t tempRegValue = 0;
lfink6 0:57a32b7102e8 419
lfink6 0:57a32b7102e8 420 // CTRL_REG1_M (Default value: 0x10)
lfink6 0:57a32b7102e8 421 // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST]
lfink6 0:57a32b7102e8 422 // TEMP_COMP - Temperature compensation
lfink6 0:57a32b7102e8 423 // OM[1:0] - X & Y axes op mode selection
lfink6 0:57a32b7102e8 424 // 00:low-power, 01:medium performance
lfink6 0:57a32b7102e8 425 // 10: high performance, 11:ultra-high performance
lfink6 0:57a32b7102e8 426 // DO[2:0] - Output data rate selection
lfink6 0:57a32b7102e8 427 // ST - Self-test enable
lfink6 0:57a32b7102e8 428 if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7);
lfink6 0:57a32b7102e8 429 tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5;
lfink6 0:57a32b7102e8 430 tempRegValue |= (settings.mag.sampleRate & 0x7) << 2;
lfink6 0:57a32b7102e8 431 mWriteByte(CTRL_REG1_M, tempRegValue);
lfink6 0:57a32b7102e8 432
lfink6 0:57a32b7102e8 433 // CTRL_REG2_M (Default value 0x00)
lfink6 0:57a32b7102e8 434 // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0]
lfink6 0:57a32b7102e8 435 // FS[1:0] - Full-scale configuration
lfink6 0:57a32b7102e8 436 // REBOOT - Reboot memory content (0:normal, 1:reboot)
lfink6 0:57a32b7102e8 437 // SOFT_RST - Reset config and user registers (0:default, 1:reset)
lfink6 0:57a32b7102e8 438 tempRegValue = 0;
lfink6 0:57a32b7102e8 439 switch (settings.mag.scale)
lfink6 0:57a32b7102e8 440 {
lfink6 0:57a32b7102e8 441 case 8:
lfink6 0:57a32b7102e8 442 tempRegValue |= (0x1 << 5);
lfink6 0:57a32b7102e8 443 break;
lfink6 0:57a32b7102e8 444 case 12:
lfink6 0:57a32b7102e8 445 tempRegValue |= (0x2 << 5);
lfink6 0:57a32b7102e8 446 break;
lfink6 0:57a32b7102e8 447 case 16:
lfink6 0:57a32b7102e8 448 tempRegValue |= (0x3 << 5);
lfink6 0:57a32b7102e8 449 break;
lfink6 0:57a32b7102e8 450 // Otherwise we'll default to 4 gauss (00)
lfink6 0:57a32b7102e8 451 }
lfink6 0:57a32b7102e8 452 mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss
lfink6 0:57a32b7102e8 453
lfink6 0:57a32b7102e8 454 // CTRL_REG3_M (Default value: 0x03)
lfink6 0:57a32b7102e8 455 // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0]
lfink6 0:57a32b7102e8 456 // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable)
lfink6 0:57a32b7102e8 457 // LP - Low-power mode cofiguration (1:enable)
lfink6 0:57a32b7102e8 458 // SIM - SPI mode selection (0:write-only, 1:read/write enable)
lfink6 0:57a32b7102e8 459 // MD[1:0] - Operating mode
lfink6 0:57a32b7102e8 460 // 00:continuous conversion, 01:single-conversion,
lfink6 0:57a32b7102e8 461 // 10,11: Power-down
lfink6 0:57a32b7102e8 462 tempRegValue = 0;
lfink6 0:57a32b7102e8 463 if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5);
lfink6 0:57a32b7102e8 464 tempRegValue |= (settings.mag.operatingMode & 0x3);
lfink6 0:57a32b7102e8 465 mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode
lfink6 0:57a32b7102e8 466
lfink6 0:57a32b7102e8 467 // CTRL_REG4_M (Default value: 0x00)
lfink6 0:57a32b7102e8 468 // [0][0][0][0][OMZ1][OMZ0][BLE][0]
lfink6 0:57a32b7102e8 469 // OMZ[1:0] - Z-axis operative mode selection
lfink6 0:57a32b7102e8 470 // 00:low-power mode, 01:medium performance
lfink6 0:57a32b7102e8 471 // 10:high performance, 10:ultra-high performance
lfink6 0:57a32b7102e8 472 // BLE - Big/little endian data
lfink6 0:57a32b7102e8 473 tempRegValue = 0;
lfink6 0:57a32b7102e8 474 tempRegValue = (settings.mag.ZPerformance & 0x3) << 2;
lfink6 0:57a32b7102e8 475 mWriteByte(CTRL_REG4_M, tempRegValue);
lfink6 0:57a32b7102e8 476
lfink6 0:57a32b7102e8 477 // CTRL_REG5_M (Default value: 0x00)
lfink6 0:57a32b7102e8 478 // [0][BDU][0][0][0][0][0][0]
lfink6 0:57a32b7102e8 479 // BDU - Block data update for magnetic data
lfink6 0:57a32b7102e8 480 // 0:continuous, 1:not updated until MSB/LSB are read
lfink6 0:57a32b7102e8 481 tempRegValue = 0;
lfink6 0:57a32b7102e8 482 mWriteByte(CTRL_REG5_M, tempRegValue);
lfink6 0:57a32b7102e8 483 }
lfink6 0:57a32b7102e8 484
lfink6 0:57a32b7102e8 485 uint8_t LSM9DS1::accelAvailable()
lfink6 0:57a32b7102e8 486 {
lfink6 0:57a32b7102e8 487 uint8_t status = xgReadByte(STATUS_REG_1);
lfink6 0:57a32b7102e8 488
lfink6 0:57a32b7102e8 489 return (status & (1<<0));
lfink6 0:57a32b7102e8 490 }
lfink6 0:57a32b7102e8 491
lfink6 0:57a32b7102e8 492 uint8_t LSM9DS1::gyroAvailable()
lfink6 0:57a32b7102e8 493 {
lfink6 0:57a32b7102e8 494 uint8_t status = xgReadByte(STATUS_REG_1);
lfink6 0:57a32b7102e8 495
lfink6 0:57a32b7102e8 496 return ((status & (1<<1)) >> 1);
lfink6 0:57a32b7102e8 497 }
lfink6 0:57a32b7102e8 498
lfink6 0:57a32b7102e8 499 uint8_t LSM9DS1::tempAvailable()
lfink6 0:57a32b7102e8 500 {
lfink6 0:57a32b7102e8 501 uint8_t status = xgReadByte(STATUS_REG_1);
lfink6 0:57a32b7102e8 502
lfink6 0:57a32b7102e8 503 return ((status & (1<<2)) >> 2);
lfink6 0:57a32b7102e8 504 }
lfink6 0:57a32b7102e8 505
lfink6 0:57a32b7102e8 506 uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis)
lfink6 0:57a32b7102e8 507 {
lfink6 0:57a32b7102e8 508 uint8_t status;
lfink6 0:57a32b7102e8 509 status = mReadByte(STATUS_REG_M);
lfink6 0:57a32b7102e8 510
