inital commit
Dependencies: mbed wave_player mbed-rtos 4DGL-uLCD-SE SDFileSystem2 PinDetect MMA8452
Revision 11:1a47726ac72a, committed 2021-12-15
- Comitter:
- lfink6
- Date:
- Wed Dec 15 17:17:26 2021 +0000
- Parent:
- 10:5bd6abd66d12
- Commit message:
- Rev final;
Changed in this revision
--- a/LSM9DS1.cpp Sun Dec 12 23:31:10 2021 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1197 +0,0 @@ -/****************************************************************************** -SFE_LSM9DS1.cpp -SFE_LSM9DS1 Library Source File -Jim Lindblom @ SparkFun Electronics -Original Creation Date: February 27, 2015 -https://github.com/sparkfun/LSM9DS1_Breakout - -This file implements all functions of the LSM9DS1 class. Functions here range -from higher level stuff, like reading/writing LSM9DS1 registers to low-level, -hardware reads and writes. Both SPI and I2C handler functions can be found -towards the bottom of this file. - -Development environment specifics: - IDE: Arduino 1.6 - Hardware Platform: Arduino Uno - LSM9DS1 Breakout Version: 1.0 - -This code is beerware; if you see me (or any other SparkFun employee) at the -local, and you've found our code helpful, please buy us a round! - -Distributed as-is; no warranty is given. -******************************************************************************/ - -#include "LSM9DS1.h" -#include "LSM9DS1_Registers.h" -#include "LSM9DS1_Types.h" -//#include <Wire.h> // Wire library is used for I2C -//#include <SPI.h> // SPI library is used for...SPI. - -//#if defined(ARDUINO) && ARDUINO >= 100 -// #include "Arduino.h" -//#else -// #include "WProgram.h" -//#endif - -#define LSM9DS1_COMMUNICATION_TIMEOUT 1000 - -float magSensitivity[4] = {0.00014, 0.00029, 0.00043, 0.00058}; -extern Serial pc; - -LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) - :i2c(sda, scl) -{ - init(IMU_MODE_I2C, xgAddr, mAddr); // dont know about 0xD6 or 0x3B -} -/* -LSM9DS1::LSM9DS1() -{ - init(IMU_MODE_I2C, LSM9DS1_AG_ADDR(1), LSM9DS1_M_ADDR(1)); -} - -LSM9DS1::LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) -{ - init(interface, xgAddr, mAddr); -} -*/ - -void LSM9DS1::init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr) -{ - settings.device.commInterface = interface; - settings.device.agAddress = xgAddr; - settings.device.mAddress = mAddr; - - settings.gyro.enabled = true; - settings.gyro.enableX = true; - settings.gyro.enableY = true; - settings.gyro.enableZ = true; - // gyro scale can be 245, 500, or 2000 - settings.gyro.scale = 245; - // gyro sample rate: value between 1-6 - // 1 = 14.9 4 = 238 - // 2 = 59.5 5 = 476 - // 3 = 119 6 = 952 - settings.gyro.sampleRate = 6; - // gyro cutoff frequency: value between 0-3 - // Actual value of cutoff frequency depends - // on sample rate. - settings.gyro.bandwidth = 0; - settings.gyro.lowPowerEnable = false; - settings.gyro.HPFEnable = false; - // Gyro HPF cutoff frequency: value between 0-9 - // Actual value depends on sample rate. Only applies - // if gyroHPFEnable is true. - settings.gyro.HPFCutoff = 0; - settings.gyro.flipX = false; - settings.gyro.flipY = false; - settings.gyro.flipZ = false; - settings.gyro.orientation = 0; - settings.gyro.latchInterrupt = true; - - settings.accel.enabled = true; - settings.accel.enableX = true; - settings.accel.enableY = true; - settings.accel.enableZ = true; - // accel scale can be 2, 4, 8, or 16 - settings.accel.scale = 2; - // accel sample rate can be 1-6 - // 1 = 10 Hz 4 = 238 Hz - // 2 = 50 Hz 5 = 476 Hz - // 3 = 119 Hz 6 = 952 Hz - settings.accel.sampleRate = 6; - // Accel cutoff freqeuncy can be any value between -1 - 3. - // -1 = bandwidth determined by sample rate - // 0 = 408 Hz 2 = 105 Hz - // 1 = 211 Hz 3 = 50 Hz - settings.accel.bandwidth = -1; - settings.accel.highResEnable = false; - // accelHighResBandwidth can be any value between 0-3 - // LP cutoff is set to a factor of sample rate - // 0 = ODR/50 2 = ODR/9 - // 1 = ODR/100 3 = ODR/400 - settings.accel.highResBandwidth = 0; - - settings.mag.enabled = true; - // mag scale can be 4, 8, 12, or 16 - settings.mag.scale = 4; - // mag data rate can be 0-7 - // 0 = 0.625 Hz 4 = 10 Hz - // 1 = 1.25 Hz 5 = 20 Hz - // 2 = 2.5 Hz 6 = 40 Hz - // 3 = 5 Hz 7 = 80 Hz - settings.mag.sampleRate = 7; - settings.mag.tempCompensationEnable = false; - // magPerformance can be any value between 0-3 - // 0 = Low power mode 2 = high performance - // 1 = medium performance 3 = ultra-high performance - settings.mag.XYPerformance = 3; - settings.mag.ZPerformance = 3; - settings.mag.lowPowerEnable = false; - // magOperatingMode can be 0-2 - // 0 = continuous conversion - // 1 = single-conversion - // 2 = power down - settings.mag.operatingMode = 0; - - settings.temp.enabled = true; - for (int i=0; i<3; i++) - { - gBias[i] = 0; - aBias[i] = 0; - mBias[i] = 0; - gBiasRaw[i] = 0; - aBiasRaw[i] = 0; - mBiasRaw[i] = 0; - } - _autoCalc = false; -} - - -uint16_t LSM9DS1::begin() -{ - //! Todo: don't use _xgAddress or _mAddress, duplicating memory - _xgAddress = settings.device.agAddress; - _mAddress = settings.device.mAddress; - - constrainScales(); - // Once we have the scale values, we can calculate the resolution - // of each sensor. That's what these functions are for. One for each sensor - calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable - calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable - calcaRes(); // Calculate g / ADC tick, stored in aRes variable - - // Now, initialize our hardware interface. - if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C - initI2C(); // Initialize I2C - else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI - initSPI(); // Initialize SPI - - // To verify communication, we can read from the WHO_AM_I register of - // each device. Store those in a variable so we can return them. - uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I - uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I - pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress); - uint16_t whoAmICombined = (xgTest << 8) | mTest; - - if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP)) - return 0; - - // Gyro initialization stuff: - initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. - - // Accelerometer initialization stuff: - initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. - - // Magnetometer initialization stuff: - initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. - - // Once everything is initialized, return the WHO_AM_I registers we read: - return whoAmICombined; -} - -void LSM9DS1::initGyro() -{ - uint8_t tempRegValue = 0; - - // CTRL_REG1_G (Default value: 0x00) - // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0] - // ODR_G[2:0] - Output data rate selection - // FS_G[1:0] - Gyroscope full-scale selection - // BW_G[1:0] - Gyroscope bandwidth selection - - // To disable gyro, set sample rate bits to 0. We'll only set sample - // rate if the gyro is enabled. - if (settings.gyro.enabled) - { - tempRegValue = (settings.gyro.sampleRate & 0x07) << 5; - } - switch (settings.gyro.scale) - { - case 500: - tempRegValue |= (0x1 << 3); - break; - case 2000: - tempRegValue |= (0x3 << 3); - break; - // Otherwise we'll set it to 245 dps (0x0 << 4) - } - tempRegValue |= (settings.gyro.bandwidth & 0x3); - xgWriteByte(CTRL_REG1_G, tempRegValue); - - // CTRL_REG2_G (Default value: 0x00) - // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0] - // INT_SEL[1:0] - INT selection configuration - // OUT_SEL[1:0] - Out selection configuration - xgWriteByte(CTRL_REG2_G, 0x00); - - // CTRL_REG3_G (Default value: 0x00) - // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G] - // LP_mode - Low-power mode enable (0: disabled, 1: enabled) - // HP_EN - HPF enable (0:disabled, 1: enabled) - // HPCF_G[3:0] - HPF cutoff frequency - tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0; - if (settings.gyro.HPFEnable) - { - tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F); - } - xgWriteByte(CTRL_REG3_G, tempRegValue); - - // CTRL_REG4 (Default value: 0x38) - // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1] - // Zen_G - Z-axis output enable (0:disable, 1:enable) - // Yen_G - Y-axis output enable (0:disable, 1:enable) - // Xen_G - X-axis output enable (0:disable, 1:enable) - // LIR_XL1 - Latched interrupt (0:not latched, 1:latched) - // 4D_XL1 - 4D option on interrupt (0:6D used, 1:4D used) - tempRegValue = 0; - if (settings.gyro.enableZ) tempRegValue |= (1<<5); - if (settings.gyro.enableY) tempRegValue |= (1<<4); - if (settings.gyro.enableX) tempRegValue |= (1<<3); - if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1); - xgWriteByte(CTRL_REG4, tempRegValue); - - // ORIENT_CFG_G (Default value: 0x00) - // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0] - // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative) - // Orient [2:0] - Directional user orientation selection - tempRegValue = 0; - if (settings.gyro.flipX) tempRegValue |= (1<<5); - if (settings.gyro.flipY) tempRegValue |= (1<<4); - if (settings.gyro.flipZ) tempRegValue |= (1<<3); - xgWriteByte(ORIENT_CFG_G, tempRegValue); -} - -void LSM9DS1::initAccel() -{ - uint8_t tempRegValue = 0; - - // CTRL_REG5_XL (0x1F) (Default value: 0x38) - // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0] - // DEC[0:1] - Decimation of accel data on OUT REG and FIFO. - // 00: None, 01: 2 samples, 10: 4 samples 11: 8 samples - // Zen_XL - Z-axis output enabled - // Yen_XL - Y-axis output enabled - // Xen_XL - X-axis output enabled - if (settings.accel.enableZ) tempRegValue |= (1<<5); - if (settings.accel.enableY) tempRegValue |= (1<<4); - if (settings.accel.enableX) tempRegValue |= (1<<3); - - xgWriteByte(CTRL_REG5_XL, tempRegValue); - - // CTRL_REG6_XL (0x20) (Default value: 0x00) - // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0] - // ODR_XL[2:0] - Output data rate & power mode selection - // FS_XL[1:0] - Full-scale selection - // BW_SCAL_ODR - Bandwidth selection - // BW_XL[1:0] - Anti-aliasing filter bandwidth selection - tempRegValue = 0; - // To