lfink6 0:57a32b7102e8 511 return ((status & (1<<axis)) >> axis);
lfink6 0:57a32b7102e8 512 }
lfink6 0:57a32b7102e8 513
lfink6 0:57a32b7102e8 514 void LSM9DS1::readAccel()
lfink6 0:57a32b7102e8 515 {
lfink6 0:57a32b7102e8 516 uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp
lfink6 0:57a32b7102e8 517 xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL
lfink6 0:57a32b7102e8 518 ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax
lfink6 0:57a32b7102e8 519 ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay
lfink6 0:57a32b7102e8 520 az = (temp[5] << 8) | temp[4]; // Store z-axis values into az
lfink6 0:57a32b7102e8 521 if (_autoCalc)
lfink6 0:57a32b7102e8 522 {
lfink6 0:57a32b7102e8 523 ax -= aBiasRaw[X_AXIS];
lfink6 0:57a32b7102e8 524 ay -= aBiasRaw[Y_AXIS];
lfink6 0:57a32b7102e8 525 az -= aBiasRaw[Z_AXIS];
lfink6 0:57a32b7102e8 526 }
lfink6 0:57a32b7102e8 527 }
lfink6 0:57a32b7102e8 528
lfink6 0:57a32b7102e8 529 int16_t LSM9DS1::readAccel(lsm9ds1_axis axis)
lfink6 0:57a32b7102e8 530 {
lfink6 0:57a32b7102e8 531 uint8_t temp[2];
lfink6 0:57a32b7102e8 532 int16_t value;
lfink6 0:57a32b7102e8 533 xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2);
lfink6 0:57a32b7102e8 534 value = (temp[1] << 8) | temp[0];
lfink6 0:57a32b7102e8 535
lfink6 0:57a32b7102e8 536 if (_autoCalc)
lfink6 0:57a32b7102e8 537 value -= aBiasRaw[axis];
lfink6 0:57a32b7102e8 538
lfink6 0:57a32b7102e8 539 return value;
lfink6 0:57a32b7102e8 540 }
lfink6 0:57a32b7102e8 541
lfink6 0:57a32b7102e8 542 void LSM9DS1::readMag()
lfink6 0:57a32b7102e8 543 {
lfink6 0:57a32b7102e8 544 uint8_t temp[6]; // We'll read six bytes from the mag into temp
lfink6 0:57a32b7102e8 545 mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M
lfink6 0:57a32b7102e8 546 mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx
lfink6 0:57a32b7102e8 547 my = (temp[3] << 8) | temp[2]; // Store y-axis values into my
lfink6 0:57a32b7102e8 548 mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz
lfink6 0:57a32b7102e8 549 }
lfink6 0:57a32b7102e8 550
lfink6 0:57a32b7102e8 551 int16_t LSM9DS1::readMag(lsm9ds1_axis axis)
lfink6 0:57a32b7102e8 552 {
lfink6 0:57a32b7102e8 553 uint8_t temp[2];
lfink6 0:57a32b7102e8 554 mReadBytes(OUT_X_L_M + (2 * axis), temp, 2);
lfink6 0:57a32b7102e8 555 return (temp[1] << 8) | temp[0];
lfink6 0:57a32b7102e8 556 }
lfink6 0:57a32b7102e8 557
lfink6 0:57a32b7102e8 558 void LSM9DS1::readTemp()
lfink6 0:57a32b7102e8 559 {
lfink6 0:57a32b7102e8 560 uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
lfink6 0:57a32b7102e8 561 xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L
lfink6 0:57a32b7102e8 562 temperature = ((int16_t)temp[1] << 8) | temp[0];
lfink6 0:57a32b7102e8 563 }
lfink6 0:57a32b7102e8 564
lfink6 0:57a32b7102e8 565 void LSM9DS1::readGyro()
lfink6 0:57a32b7102e8 566 {
lfink6 0:57a32b7102e8 567 uint8_t temp[6]; // We'll read six bytes from the gyro into temp
lfink6 0:57a32b7102e8 568 xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G
lfink6 0:57a32b7102e8 569 gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx
lfink6 0:57a32b7102e8 570 gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy
lfink6 0:57a32b7102e8 571 gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz
lfink6 0:57a32b7102e8 572 if (_autoCalc)
lfink6 0:57a32b7102e8 573 {
lfink6 0:57a32b7102e8 574 gx -= gBiasRaw[X_AXIS];
lfink6 0:57a32b7102e8 575 gy -= gBiasRaw[Y_AXIS];
lfink6 0:57a32b7102e8 576 gz -= gBiasRaw[Z_AXIS];
lfink6 0:57a32b7102e8 577 }
lfink6 0:57a32b7102e8 578 }
lfink6 0:57a32b7102e8 579
lfink6 0:57a32b7102e8 580 int16_t LSM9DS1::readGyro(lsm9ds1_axis axis)
lfink6 0:57a32b7102e8 581 {
lfink6 0:57a32b7102e8 582 uint8_t temp[2];
lfink6 0:57a32b7102e8 583 int16_t value;
lfink6 0:57a32b7102e8 584
lfink6 0:57a32b7102e8 585 xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2);
lfink6 0:57a32b7102e8 586
lfink6 0:57a32b7102e8 587 value = (temp[1] << 8) | temp[0];
lfink6 0:57a32b7102e8 588
lfink6 0:57a32b7102e8 589 if (_autoCalc)
lfink6 0:57a32b7102e8 590 value -= gBiasRaw[axis];
lfink6 0:57a32b7102e8 591
lfink6 0:57a32b7102e8 592 return value;
lfink6 0:57a32b7102e8 593 }
lfink6 0:57a32b7102e8 594
lfink6 0:57a32b7102e8 595 float LSM9DS1::calcGyro(int16_t gyro)
lfink6 0:57a32b7102e8 596 {
lfink6 0:57a32b7102e8 597 // Return the gyro raw reading times our pre-calculated DPS / (ADC tick):
lfink6 0:57a32b7102e8 598 return gRes * gyro;
lfink6 0:57a32b7102e8 599 }
lfink6 0:57a32b7102e8 600
lfink6 0:57a32b7102e8 601 float LSM9DS1::calcAccel(int16_t accel)
lfink6 0:57a32b7102e8 602 {
lfink6 0:57a32b7102e8 603 // Return the accel raw reading times our pre-calculated g's / (ADC tick):
lfink6 0:57a32b7102e8 604 return aRes * accel;
lfink6 0:57a32b7102e8 605 }
lfink6 0:57a32b7102e8 606
lfink6 0:57a32b7102e8 607 float LSM9DS1::calcMag(int16_t mag)
lfink6 0:57a32b7102e8 608 {
lfink6 0:57a32b7102e8 609 // Return the mag raw reading times our pre-calculated Gs / (ADC tick):
lfink6 0:57a32b7102e8 610 return mRes * mag;
lfink6 0:57a32b7102e8 611 }
lfink6 0:57a32b7102e8 612
lfink6 0:57a32b7102e8 613 void LSM9DS1::setGyroScale(uint16_t gScl)
lfink6 0:57a32b7102e8 614 {
lfink6 0:57a32b7102e8 615 // Read current value of CTRL_REG1_G:
lfink6 0:57a32b7102e8 616 uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G);
lfink6 0:57a32b7102e8 617 // Mask out scale bits (3 & 4):
lfink6 0:57a32b7102e8 618 ctrl1RegValue &= 0xE7;
lfink6 0:57a32b7102e8 619 switch (gScl)
lfink6 0:57a32b7102e8 620 {
lfink6 0:57a32b7102e8 621 case 500:
lfink6 0:57a32b7102e8 622 ctrl1RegValue |= (0x1 << 3);
lfink6 0:57a32b7102e8 623 settings.gyro.scale = 500;
lfink6 0:57a32b7102e8 624 break;
lfink6 0:57a32b7102e8 625 case 2000:
lfink6 0:57a32b7102e8 626 ctrl1RegValue |= (0x3 << 3);
lfink6 0:57a32b7102e8 627 settings.gyro.scale = 2000;
lfink6 0:57a32b7102e8 628 break;
lfink6 0:57a32b7102e8 629 default: // Otherwise we'll set it to 245 dps (0x0 << 4)
lfink6 0:57a32b7102e8 630 settings.gyro.scale = 245;
lfink6 0:57a32b7102e8 631 break;
lfink6 0:57a32b7102e8 632 }
lfink6 0:57a32b7102e8 633 xgWriteByte(CTRL_REG1_G, ctrl1RegValue);
lfink6 0:57a32b7102e8 634
lfink6 0:57a32b7102e8 635 calcgRes();
lfink6 0:57a32b7102e8 636 }
lfink6 0:57a32b7102e8 637
lfink6 0:57a32b7102e8 638 void LSM9DS1::setAccelScale(uint8_t aScl)
lfink6 0:57a32b7102e8 639 {
lfink6 0:57a32b7102e8 640 // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it:
lfink6 0:57a32b7102e8 641 uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL);
lfink6 0:57a32b7102e8 642 // Mask out accel scale bits:
lfink6 0:57a32b7102e8 643 tempRegValue &= 0xE7;
lfink6 0:57a32b7102e8 644
lfink6 0:57a32b7102e8 645 switch (aScl)
lfink6 0:57a32b7102e8 646 {
lfink6 0:57a32b7102e8 647 case 4:
lfink6 0:57a32b7102e8 648 tempRegValue |= (0x2 << 3);
lfink6 0:57a32b7102e8 649 settings.accel.scale = 4;
lfink6 0:57a32b7102e8 650 break;
lfink6 0:57a32b7102e8 651 case 8:
lfink6 0:57a32b7102e8 652 tempRegValue |= (0x3 << 3);
lfink6 0:57a32b7102e8 653 settings.accel.scale = 8;
lfink6 0:57a32b7102e8 654 break;
lfink6 0:57a32b7102e8 655 case 16:
lfink6 0:57a32b7102e8 656 tempRegValue |= (0x1 << 3);
lfink6 0:57a32b7102e8 657 settings.accel.scale = 16;
lfink6 0:57a32b7102e8 658 break;
lfink6 0:57a32b7102e8 659 default: // Otherwise it'll be set to 2g (0x0 << 3)
lfink6 0:57a32b7102e8 660 settings.accel.scale = 2;
lfink6 0:57a32b7102e8 661 break;
lfink6 0:57a32b7102e8 662 }
lfink6 0:57a32b7102e8 663 xgWriteByte(CTRL_REG6_XL, tempRegValue);
lfink6 0:57a32b7102e8 664
lfink6 0:57a32b7102e8 665 // Then calculate a new aRes, which relies on aScale being set correctly:
lfink6 0:57a32b7102e8 666 calcaRes();
lfink6 0:57a32b7102e8 667 }
lfink6 0:57a32b7102e8 668
lfink6 0:57a32b7102e8 669 void LSM9DS1::setMagScale(uint8_t mScl)
lfink6 0:57a32b7102e8 670 {
lfink6 0:57a32b7102e8 671 // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
lfink6 0:57a32b7102e8 672 uint8_t temp = mReadByte(CTRL_REG2_M);
lfink6 0:57a32b7102e8 673 // Then mask out the mag scale bits:
lfink6 0:57a32b7102e8 674 temp &= 0xFF^(0x3 << 5);
lfink6 0:57a32b7102e8 675
lfink6 0:57a32b7102e8 676 switch (mScl)
lfink6 0:57a32b7102e8 677 {
lfink6 0:57a32b7102e8 678 case 8:
lfink6 0:57a32b7102e8 679 temp |= (0x1 << 5);
lfink6 0:57a32b7102e8 680 settings.mag.scale = 8;
lfink6 0:57a32b7102e8 681 break;
lfink6 0:57a32b7102e8 682 case 12:
lfink6 0:57a32b7102e8 683 temp |= (0x2 << 5);
lfink6 0:57a32b7102e8 684 settings.mag.scale = 12;
lfink6 0:57a32b7102e8 685 break;
lfink6 0:57a32b7102e8 686 case 16:
lfink6 0:57a32b7102e8 687 temp |= (0x3 << 5);
lfink6 0:57a32b7102e8 688 settings.mag.scale = 16;
lfink6 0:57a32b7102e8 689 break;
lfink6 0:57a32b7102e8 690 default: // Otherwise we'll default to 4 gauss (00)
lfink6 0:57a32b7102e8 691 settings.mag.scale = 4;
lfink6 0:57a32b7102e8 692 break;
lfink6 0:57a32b7102e8 693 }
lfink6 0:57a32b7102e8 694
lfink6 0:57a32b7102e8 695 // And write the new register value back into CTRL_REG6_XM:
lfink6 0:57a32b7102e8 696 mWriteByte(CTRL_REG2_M, temp);
lfink6 0:57a32b7102e8 697
lfink6 0:57a32b7102e8 698 // We've updated the sensor, but we also need to update our class variables
lfink6 0:57a32b7102e8 699 // First update mScale:
lfink6 0:57a32b7102e8 700 //mScale = mScl;
lfink6 0:57a32b7102e8 701 // Then calculate a new mRes, which relies on mScale being set correctly:
lfink6 0:57a32b7102e8 702 calcmRes();
lfink6 0:57a32b7102e8 703 }
lfink6 0:57a32b7102e8 704
lfink6 0:57a32b7102e8 705 void LSM9DS1::setGyroODR(uint8_t gRate)
lfink6 0:57a32b7102e8 706 {
lfink6 0:57a32b7102e8 707 // Only do this if gRate is not 0 (which would disable the gyro)
lfink6 0:57a32b7102e8 708 if ((gRate & 0x07) != 0)
lfink6 0:57a32b7102e8 709 {
lfink6 0:57a32b7102e8 710 // We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
lfink6 0:57a32b7102e8 711 uint8_t temp = xgReadByte(CTRL_REG1_G);
lfink6 0:57a32b7102e8 712 // Then mask out the gyro ODR bits:
lfink6 0:57a32b7102e8 713 temp &= 0xFF^(0x7 << 5);
lfink6 0:57a32b7102e8 714 temp |= (gRate & 0x07) << 5;
lfink6 0:57a32b7102e8 715 // Update our settings struct
lfink6 0:57a32b7102e8 716 settings.gyro.sampleRate = gRate & 0x07;
lfink6 0:57a32b7102e8 717 // And write the new register value back into CTRL_REG1_G:
lfink6 0:57a32b7102e8 718 xgWriteByte(CTRL_REG1_G, temp);