disable the accel, set the sampleRate bits to 0. - if (settings.accel.enabled) - { - tempRegValue |= (settings.accel.sampleRate & 0x07) << 5; - } - switch (settings.accel.scale) - { - case 4: - tempRegValue |= (0x2 << 3); - break; - case 8: - tempRegValue |= (0x3 << 3); - break; - case 16: - tempRegValue |= (0x1 << 3); - break; - // Otherwise it'll be set to 2g (0x0 << 3) - } - if (settings.accel.bandwidth >= 0) - { - tempRegValue |= (1<<2); // Set BW_SCAL_ODR - tempRegValue |= (settings.accel.bandwidth & 0x03); - } - xgWriteByte(CTRL_REG6_XL, tempRegValue); - - // CTRL_REG7_XL (0x21) (Default value: 0x00) - // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1] - // HR - High resolution mode (0: disable, 1: enable) - // DCF[1:0] - Digital filter cutoff frequency - // FDS - Filtered data selection - // HPIS1 - HPF enabled for interrupt function - tempRegValue = 0; - if (settings.accel.highResEnable) - { - tempRegValue |= (1<<7); // Set HR bit - tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5; - } - xgWriteByte(CTRL_REG7_XL, tempRegValue); -} - -// This is a function that uses the FIFO to accumulate sample of accelerometer and gyro data, average -// them, scales them to gs and deg/s, respectively, and then passes the biases to the main sketch -// for subtraction from all subsequent data. There are no gyro and accelerometer bias registers to store -// the data as there are in the ADXL345, a precursor to the LSM9DS0, or the MPU-9150, so we have to -// subtract the biases ourselves. This results in a more accurate measurement in general and can -// remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner -// is good practice. -void LSM9DS1::calibrate(bool autoCalc) -{ - uint8_t data[6] = {0, 0, 0, 0, 0, 0}; - uint8_t samples = 0; - int ii; - int32_t aBiasRawTemp[3] = {0, 0, 0}; - int32_t gBiasRawTemp[3] = {0, 0, 0}; - - // Turn on FIFO and set threshold to 32 samples - enableFIFO(true); - setFIFO(FIFO_THS, 0x1F); - while (samples < 0x1F) - { - samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples - } - for(ii = 0; ii < samples ; ii++) - { // Read the gyro data stored in the FIFO - readGyro(); - gBiasRawTemp[0] += gx; - gBiasRawTemp[1] += gy; - gBiasRawTemp[2] += gz; - readAccel(); - aBiasRawTemp[0] += ax; - aBiasRawTemp[1] += ay; - aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up! - } - for (ii = 0; ii < 3; ii++) - { - gBiasRaw[ii] = gBiasRawTemp[ii] / samples; - gBias[ii] = calcGyro(gBiasRaw[ii]); - aBiasRaw[ii] = aBiasRawTemp[ii] / samples; - aBias[ii] = calcAccel(aBiasRaw[ii]); - } - - enableFIFO(false); - setFIFO(FIFO_OFF, 0x00); - - if (autoCalc) _autoCalc = true; -} - -void LSM9DS1::calibrateMag(bool loadIn) -{ - int i, j; - int16_t magMin[3] = {0, 0, 0}; - int16_t magMax[3] = {0, 0, 0}; // The road warrior - - for (i=0; i<128; i++) - { - while (!magAvailable()) - ; - readMag(); - int16_t magTemp[3] = {0, 0, 0}; - magTemp[0] = mx; - magTemp[1] = my; - magTemp[2] = mz; - for (j = 0; j < 3; j++) - { - if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j]; - if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j]; - } - } - for (j = 0; j < 3; j++) - { - mBiasRaw[j] = (magMax[j] + magMin[j]) / 2; - mBias[j] = calcMag(mBiasRaw[j]); - if (loadIn) - magOffset(j, mBiasRaw[j]); - } - -} -void LSM9DS1::magOffset(uint8_t axis, int16_t offset) -{ - if (axis > 2) - return; - uint8_t msb, lsb; - msb = (offset & 0xFF00) >> 8; - lsb = offset & 0x00FF; - mWriteByte(OFFSET_X_REG_L_M + (2 * axis), lsb); - mWriteByte(OFFSET_X_REG_H_M + (2 * axis), msb); -} - -void LSM9DS1::initMag() -{ - uint8_t tempRegValue = 0; - - // CTRL_REG1_M (Default value: 0x10) - // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST] - // TEMP_COMP - Temperature compensation - // OM[1:0] - X & Y axes op mode selection - // 00:low-power, 01:medium performance - // 10: high performance, 11:ultra-high performance - // DO[2:0] - Output data rate selection - // ST - Self-test enable - if (settings.mag.tempCompensationEnable) tempRegValue |= (1<<7); - tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5; - tempRegValue |= (settings.mag.sampleRate & 0x7) << 2; - mWriteByte(CTRL_REG1_M, tempRegValue); - - // CTRL_REG2_M (Default value 0x00) - // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0] - // FS[1:0] - Full-scale configuration - // REBOOT - Reboot memory content (0:normal, 1:reboot) - // SOFT_RST - Reset config and user registers (0:default, 1:reset) - tempRegValue = 0; - switch (settings.mag.scale) - { - case 8: - tempRegValue |= (0x1 << 5); - break; - case 12: - tempRegValue |= (0x2 << 5); - break; - case 16: - tempRegValue |= (0x3 << 5); - break; - // Otherwise we'll default to 4 gauss (00) - } - mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss - - // CTRL_REG3_M (Default value: 0x03) - // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0] - // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable) - // LP - Low-power mode cofiguration (1:enable) - // SIM - SPI mode selection (0:write-only, 1:read/write