lfink6 0:57a32b7102e8 719 }
lfink6 0:57a32b7102e8 720 }
lfink6 0:57a32b7102e8 721
lfink6 0:57a32b7102e8 722 void LSM9DS1::setAccelODR(uint8_t aRate)
lfink6 0:57a32b7102e8 723 {
lfink6 0:57a32b7102e8 724 // Only do this if aRate is not 0 (which would disable the accel)
lfink6 0:57a32b7102e8 725 if ((aRate & 0x07) != 0)
lfink6 0:57a32b7102e8 726 {
lfink6 0:57a32b7102e8 727 // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
lfink6 0:57a32b7102e8 728 uint8_t temp = xgReadByte(CTRL_REG6_XL);
lfink6 0:57a32b7102e8 729 // Then mask out the accel ODR bits:
lfink6 0:57a32b7102e8 730 temp &= 0x1F;
lfink6 0:57a32b7102e8 731 // Then shift in our new ODR bits:
lfink6 0:57a32b7102e8 732 temp |= ((aRate & 0x07) << 5);
lfink6 0:57a32b7102e8 733 settings.accel.sampleRate = aRate & 0x07;
lfink6 0:57a32b7102e8 734 // And write the new register value back into CTRL_REG1_XM:
lfink6 0:57a32b7102e8 735 xgWriteByte(CTRL_REG6_XL, temp);
lfink6 0:57a32b7102e8 736 }
lfink6 0:57a32b7102e8 737 }
lfink6 0:57a32b7102e8 738
lfink6 0:57a32b7102e8 739 void LSM9DS1::setMagODR(uint8_t mRate)
lfink6 0:57a32b7102e8 740 {
lfink6 0:57a32b7102e8 741 // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
lfink6 0:57a32b7102e8 742 uint8_t temp = mReadByte(CTRL_REG1_M);
lfink6 0:57a32b7102e8 743 // Then mask out the mag ODR bits:
lfink6 0:57a32b7102e8 744 temp &= 0xFF^(0x7 << 2);
lfink6 0:57a32b7102e8 745 // Then shift in our new ODR bits:
lfink6 0:57a32b7102e8 746 temp |= ((mRate & 0x07) << 2);
lfink6 0:57a32b7102e8 747 settings.mag.sampleRate = mRate & 0x07;
lfink6 0:57a32b7102e8 748 // And write the new register value back into CTRL_REG5_XM:
lfink6 0:57a32b7102e8 749 mWriteByte(CTRL_REG1_M, temp);
lfink6 0:57a32b7102e8 750 }
lfink6 0:57a32b7102e8 751
lfink6 0:57a32b7102e8 752 void LSM9DS1::calcgRes()
lfink6 0:57a32b7102e8 753 {
lfink6 0:57a32b7102e8 754 gRes = ((float) settings.gyro.scale) / 32768.0;
lfink6 0:57a32b7102e8 755 }
lfink6 0:57a32b7102e8 756
lfink6 0:57a32b7102e8 757 void LSM9DS1::calcaRes()
lfink6 0:57a32b7102e8 758 {
lfink6 0:57a32b7102e8 759 aRes = ((float) settings.accel.scale) / 32768.0;
lfink6 0:57a32b7102e8 760 }
lfink6 0:57a32b7102e8 761
lfink6 0:57a32b7102e8 762 void LSM9DS1::calcmRes()
lfink6 0:57a32b7102e8 763 {
lfink6 0:57a32b7102e8 764 //mRes = ((float) settings.mag.scale) / 32768.0;
lfink6 0:57a32b7102e8 765 switch (settings.mag.scale)
lfink6 0:57a32b7102e8 766 {
lfink6 0:57a32b7102e8 767 case 4:
lfink6 0:57a32b7102e8 768 mRes = magSensitivity[0];
lfink6 0:57a32b7102e8 769 break;
lfink6 0:57a32b7102e8 770 case 8:
lfink6 0:57a32b7102e8 771 mRes = magSensitivity[1];
lfink6 0:57a32b7102e8 772 break;
lfink6 0:57a32b7102e8 773 case 12:
lfink6 0:57a32b7102e8 774 mRes = magSensitivity[2];
lfink6 0:57a32b7102e8 775 break;
lfink6 0:57a32b7102e8 776 case 16:
lfink6 0:57a32b7102e8 777 mRes = magSensitivity[3];
lfink6 0:57a32b7102e8 778 break;
lfink6 0:57a32b7102e8 779 }
lfink6 0:57a32b7102e8 780
lfink6 0:57a32b7102e8 781 }
lfink6 0:57a32b7102e8 782
lfink6 0:57a32b7102e8 783 void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator,
lfink6 0:57a32b7102e8 784 h_lactive activeLow, pp_od pushPull)
lfink6 0:57a32b7102e8 785 {
lfink6 0:57a32b7102e8 786 // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of
lfink6 0:57a32b7102e8 787 // those two values.
lfink6 0:57a32b7102e8 788 // [generator] should be an OR'd list of values from the interrupt_generators enum
lfink6 0:57a32b7102e8 789 xgWriteByte(interrupt, generator);
lfink6 0:57a32b7102e8 790
lfink6 0:57a32b7102e8 791 // Configure CTRL_REG8
lfink6 0:57a32b7102e8 792 uint8_t temp;
lfink6 0:57a32b7102e8 793 temp = xgReadByte(CTRL_REG8);
lfink6 0:57a32b7102e8 794
lfink6 0:57a32b7102e8 795 if (activeLow) temp |= (1<<5);
lfink6 0:57a32b7102e8 796 else temp &= ~(1<<5);
lfink6 0:57a32b7102e8 797
lfink6 0:57a32b7102e8 798 if (pushPull) temp &= ~(1<<4);
lfink6 0:57a32b7102e8 799 else temp |= (1<<4);
lfink6 0:57a32b7102e8 800
lfink6 0:57a32b7102e8 801 xgWriteByte(CTRL_REG8, temp);
lfink6 0:57a32b7102e8 802 }
lfink6 0:57a32b7102e8 803
lfink6 0:57a32b7102e8 804 void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn)
lfink6 0:57a32b7102e8 805 {
lfink6 0:57a32b7102e8 806 uint8_t temp = 0;
lfink6 0:57a32b7102e8 807
lfink6 0:57a32b7102e8 808 temp = threshold & 0x7F;
lfink6 0:57a32b7102e8 809 if (sleepOn) temp |= (1<<7);
lfink6 0:57a32b7102e8 810 xgWriteByte(ACT_THS, temp);
lfink6 0:57a32b7102e8 811
lfink6 0:57a32b7102e8 812 xgWriteByte(ACT_DUR, duration);
lfink6 0:57a32b7102e8 813 }
lfink6 0:57a32b7102e8 814
lfink6 0:57a32b7102e8 815 uint8_t LSM9DS1::getInactivity()
lfink6 0:57a32b7102e8 816 {
lfink6 0:57a32b7102e8 817 uint8_t temp = xgReadByte(STATUS_REG_0);
lfink6 0:57a32b7102e8 818 temp &= (0x10);
lfink6 0:57a32b7102e8 819 return temp;
lfink6 0:57a32b7102e8 820 }
lfink6 0:57a32b7102e8 821
lfink6 0:57a32b7102e8 822 void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts)
lfink6 0:57a32b7102e8 823 {
lfink6 0:57a32b7102e8 824 // Use variables from accel_interrupt_generator, OR'd together to create
lfink6 0:57a32b7102e8 825 // the [generator]value.
lfink6 0:57a32b7102e8 826 uint8_t temp = generator;
lfink6 0:57a32b7102e8 827 if (andInterrupts) temp |= 0x80;
lfink6 0:57a32b7102e8 828 xgWriteByte(INT_GEN_CFG_XL, temp);
lfink6 0:57a32b7102e8 829 }
lfink6 0:57a32b7102e8 830
lfink6 0:57a32b7102e8 831 void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
lfink6 0:57a32b7102e8 832 {
lfink6 0:57a32b7102e8 833 // Write threshold value to INT_GEN_THS_?_XL.
lfink6 0:57a32b7102e8 834 // axis will be 0, 1, or 2 (x, y, z respectively)
lfink6 0:57a32b7102e8 835 xgWriteByte(INT_GEN_THS_X_XL + axis, threshold);
lfink6 0:57a32b7102e8 836
lfink6 0:57a32b7102e8 837 // Write duration and wait to INT_GEN_DUR_XL
lfink6 0:57a32b7102e8 838 uint8_t temp;
lfink6 0:57a32b7102e8 839 temp = (duration & 0x7F);
lfink6 0:57a32b7102e8 840 if (wait) temp |= 0x80;
lfink6 0:57a32b7102e8 841 xgWriteByte(INT_GEN_DUR_XL, temp);
lfink6 0:57a32b7102e8 842 }
lfink6 0:57a32b7102e8 843
lfink6 0:57a32b7102e8 844 uint8_t LSM9DS1::getAccelIntSrc()
lfink6 0:57a32b7102e8 845 {
lfink6 0:57a32b7102e8 846 uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL);
lfink6 0:57a32b7102e8 847
lfink6 0:57a32b7102e8 848 // Check if the IA_XL (interrupt active) bit is set
lfink6 0:57a32b7102e8 849 if (intSrc & (1<<6))
lfink6 0:57a32b7102e8 850 {
lfink6 0:57a32b7102e8 851 return (intSrc & 0x3F);
lfink6 0:57a32b7102e8 852 }
lfink6 0:57a32b7102e8 853
lfink6 0:57a32b7102e8 854 return 0;
lfink6 0:57a32b7102e8 855 }
lfink6 0:57a32b7102e8 856
lfink6 0:57a32b7102e8 857 void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch)
lfink6 0:57a32b7102e8 858 {
lfink6 0:57a32b7102e8 859 // Use variables from accel_interrupt_generator, OR'd together to create
lfink6 0:57a32b7102e8 860 // the [generator]value.
lfink6 0:57a32b7102e8 861 uint8_t temp = generator;
lfink6 0:57a32b7102e8 862 if (aoi) temp |= 0x80;
lfink6 0:57a32b7102e8 863 if (latch) temp |= 0x40;
lfink6 0:57a32b7102e8 864 xgWriteByte(INT_GEN_CFG_G, temp);
lfink6 0:57a32b7102e8 865 }
lfink6 0:57a32b7102e8 866
lfink6 0:57a32b7102e8 867 void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait)
lfink6 0:57a32b7102e8 868 {
lfink6 0:57a32b7102e8 869 uint8_t buffer[2];
lfink6 0:57a32b7102e8 870 buffer[0] = (threshold & 0x7F00) >> 8;
lfink6 0:57a32b7102e8 871 buffer[1] = (threshold & 0x00FF);
lfink6 0:57a32b7102e8 872 // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G.
lfink6 0:57a32b7102e8 873 // axis will be 0, 1, or 2 (x, y, z respectively)
lfink6 0:57a32b7102e8 874 xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]);
lfink6 0:57a32b7102e8 875 xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]);
lfink6 0:57a32b7102e8 876
lfink6 0:57a32b7102e8 877 // Write duration and wait to INT_GEN_DUR_XL
lfink6 0:57a32b7102e8 878 uint8_t temp;
lfink6 0:57a32b7102e8 879 temp = (duration & 0x7F);
lfink6 0:57a32b7102e8 880 if (wait) temp |= 0x80;
lfink6 0:57a32b7102e8 881 xgWriteByte(INT_GEN_DUR_G, temp);
lfink6 0:57a32b7102e8 882 }
lfink6 0:57a32b7102e8 883
lfink6 0:57a32b7102e8 884 uint8_t LSM9DS1::getGyroIntSrc()
lfink6 0:57a32b7102e8 885 {
lfink6 0:57a32b7102e8 886 uint8_t intSrc = xgReadByte(INT_GEN_SRC_G);
lfink6 0:57a32b7102e8 887
lfink6 0:57a32b7102e8 888 // Check if the IA_G (interrupt active) bit is set
lfink6 0:57a32b7102e8 889 if (intSrc & (1<<6))
lfink6 0:57a32b7102e8 890 {
lfink6 0:57a32b7102e8 891 return (intSrc & 0x3F);
lfink6 0:57a32b7102e8 892 }
lfink6 0:57a32b7102e8 893
lfink6 0:57a32b7102e8 894 return 0;
lfink6 0:57a32b7102e8 895 }
lfink6 0:57a32b7102e8 896
lfink6 0:57a32b7102e8 897 void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch)
lfink6 0:57a32b7102e8 898 {
lfink6 0:57a32b7102e8 899 // Mask out non-generator bits (0-4)
lfink6 0:57a32b7102e8 900 uint8_t config = (generator & 0xE0);
lfink6 0:57a32b7102e8 901 // IEA bit is 0 for active-low, 1 for active-high.