enable) - // MD[1:0] - Operating mode - // 00:continuous conversion, 01:single-conversion, - // 10,11: Power-down - tempRegValue = 0; - if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5); - tempRegValue |= (settings.mag.operatingMode & 0x3); - mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode - - // CTRL_REG4_M (Default value: 0x00) - // [0][0][0][0][OMZ1][OMZ0][BLE][0] - // OMZ[1:0] - Z-axis operative mode selection - // 00:low-power mode, 01:medium performance - // 10:high performance, 10:ultra-high performance - // BLE - Big/little endian data - tempRegValue = 0; - tempRegValue = (settings.mag.ZPerformance & 0x3) << 2; - mWriteByte(CTRL_REG4_M, tempRegValue); - - // CTRL_REG5_M (Default value: 0x00) - // [0][BDU][0][0][0][0][0][0] - // BDU - Block data update for magnetic data - // 0:continuous, 1:not updated until MSB/LSB are read - tempRegValue = 0; - mWriteByte(CTRL_REG5_M, tempRegValue); -} - -uint8_t LSM9DS1::accelAvailable() -{ - uint8_t status = xgReadByte(STATUS_REG_1); - - return (status & (1<<0)); -} - -uint8_t LSM9DS1::gyroAvailable() -{ - uint8_t status = xgReadByte(STATUS_REG_1); - - return ((status & (1<<1)) >> 1); -} - -uint8_t LSM9DS1::tempAvailable() -{ - uint8_t status = xgReadByte(STATUS_REG_1); - - return ((status & (1<<2)) >> 2); -} - -uint8_t LSM9DS1::magAvailable(lsm9ds1_axis axis) -{ - uint8_t status; - status = mReadByte(STATUS_REG_M); - - return ((status & (1<<axis)) >> axis); -} - -void LSM9DS1::readAccel() -{ - uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp - xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL - ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax - ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay - az = (temp[5] << 8) | temp[4]; // Store z-axis values into az - if (_autoCalc) - { - ax -= aBiasRaw[X_AXIS]; - ay -= aBiasRaw[Y_AXIS]; - az -= aBiasRaw[Z_AXIS]; - } -} - -int16_t LSM9DS1::readAccel(lsm9ds1_axis axis) -{ - uint8_t temp[2]; - int16_t value; - xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2); - value = (temp[1] << 8) | temp[0]; - - if (_autoCalc) - value -= aBiasRaw[axis]; - - return value; -} - -void LSM9DS1::readMag() -{ - uint8_t temp[6]; // We'll read six bytes from the mag into temp - mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M - mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx - my = (temp[3] << 8) | temp[2]; // Store y-axis values into my - mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz -} - -int16_t LSM9DS1::readMag(lsm9ds1_axis axis) -{ - uint8_t temp[2]; - mReadBytes(OUT_X_L_M + (2 * axis), temp, 2); - return (temp[1] << 8) | temp[0]; -} - -void LSM9DS1::readTemp() -{ - uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp - xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L - temperature = ((int16_t)temp[1] << 8) | temp[0]; -} - -void LSM9DS1::readGyro() -{ - uint8_t temp[6]; // We'll read six bytes from the gyro into temp - xgReadBytes(OUT_X_L_G, temp, 6); // Read 6 bytes, beginning at OUT_X_L_G - gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx - gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy - gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz - if (_autoCalc) - { - gx -= gBiasRaw[X_AXIS]; - gy -= gBiasRaw[Y_AXIS]; - gz -= gBiasRaw[Z_AXIS]; - } -} - -int16_t LSM9DS1::readGyro(lsm9ds1_axis axis) -{ - uint8_t temp[2]; - int16_t value; - - xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2); - - value = (temp[1] << 8) | temp[0]; - - if (_autoCalc) - value -= gBiasRaw[axis]; - - return value; -} - -float LSM9DS1::calcGyro(int16_t gyro) -{ - // Return the gyro raw reading times our pre-calculated DPS / (ADC tick): - return gRes * gyro; -} - -float LSM9DS1::calcAccel(int16_t accel) -{ - // Return the accel raw reading times our pre-calculated g's / (ADC tick): - return aRes * accel; -} - -float LSM9DS1::calcMag(int16_t mag) -{ - // Return the mag raw reading times our pre-calculated Gs / (ADC tick): - return mRes * mag; -} - -void LSM9DS1::setGyroScale(uint16_t gScl) -{ - // Read current value of CTRL_REG1_G: - uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G); - // Mask out scale bits (3 & 4): - ctrl1RegValue &= 0xE7; - switch (gScl) - { - case 500: - ctrl1RegValue |= (0x1 << 3); - settings.gyro.scale = 500; - break; - case 2000: - ctrl1RegValue |= (0x3 << 3); - settings.gyro.scale = 2000; - break; - default: // Otherwise we'll set it to 245 dps (0x0 << 4) - settings.gyro.scale = 245; - break; - } - xgWriteByte(CTRL_REG1_G, ctrl1RegValue); - - calcgRes(); -} - -void LSM9DS1::setAccelScale(uint8_t aScl) -{ - // We need to preserve the other bytes in CTRL_REG6_XL. So, first read it: - uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL); - // Mask out accel scale bits: - tempRegValue &= 0xE7; - - switch (aScl) - { - case 4: - tempRegValue |= (0x2 << 3); - settings.accel.scale = 4; - break; - case 8: - tempRegValue |= (0x3 << 3); - settings.accel.scale = 8; - break; - case 16: - tempRegValue |= (0x1 << 3); - settings.accel.scale = 16; - break; - default: // Otherwise it'll be set to 2g (0x0 << 3) - settings.accel.scale = 2; - break; - } - xgWriteByte(CTRL_REG6_XL, tempRegValue); - - // Then calculate a new aRes, which relies on aScale being set correctly: - calcaRes(); -} - -void LSM9DS1::setMagScale(uint8_t mScl) -{ - // We need to preserve the other bytes in CTRL_REG6_XM. So, first read it: - uint8_t temp = mReadByte(CTRL_REG2_M); - // Then mask out the mag scale bits: - temp &= 0xFF^(0x3 << 5); - - switch (mScl) - { - case 8: - temp |= (0x1 << 5); - settings.mag.scale = 8; - break; - case 12: - temp |= (0x2 << 5); - settings.mag.scale = 12; - break; - case 16: - temp |= (0x3 << 5); - settings.mag.scale = 16; - break; - default: // Otherwise we'll default to 4 gauss (00) - settings.mag.scale = 4; - break; - } - - // And write the new register value back into CTRL_REG6_XM: - mWriteByte(CTRL_REG2_M, temp); - - // We've updated the sensor, but we also need to update our class variables - // First update mScale: - //mScale = mScl; - // Then calculate a new mRes, which relies on mScale being set correctly: - calcmRes(); -} - -void LSM9DS1::setGyroODR(uint8_t gRate) -{ - // Only do this if gRate is not 0 (which would disable the gyro) - if ((gRate & 0x07) != 0) - { - // We need to preserve the other bytes in CTRL_REG1_G. So, first read it: - uint8_t temp = xgReadByte(CTRL_REG1_G); - // Then mask out the gyro ODR bits: - temp &= 0xFF^(0x7 << 5); - temp |= (gRate & 0x07) << 5; - // Update our settings struct - settings.gyro.sampleRate = gRate & 0x07; - // And write the new register value back into CTRL_REG1_G: - xgWriteByte(CTRL_REG1_G, temp); - } -} - -void LSM9DS1::setAccelODR(uint8_t aRate) -{ - // Only do this if aRate is not 0 (which would disable the accel) - if ((aRate & 0x07) != 0) - { - // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: - uint8_t temp = xgReadByte(CTRL_REG6_XL); - // Then mask out the accel ODR bits: - temp &= 0x1F; - // Then shift in our new ODR bits: - temp |= ((aRate & 0x07) << 5); - settings.accel.sampleRate = aRate & 0x07; - // And write the new register value back into CTRL_REG1_XM: - xgWriteByte(CTRL_REG6_XL, temp); - } -} - -void LSM9DS1::setMagODR(uint8_t mRate) -{ - // We need to preserve the other bytes in CTRL_REG5_XM. So, first read it: - uint8_t temp = mReadByte(CTRL_REG1_M); - // Then mask out the mag ODR bits: - temp &= 0xFF^(0x7 << 2); - // Then shift in our new ODR bits: - temp |= ((mRate & 0x07) << 2); - settings.mag.sampleRate = mRate & 0x07; - // And write the new register value back into CTRL_REG5_XM: - mWriteByte(CTRL_REG1_M, temp); -} - -void LSM9DS1::calcgRes() -{ - gRes = ((float) settings.gyro.scale) / 32768.0; -} - -void LSM9DS1::calcaRes() -{ - aRes = ((float) settings.accel.scale) / 32768.0; -} - -void LSM9DS1::calcmRes() -{ - //mRes = ((float) settings.mag.scale) / 32768.0; - switch (settings.mag.scale) - { - case 4: - mRes = magSensitivity[0]; - break; - case 8: - mRes = magSensitivity[1]; - break; - case 12: - mRes = magSensitivity[2]; - break; - case 16: - mRes = magSensitivity[3]; - break; - } - -} - -void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator, - h_lactive activeLow, pp_od pushPull) -{ - // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of - // those two values. - // [generator] should be an OR'd list of values from the interrupt_generators enum - xgWriteByte(interrupt, generator); - - // Configure CTRL_REG8 - uint8_t temp; - temp = xgReadByte(CTRL_REG8); - - if (activeLow) temp |= (1<<5); - else temp &= ~(1<<5); - - if (pushPull) temp &= ~(1<<4); - else temp |= (1<<4); - - xgWriteByte(CTRL_REG8, temp); -} - -void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn) -{ - uint8_t temp = 0; - - temp = threshold & 0x7F; - if (sleepOn) temp |= (1<<7); - xgWriteByte(ACT_THS, temp); - - xgWriteByte(ACT_DUR, duration); -} - -uint8_t LSM9DS1::getInactivity() -{ - uint8_t temp = xgReadByte(STATUS_REG_0); - temp &= (0x10); - return temp; -} - -void LSM9DS1::configAccelInt(uint8_t generator, bool andInterrupts) -{ - // Use variables from accel_interrupt_generator, OR'd together to create - // the [generator]value. - uint8_t temp = generator; - if (andInterrupts) temp |= 0x80; - xgWriteByte(INT_GEN_CFG_XL, temp); -} - -void LSM9DS1::configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) -{ - // Write threshold value to INT_GEN_THS_?