lfink6 0:57a32b7102e8 902 if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2);
lfink6 0:57a32b7102e8 903 // IEL bit is 0 for latched, 1 for not-latched
lfink6 0:57a32b7102e8 904 if (!latch) config |= (1<<1);
lfink6 0:57a32b7102e8 905 // As long as we have at least 1 generator, enable the interrupt
lfink6 0:57a32b7102e8 906 if (generator != 0) config |= (1<<0);
lfink6 0:57a32b7102e8 907
lfink6 0:57a32b7102e8 908 mWriteByte(INT_CFG_M, config);
lfink6 0:57a32b7102e8 909 }
lfink6 0:57a32b7102e8 910
lfink6 0:57a32b7102e8 911 void LSM9DS1::configMagThs(uint16_t threshold)
lfink6 0:57a32b7102e8 912 {
lfink6 0:57a32b7102e8 913 // Write high eight bits of [threshold] to INT_THS_H_M
lfink6 0:57a32b7102e8 914 mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8));
lfink6 0:57a32b7102e8 915 // Write low eight bits of [threshold] to INT_THS_L_M
lfink6 0:57a32b7102e8 916 mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF));
lfink6 0:57a32b7102e8 917 }
lfink6 0:57a32b7102e8 918
lfink6 0:57a32b7102e8 919 uint8_t LSM9DS1::getMagIntSrc()
lfink6 0:57a32b7102e8 920 {
lfink6 0:57a32b7102e8 921 uint8_t intSrc = mReadByte(INT_SRC_M);
lfink6 0:57a32b7102e8 922
lfink6 0:57a32b7102e8 923 // Check if the INT (interrupt active) bit is set
lfink6 0:57a32b7102e8 924 if (intSrc & (1<<0))
lfink6 0:57a32b7102e8 925 {
lfink6 0:57a32b7102e8 926 return (intSrc & 0xFE);
lfink6 0:57a32b7102e8 927 }
lfink6 0:57a32b7102e8 928
lfink6 0:57a32b7102e8 929 return 0;
lfink6 0:57a32b7102e8 930 }
lfink6 0:57a32b7102e8 931
lfink6 0:57a32b7102e8 932 void LSM9DS1::sleepGyro(bool enable)
lfink6 0:57a32b7102e8 933 {
lfink6 0:57a32b7102e8 934 uint8_t temp = xgReadByte(CTRL_REG9);
lfink6 0:57a32b7102e8 935 if (enable) temp |= (1<<6);
lfink6 0:57a32b7102e8 936 else temp &= ~(1<<6);
lfink6 0:57a32b7102e8 937 xgWriteByte(CTRL_REG9, temp);
lfink6 0:57a32b7102e8 938 }
lfink6 0:57a32b7102e8 939
lfink6 0:57a32b7102e8 940 void LSM9DS1::enableFIFO(bool enable)
lfink6 0:57a32b7102e8 941 {
lfink6 0:57a32b7102e8 942 uint8_t temp = xgReadByte(CTRL_REG9);
lfink6 0:57a32b7102e8 943 if (enable) temp |= (1<<1);
lfink6 0:57a32b7102e8 944 else temp &= ~(1<<1);
lfink6 0:57a32b7102e8 945 xgWriteByte(CTRL_REG9, temp);
lfink6 0:57a32b7102e8 946 }
lfink6 0:57a32b7102e8 947
lfink6 0:57a32b7102e8 948 void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs)
lfink6 0:57a32b7102e8 949 {
lfink6 0:57a32b7102e8 950 // Limit threshold - 0x1F (31) is the maximum. If more than that was asked
lfink6 0:57a32b7102e8 951 // limit it to the maximum.
lfink6 0:57a32b7102e8 952 uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
lfink6 0:57a32b7102e8 953 xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F));
lfink6 0:57a32b7102e8 954 }
lfink6 0:57a32b7102e8 955
lfink6 0:57a32b7102e8 956 uint8_t LSM9DS1::getFIFOSamples()
lfink6 0:57a32b7102e8 957 {
lfink6 0:57a32b7102e8 958 return (xgReadByte(FIFO_SRC) & 0x3F);
lfink6 0:57a32b7102e8 959 }
lfink6 0:57a32b7102e8 960
lfink6 0:57a32b7102e8 961 void LSM9DS1::constrainScales()
lfink6 0:57a32b7102e8 962 {
lfink6 0:57a32b7102e8 963 if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) &&
lfink6 0:57a32b7102e8 964 (settings.gyro.scale != 2000))
lfink6 0:57a32b7102e8 965 {
lfink6 0:57a32b7102e8 966 settings.gyro.scale = 245;
lfink6 0:57a32b7102e8 967 }
lfink6 0:57a32b7102e8 968
lfink6 0:57a32b7102e8 969 if ((settings.accel.scale != 2) && (settings.accel.scale != 4) &&
lfink6 0:57a32b7102e8 970 (settings.accel.scale != 8) && (settings.accel.scale != 16))
lfink6 0:57a32b7102e8 971 {
lfink6 0:57a32b7102e8 972 settings.accel.scale = 2;
lfink6 0:57a32b7102e8 973 }
lfink6 0:57a32b7102e8 974
lfink6 0:57a32b7102e8 975 if ((settings.mag.scale != 4) && (settings.mag.scale != 8) &&
lfink6 0:57a32b7102e8 976 (settings.mag.scale != 12) && (settings.mag.scale != 16))
lfink6 0:57a32b7102e8 977 {
lfink6 0:57a32b7102e8 978 settings.mag.scale = 4;
lfink6 0:57a32b7102e8 979 }
lfink6 0:57a32b7102e8 980 }
lfink6 0:57a32b7102e8 981
lfink6 0:57a32b7102e8 982 void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data)
lfink6 0:57a32b7102e8 983 {
lfink6 0:57a32b7102e8 984 // Whether we're using I2C or SPI, write a byte using the
lfink6 0:57a32b7102e8 985 // gyro-specific I2C address or SPI CS pin.
lfink6 0:57a32b7102e8 986 if (settings.device.commInterface == IMU_MODE_I2C) {
lfink6 0:57a32b7102e8 987 printf("yo");
lfink6 0:57a32b7102e8 988 I2CwriteByte(_xgAddress, subAddress, data);
lfink6 0:57a32b7102e8 989 } else if (settings.device.commInterface == IMU_MODE_SPI) {
lfink6 0:57a32b7102e8 990 SPIwriteByte(_xgAddress, subAddress, data);
lfink6 0:57a32b7102e8 991 }
lfink6 0:57a32b7102e8 992 }
lfink6 0:57a32b7102e8 993
lfink6 0:57a32b7102e8 994 void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data)
lfink6 0:57a32b7102e8 995 {
lfink6 0:57a32b7102e8 996 // Whether we're using I2C or SPI, write a byte using the
lfink6 0:57a32b7102e8 997 // accelerometer-specific I2C address or SPI CS pin.
lfink6 0:57a32b7102e8 998 if (settings.device.commInterface == IMU_MODE_I2C)
lfink6 0:57a32b7102e8 999 return I2CwriteByte(_mAddress, subAddress, data);
lfink6 0:57a32b7102e8 1000 else if (settings.device.commInterface == IMU_MODE_SPI)
lfink6 0:57a32b7102e8 1001 return SPIwriteByte(_mAddress, subAddress, data);
lfink6 0:57a32b7102e8 1002 }
lfink6 0:57a32b7102e8 1003
lfink6 0:57a32b7102e8 1004 uint8_t LSM9DS1::xgReadByte(uint8_t subAddress)
lfink6 0:57a32b7102e8 1005 {
lfink6 0:57a32b7102e8 1006 // Whether we're using I2C or SPI, read a byte using the
lfink6 0:57a32b7102e8 1007 // gyro-specific I2C address or SPI CS pin.
lfink6 0:57a32b7102e8 1008 if (settings.device.commInterface == IMU_MODE_I2C)
lfink6 0:57a32b7102e8 1009 return I2CreadByte(_xgAddress, subAddress);
lfink6 0:57a32b7102e8 1010 else if (settings.device.commInterface == IMU_MODE_SPI)
lfink6 0:57a32b7102e8 1011 return SPIreadByte(_xgAddress, subAddress);
lfink6 0:57a32b7102e8 1012 }
lfink6 0:57a32b7102e8 1013
lfink6 0:57a32b7102e8 1014 void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
lfink6 0:57a32b7102e8 1015 {
lfink6 0:57a32b7102e8 1016 // Whether we're using I2C or SPI, read multiple bytes using the
lfink6 0:57a32b7102e8 1017 // gyro-specific I2C address or SPI CS pin.
lfink6 0:57a32b7102e8 1018 if (settings.device.commInterface == IMU_MODE_I2C) {
lfink6 0:57a32b7102e8 1019 I2CreadBytes(_xgAddress, subAddress, dest, count);
lfink6 0:57a32b7102e8 1020 } else if (settings.device.commInterface == IMU_MODE_SPI) {
lfink6 0:57a32b7102e8 1021 SPIreadBytes(_xgAddress, subAddress, dest, count);
lfink6 0:57a32b7102e8 1022 }
lfink6 0:57a32b7102e8 1023 }
lfink6 0:57a32b7102e8 1024
lfink6 0:57a32b7102e8 1025 uint8_t LSM9DS1::mReadByte(uint8_t subAddress)
lfink6 0:57a32b7102e8 1026 {
lfink6 0:57a32b7102e8 1027 // Whether we're using I2C or SPI, read a byte using the
lfink6 0:57a32b7102e8 1028 // accelerometer-specific I2C address or SPI CS pin.
lfink6 0:57a32b7102e8 1029 if (settings.device.commInterface == IMU_MODE_I2C)
lfink6 0:57a32b7102e8 1030 return I2CreadByte(_mAddress, subAddress);
lfink6 0:57a32b7102e8 1031 else if (settings.device.commInterface == IMU_MODE_SPI)
lfink6 0:57a32b7102e8 1032 return SPIreadByte(_mAddress, subAddress);
lfink6 0:57a32b7102e8 1033 }
lfink6 0:57a32b7102e8 1034
lfink6 0:57a32b7102e8 1035 void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count)
lfink6 0:57a32b7102e8 1036 {
lfink6 0:57a32b7102e8 1037 // Whether we're using I2C or SPI, read multiple bytes using the
lfink6 0:57a32b7102e8 1038 // accelerometer-specific I2C address or SPI CS pin.
lfink6 0:57a32b7102e8 1039 if (settings.device.commInterface == IMU_MODE_I2C)
lfink6 0:57a32b7102e8 1040 I2CreadBytes(_mAddress, subAddress, dest, count);
lfink6 0:57a32b7102e8 1041 else if (settings.device.commInterface == IMU_MODE_SPI)
lfink6 0:57a32b7102e8 1042 SPIreadBytes(_mAddress, subAddress, dest, count);
lfink6 0:57a32b7102e8 1043 }
lfink6 0:57a32b7102e8 1044
lfink6 0:57a32b7102e8 1045 void LSM9DS1::initSPI()
lfink6 0:57a32b7102e8 1046 {
lfink6 0:57a32b7102e8 1047 /*
lfink6 0:57a32b7102e8 1048 pinMode(_xgAddress, OUTPUT);
lfink6 0:57a32b7102e8 1049 digitalWrite(_xgAddress, HIGH);
lfink6 0:57a32b7102e8 1050 pinMode(_mAddress, OUTPUT);
lfink6 0:57a32b7102e8 1051 digitalWrite(_mAddress, HIGH);
lfink6 0:57a32b7102e8 1052
lfink6 0:57a32b7102e8 1053 SPI.begin();
lfink6 0:57a32b7102e8 1054 // Maximum SPI frequency is 10MHz, could divide by 2 here:
lfink6 0:57a32b7102e8 1055 SPI.setClockDivider(SPI_CLOCK_DIV2);
lfink6 0:57a32b7102e8 1056 // Data is read and written MSb first.
lfink6 0:57a32b7102e8 1057 SPI.setBitOrder(MSBFIRST);
lfink6 0:57a32b7102e8 1058 // Data is captured on rising edge of clock (CPHA = 0)
lfink6 0:57a32b7102e8 1059 // Base value of the clock is HIGH (CPOL = 1)
lfink6 0:57a32b7102e8 1060 SPI.setDataMode(SPI_MODE0);
lfink6 0:57a32b7102e8 1061 */
lfink6 0:57a32b7102e8 1062 }
lfink6 0:57a32b7102e8 1063
lfink6 0:57a32b7102e8 1064 void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data)
lfink6 0:57a32b7102e8 1065 {
lfink6 0:57a32b7102e8 1066 /*
lfink6 0:57a32b7102e8 1067 digitalWrite(csPin, LOW); // Initiate communication
lfink6 0:57a32b7102e8 1068
lfink6 0:57a32b7102e8 1069 // If write, bit 0 (MSB) should be 0
lfink6 0:57a32b7102e8 1070 // If single write, bit 1 should be 0
lfink6 0:57a32b7102e8 1071 SPI.transfer(subAddress & 0x3F); // Send Address
lfink6 0:57a32b7102e8 1072 SPI.transfer(data); // Send data
lfink6 0:57a32b7102e8 1073
lfink6 0:57a32b7102e8 1074 digitalWrite(csPin, HIGH); // Close communication
lfink6 0:57a32b7102e8 1075 */
lfink6 0:57a32b7102e8 1076 }
lfink6 0:57a32b7102e8 1077
lfink6 0:57a32b7102e8 1078 uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress)
lfink6 0:57a32b7102e8 1079 {
lfink6 0:57a32b7102e8 1080 uint8_t temp;
lfink6 0:57a32b7102e8 1081 // Use the multiple read function to read 1 byte.
lfink6 0:57a32b7102e8 1082 // Value is returned to `temp`.
lfink6 0:57a32b7102e8 1083 SPIreadBytes(csPin, subAddress, &temp, 1);
lfink6 0:57a32b7102e8 1084 return temp;
lfink6 0:57a32b7102e8 1085 }
lfink6 0:57a32b7102e8 1086
lfink6 0:57a32b7102e8 1087 void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress,
lfink6 0:57a32b7102e8 1088 uint8_t * dest, uint8_t count)
lfink6 0:57a32b7102e8 1089 {
lfink6 0:57a32b7102e8 1090 // To indicate a read, set bit 0 (msb) of first byte to 1
lfink6 0:57a32b7102e8 1091 uint8_t rAddress = 0x80 | (subAddress & 0x3F);
lfink6 0:57a32b7102e8 1092 // Mag SPI port is different. If we're reading multiple bytes,
lfink6 0:57a32b7102e8 1093 // set bit 1 to 1. The remaining six bytes are the address to be read
lfink6 0:57a32b7102e8 1094 if ((csPin == _mAddress) && count > 1)
lfink6 0:57a32b7102e8 1095 rAddress |= 0x40;
lfink6 0:57a32b7102e8 1096
lfink6 0:57a32b7102e8 1097 /*
lfink6 0:57a32b7102e8 1098 digitalWrite(csPin, LOW); // Initiate communication
lfink6 0:57a32b7102e8 1099 SPI.transfer(rAddress);
lfink6 0:57a32b7102e8 1100 for (int i=0; i<count; i++)
lfink6 0:57a32b7102e8 1101 {
lfink6 0:57a32b7102e8 1102 dest[i] = SPI.transfer(0x00); // Read into destination array
lfink6 0:57a32b7102e8 1103 }
lfink6 0:57a32b7102e8 1104 digitalWrite(csPin, HIGH); // Close communication
lfink6 0:57a32b7102e8 1105 */
lfink6 0:57a32b7102e8 1106 }
lfink6 0:57a32b7102e8 1107
lfink6 0:57a32b7102e8 1108 void LSM9DS1::initI2C()
lfink6 0:57a32b7102e8 1109 {
lfink6 0:57a32b7102e8 1110 /*
lfink6 0:57a32b7102e8 1111 Wire.begin(); // Initialize I2C library
lfink6 0:57a32b7102e8 1112 */
lfink6 0:57a32b7102e8 1113
lfink6 0:57a32b7102e8 1114 //already initialized in constructor!