_XL. - // axis will be 0, 1, or 2 (x, y, z respectively) - xgWriteByte(INT_GEN_THS_X_XL + axis, threshold); - - // Write duration and wait to INT_GEN_DUR_XL - uint8_t temp; - temp = (duration & 0x7F); - if (wait) temp |= 0x80; - xgWriteByte(INT_GEN_DUR_XL, temp); -} - -uint8_t LSM9DS1::getAccelIntSrc() -{ - uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL); - - // Check if the IA_XL (interrupt active) bit is set - if (intSrc & (1<<6)) - { - return (intSrc & 0x3F); - } - - return 0; -} - -void LSM9DS1::configGyroInt(uint8_t generator, bool aoi, bool latch) -{ - // Use variables from accel_interrupt_generator, OR'd together to create - // the [generator]value. - uint8_t temp = generator; - if (aoi) temp |= 0x80; - if (latch) temp |= 0x40; - xgWriteByte(INT_GEN_CFG_G, temp); -} - -void LSM9DS1::configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait) -{ - uint8_t buffer[2]; - buffer[0] = (threshold & 0x7F00) >> 8; - buffer[1] = (threshold & 0x00FF); - // Write threshold value to INT_GEN_THS_?H_G and INT_GEN_THS_?L_G. - // axis will be 0, 1, or 2 (x, y, z respectively) - xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]); - xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]); - - // Write duration and wait to INT_GEN_DUR_XL - uint8_t temp; - temp = (duration & 0x7F); - if (wait) temp |= 0x80; - xgWriteByte(INT_GEN_DUR_G, temp); -} - -uint8_t LSM9DS1::getGyroIntSrc() -{ - uint8_t intSrc = xgReadByte(INT_GEN_SRC_G); - - // Check if the IA_G (interrupt active) bit is set - if (intSrc & (1<<6)) - { - return (intSrc & 0x3F); - } - - return 0; -} - -void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch) -{ - // Mask out non-generator bits (0-4) - uint8_t config = (generator & 0xE0); - // IEA bit is 0 for active-low, 1 for active-high. - if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2); - // IEL bit is 0 for latched, 1 for not-latched - if (!latch) config |= (1<<1); - // As long as we have at least 1 generator, enable the interrupt - if (generator != 0) config |= (1<<0); - - mWriteByte(INT_CFG_M, config); -} - -void LSM9DS1::configMagThs(uint16_t threshold) -{ - // Write high eight bits of [threshold] to INT_THS_H_M - mWriteByte(INT_THS_H_M, uint8_t((threshold & 0x7F00) >> 8)); - // Write low eight bits of [threshold] to INT_THS_L_M - mWriteByte(INT_THS_L_M, uint8_t(threshold & 0x00FF)); -} - -uint8_t LSM9DS1::getMagIntSrc() -{ - uint8_t intSrc = mReadByte(INT_SRC_M); - - // Check if the INT (interrupt active) bit is set - if (intSrc & (1<<0)) - { - return (intSrc & 0xFE); - } - - return 0; -} - -void LSM9DS1::sleepGyro(bool enable) -{ - uint8_t temp = xgReadByte(CTRL_REG9); - if (enable) temp |= (1<<6); - else temp &= ~(1<<6); - xgWriteByte(CTRL_REG9, temp); -} - -void LSM9DS1::enableFIFO(bool enable) -{ - uint8_t temp = xgReadByte(CTRL_REG9); - if (enable) temp |= (1<<1); - else temp &= ~(1<<1); - xgWriteByte(CTRL_REG9, temp); -} - -void LSM9DS1::setFIFO(fifoMode_type fifoMode, uint8_t fifoThs) -{ - // Limit threshold - 0x1F (31) is the maximum. If more than that was asked - // limit it to the maximum. - uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F; - xgWriteByte(FIFO_CTRL, ((fifoMode & 0x7) << 5) | (threshold & 0x1F)); -} - -uint8_t LSM9DS1::getFIFOSamples() -{ - return (xgReadByte(FIFO_SRC) & 0x3F); -} - -void LSM9DS1::constrainScales() -{ - if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) && - (settings.gyro.scale != 2000)) - { - settings.gyro.scale = 245; - } - - if ((settings.accel.scale != 2) && (settings.accel.scale != 4) && - (settings.accel.scale != 8) && (settings.accel.scale != 16)) - { - settings.accel.scale = 2; - } - - if ((settings.mag.scale != 4) && (settings.mag.scale != 8) && - (settings.mag.scale != 12) && (settings.mag.scale != 16)) - { - settings.mag.scale = 4; - } -} - -void LSM9DS1::xgWriteByte(uint8_t subAddress, uint8_t data) -{ - // Whether we're using I2C or SPI, write a byte using the - // gyro-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) { - printf("yo"); - I2CwriteByte(_xgAddress, subAddress, data); - } else if (settings.device.commInterface == IMU_MODE_SPI) { - SPIwriteByte(_xgAddress, subAddress, data); - } -} - -void LSM9DS1::mWriteByte(uint8_t subAddress, uint8_t data) -{ - // Whether we're using I2C or SPI, write a byte using the - // accelerometer-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) - return I2CwriteByte(_mAddress, subAddress, data); - else if (settings.device.commInterface == IMU_MODE_SPI) - return SPIwriteByte(_mAddress, subAddress, data); -} - -uint8_t LSM9DS1::xgReadByte(uint8_t subAddress) -{ - // Whether we're using I2C or SPI, read a byte using the - // gyro-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) - return I2CreadByte(_xgAddress, subAddress); - else if (settings.device.commInterface == IMU_MODE_SPI) - return SPIreadByte(_xgAddress, subAddress); -} - -void LSM9DS1::xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) -{ - // Whether we're using I2C or SPI, read multiple bytes using the - // gyro-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) { - I2CreadBytes(_xgAddress, subAddress, dest, count); - } else if (settings.device.commInterface == IMU_MODE_SPI) { - SPIreadBytes(_xgAddress, subAddress, dest, count); - } -} - -uint8_t LSM9DS1::mReadByte(uint8_t subAddress) -{ - // Whether we're using I2C or SPI, read a byte using the - // accelerometer-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) - return I2CreadByte(_mAddress, subAddress); - else if (settings.device.commInterface == IMU_MODE_SPI) - return SPIreadByte(_mAddress, subAddress); -} - -void LSM9DS1::mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count) -{ - // Whether we're using I2C or SPI, read multiple bytes using the - // accelerometer-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) - I2CreadBytes(_mAddress, subAddress, dest, count); - else if (settings.device.commInterface == IMU_MODE_SPI) - SPIreadBytes(_mAddress, subAddress, dest, count); -} - -void LSM9DS1::initSPI() -{ - /* - pinMode(_xgAddress, OUTPUT); - digitalWrite(_xgAddress, HIGH); - pinMode(_mAddress, OUTPUT); - digitalWrite(_mAddress, HIGH); - - SPI.begin(); - // Maximum SPI frequency is 10MHz, could divide by 2 here: - SPI.setClockDivider(SPI_CLOCK_DIV2); - // Data is read and written MSb first. - SPI.setBitOrder(MSBFIRST); - // Data is captured on rising edge of clock (CPHA = 0) - // Base value of the clock is HIGH (CPOL = 1) - SPI.setDataMode(SPI_MODE0); - */ -} - -void LSM9DS1::SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data) -{ - /* - digitalWrite(csPin, LOW); // Initiate communication - - // If write, bit 0 (MSB) should be 0 - // If single write, bit 1 should be 0 - SPI.transfer(subAddress & 0x3F); // Send Address - SPI.transfer(data); // Send data - - digitalWrite(csPin, HIGH); // Close communication - */ -} - -uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress) -{ - uint8_t temp; - // Use the multiple read function to read 1 byte. - // Value is returned to `temp`. - SPIreadBytes(csPin, subAddress, &temp, 1); - return temp; -} - -void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress, - uint8_t * dest, uint8_t count) -{ - // To indicate a read, set bit 0 (msb) of first byte to 1 - uint8_t rAddress = 0x80 | (subAddress & 0x3F); - // Mag SPI port is different. If we're reading multiple bytes, - // set bit 1 to 1. The remaining six bytes are the address to be read - if ((csPin == _mAddress) && count > 1) - rAddress |= 0x40; - - /* - digitalWrite(csPin, LOW); // Initiate communication - SPI.transfer(rAddress); - for (int i=0; i<count; i++) - { - dest[i] = SPI.transfer(0x00); // Read into destination array - } - digitalWrite(csPin, HIGH); // Close communication - */ -} - -void LSM9DS1::initI2C() -{ - /* - Wire.begin(); // Initialize I2C library - */ - - //already initialized in constructor! -} - -// Wire.h read and write protocols -void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data) -{ - /* - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.write(data); // Put data in Tx buffer - Wire.endTransmission(); // Send the Tx buffer - */ - char temp_data[2] = {subAddress, data}; - i2c.write(address, temp_data, 2); -} - -uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress) -{ - /* - int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; - uint8_t data; // `data` will store the register data - - Wire.beginTransmission(address); // Initialize the Tx buffer - Wire.write(subAddress); // Put slave register address in Tx buffer - Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive - Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address - while ((Wire.available() < 1) && (timeout-- > 0)) - delay(1); - - if (timeout <= 0) - return 255; //! Bad! 255 will be misinterpreted as a good value. - - data = Wire.read(); // Fill Rx buffer with result - return data; // Return data read from slave register - */ - char data; - char temp[1] = {subAddress}; - - i2c.write(address, temp, 1); - //i2c.write(address & 0xFE); - temp[1] = 0x00; - i2c.write(address, temp, 1); - //i2c.write( address | 0x01); - int a = i2c.read(address, &data, 1); - return data; -} - -uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count) -{ - /* - int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; - Wire.beginTransmission(address); // Initialize the Tx buffer - // Next send the register to be read. OR with 0x80 to indicate multi-read. - Wire.write(subAddress | 0x80); // Put slave register address in Tx buffer - - Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive - uint8_t i = 0; - Wire.requestFrom(address, count); // Read bytes from slave register address - while ((Wire.available() < count) && (timeout-- > 0)) - delay(1); - if (timeout <= 0) - return -1; - - for (int i=0; i<count;) - { - if (Wire.available()) - { - dest[i++] = Wire.read(); - } - } - return count; - */ - int i; - char temp_dest[count]; - char temp[1] = {subAddress}; - i2c.write(address, temp, 1); - i2c.read(address, temp_dest, count); - - //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion - for (i=0; i < count; i++) { - dest[i] = temp_dest[i]; - } - return count; -}