lfink6 0:57a32b7102e8 1115 }
lfink6 0:57a32b7102e8 1116
lfink6 0:57a32b7102e8 1117 // Wire.h read and write protocols
lfink6 0:57a32b7102e8 1118 void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data)
lfink6 0:57a32b7102e8 1119 {
lfink6 0:57a32b7102e8 1120 /*
lfink6 0:57a32b7102e8 1121 Wire.beginTransmission(address); // Initialize the Tx buffer
lfink6 0:57a32b7102e8 1122 Wire.write(subAddress); // Put slave register address in Tx buffer
lfink6 0:57a32b7102e8 1123 Wire.write(data); // Put data in Tx buffer
lfink6 0:57a32b7102e8 1124 Wire.endTransmission(); // Send the Tx buffer
lfink6 0:57a32b7102e8 1125 */
lfink6 0:57a32b7102e8 1126 char temp_data[2] = {subAddress, data};
lfink6 0:57a32b7102e8 1127 i2c.write(address, temp_data, 2);
lfink6 0:57a32b7102e8 1128 }
lfink6 0:57a32b7102e8 1129
lfink6 0:57a32b7102e8 1130 uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress)
lfink6 0:57a32b7102e8 1131 {
lfink6 0:57a32b7102e8 1132 /*
lfink6 0:57a32b7102e8 1133 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
lfink6 0:57a32b7102e8 1134 uint8_t data; // `data` will store the register data
lfink6 0:57a32b7102e8 1135
lfink6 0:57a32b7102e8 1136 Wire.beginTransmission(address); // Initialize the Tx buffer
lfink6 0:57a32b7102e8 1137 Wire.write(subAddress); // Put slave register address in Tx buffer
lfink6 0:57a32b7102e8 1138 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
lfink6 0:57a32b7102e8 1139 Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address
lfink6 0:57a32b7102e8 1140 while ((Wire.available() < 1) && (timeout-- > 0))
lfink6 0:57a32b7102e8 1141 delay(1);
lfink6 0:57a32b7102e8 1142
lfink6 0:57a32b7102e8 1143 if (timeout <= 0)
lfink6 0:57a32b7102e8 1144 return 255; //! Bad! 255 will be misinterpreted as a good value.
lfink6 0:57a32b7102e8 1145
lfink6 0:57a32b7102e8 1146 data = Wire.read(); // Fill Rx buffer with result
lfink6 0:57a32b7102e8 1147 return data; // Return data read from slave register
lfink6 0:57a32b7102e8 1148 */
lfink6 0:57a32b7102e8 1149 char data;
lfink6 0:57a32b7102e8 1150 char temp[1] = {subAddress};
lfink6 0:57a32b7102e8 1151
lfink6 0:57a32b7102e8 1152 i2c.write(address, temp, 1);
lfink6 0:57a32b7102e8 1153 //i2c.write(address & 0xFE);
lfink6 0:57a32b7102e8 1154 temp[1] = 0x00;
lfink6 0:57a32b7102e8 1155 i2c.write(address, temp, 1);
lfink6 0:57a32b7102e8 1156 //i2c.write( address | 0x01);
lfink6 0:57a32b7102e8 1157 int a = i2c.read(address, &data, 1);
lfink6 0:57a32b7102e8 1158 return data;
lfink6 0:57a32b7102e8 1159 }
lfink6 0:57a32b7102e8 1160
lfink6 0:57a32b7102e8 1161 uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count)
lfink6 0:57a32b7102e8 1162 {
lfink6 0:57a32b7102e8 1163 /*
lfink6 0:57a32b7102e8 1164 int timeout = LSM9DS1_COMMUNICATION_TIMEOUT;
lfink6 0:57a32b7102e8 1165 Wire.beginTransmission(address); // Initialize the Tx buffer
lfink6 0:57a32b7102e8 1166 // Next send the register to be read. OR with 0x80 to indicate multi-read.
lfink6 0:57a32b7102e8 1167 Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer
lfink6 0:57a32b7102e8 1168
lfink6 0:57a32b7102e8 1169 Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive
lfink6 0:57a32b7102e8 1170 uint8_t i = 0;
lfink6 0:57a32b7102e8 1171 Wire.requestFrom(address, count); // Read bytes from slave register address
lfink6 0:57a32b7102e8 1172 while ((Wire.available() < count) && (timeout-- > 0))
lfink6 0:57a32b7102e8 1173 delay(1);
lfink6 0:57a32b7102e8 1174 if (timeout <= 0)
lfink6 0:57a32b7102e8 1175 return -1;
lfink6 0:57a32b7102e8 1176
lfink6 0:57a32b7102e8 1177 for (int i=0; i<count;)
lfink6 0:57a32b7102e8 1178 {
lfink6 0:57a32b7102e8 1179 if (Wire.available())
lfink6 0:57a32b7102e8 1180 {
lfink6 0:57a32b7102e8 1181 dest[i++] = Wire.read();
lfink6 0:57a32b7102e8 1182 }
lfink6 0:57a32b7102e8 1183 }
lfink6 0:57a32b7102e8 1184 return count;
lfink6 0:57a32b7102e8 1185 */
lfink6 0:57a32b7102e8 1186 int i;
lfink6 0:57a32b7102e8 1187 char temp_dest[count];
lfink6 0:57a32b7102e8 1188 char temp[1] = {subAddress};
lfink6 0:57a32b7102e8 1189 i2c.write(address, temp, 1);
lfink6 0:57a32b7102e8 1190 i2c.read(address, temp_dest, count);
lfink6 0:57a32b7102e8 1191
lfink6 0:57a32b7102e8 1192 //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion
lfink6 0:57a32b7102e8 1193 for (i=0; i < count; i++) {
lfink6 0:57a32b7102e8 1194 dest[i] = temp_dest[i];
lfink6 0:57a32b7102e8 1195 }
lfink6 0:57a32b7102e8 1196 return count;
lfink6 0:57a32b7102e8 1197 }