--- a/LSM9DS1.h Sun Dec 12 23:31:10 2021 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,557 +0,0 @@ -/****************************************************************************** -SFE_LSM9DS1.h -SFE_LSM9DS1 Library Header File -Jim Lindblom @ SparkFun Electronics -Original Creation Date: February 27, 2015 -https://github.com/sparkfun/LSM9DS1_Breakout - -This file prototypes the LSM9DS1 class, implemented in SFE_LSM9DS1.cpp. In -addition, it defines every register in the LSM9DS1 (both the Gyro and Accel/ -Magnetometer registers). - -Development environment specifics: - IDE: Arduino 1.6.0 - Hardware Platform: Arduino Uno - LSM9DS1 Breakout Version: 1.0 - -This code is beerware; if you see me (or any other SparkFun employee) at the -local, and you've found our code helpful, please buy us a round! - -Distributed as-is; no warranty is given. -******************************************************************************/ -#ifndef __SparkFunLSM9DS1_H__ -#define __SparkFunLSM9DS1_H__ - -//#if defined(ARDUINO) && ARDUINO >= 100 -// #include "Arduino.h" -//#else -// #include "WProgram.h" -// #include "pins_arduino.h" -//#endif - -#include "mbed.h" -#include <stdint.h> -#include "LSM9DS1_Registers.h" -#include "LSM9DS1_Types.h" - -#define LSM9DS1_AG_ADDR(sa0) ((sa0) == 0 ? 0x6A : 0x6B) -#define LSM9DS1_M_ADDR(sa1) ((sa1) == 0 ? 0x1C : 0x1E) - -enum lsm9ds1_axis { - X_AXIS, - Y_AXIS, - Z_AXIS, - ALL_AXIS -}; - -class LSM9DS1 -{ -public: - IMUSettings settings; - - // We'll store the gyro, accel, and magnetometer readings in a series of - // public class variables. Each sensor gets three variables -- one for each - // axis. Call readGyro(), readAccel(), and readMag() first, before using - // these variables! - // These values are the RAW signed 16-bit readings from the sensors. - int16_t gx, gy, gz; // x, y, and z axis readings of the gyroscope - int16_t ax, ay, az; // x, y, and z axis readings of the accelerometer - int16_t mx, my, mz; // x, y, and z axis readings of the magnetometer - int16_t temperature; // Chip temperature - float gBias[3], aBias[3], mBias[3]; - int16_t gBiasRaw[3], aBiasRaw[3], mBiasRaw[3]; - - // LSM9DS1 -- LSM9DS1 class constructor - // The constructor will set up a handful of private variables, and set the - // communication mode as well. - /**Input: - * - interface = Either IMU_MODE_SPI or IMU_MODE_I2C, whichever you're using - * to talk to the IC. - * - xgAddr = If IMU_MODE_I2C, this is the I2C address of the accel/gyroscope. - * If IMU_MODE_SPI, this is the chip select pin of the gyro (CS_AG) - * - mAddr = If IMU_MODE_I2C, this is the I2C address of the magnetometer. - * If IMU_MODE_SPI, this is the cs pin of the magnetometer (CS_M) - - */ - LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr); - //LSM9DS1(interface_mode interface, uint8_t xgAddr, uint8_t mAddr); - //LSM9DS1(); - - - /** begin() -- Initialize the gyro, accelerometer, and magnetometer. - *This will set up the scale and output rate of each sensor. The values set - * in the IMUSettings struct will take effect after calling this function. - */ - uint16_t begin(); - - void calibrate(bool autoCalc = true); - void calibrateMag(bool loadIn = true); - void magOffset(uint8_t axis, int16_t offset); - - /** accelAvailable() -- Polls the accelerometer status register to check - * if new data is available. - * Output: 1 - New data available - * 0 - No new data available - */ - uint8_t accelAvailable(); - - /** gyroAvailable() -- Polls the gyroscope status register to check - * if new data is available. - * Output: 1 - New data available - * 0 - No new data available - */ - uint8_t gyroAvailable(); - - /** gyroAvailable() -- Polls the temperature status register to check - * if new data is available. - * Output: 1 - New data available - * 0 - No new data available - */ - uint8_t tempAvailable(); - - /** magAvailable() -- Polls the accelerometer status register to check - * if new data is available. - * Input: - * - axis can be either X_AXIS, Y_AXIS, Z_AXIS, to check for new data - * on one specific axis. Or ALL_AXIS (default) to check for new data - * on all axes. - * Output: 1 - New data available - * 0 - No new data available - */ - uint8_t magAvailable(lsm9ds1_axis axis = ALL_AXIS); - - /** readGyro() -- Read the gyroscope output registers. - * This function will read all six gyroscope output registers. - * The readings are stored in the class' gx, gy, and gz variables. Read - * those _after_ calling readGyro(). - */ - void readGyro(); - - /** int16_t readGyro(axis) -- Read a specific axis of the gyroscope. - * [axis] can be any of X_AXIS, Y_AXIS, or Z_AXIS. - * Input: - * - axis: can be either X_AXIS, Y_AXIS, or Z_AXIS. - * Output: - * A 16-bit signed integer with sensor data on requested axis. - */ - int16_t readGyro(lsm9ds1_axis axis); - - /** readAccel() -- Read the accelerometer output registers. - * This function will read all six accelerometer output registers. - * The readings are stored in the class' ax, ay, and az variables. Read - * those _after_ calling readAccel(). - */ - void readAccel(); - - /** int16_t readAccel(axis) -- Read a specific axis of the accelerometer. - * [axis] can be any of X_AXIS, Y_AXIS, or Z_AXIS. - * Input: - * - axis: can be either X_AXIS, Y_AXIS, or Z_AXIS. - * Output: - * A 16-bit signed integer with sensor data on requested axis. - */ - int16_t readAccel(lsm9ds1_axis axis); - - /** readMag() -- Read the magnetometer output registers. - * This function will read all six magnetometer output registers. - * The readings are stored in the class' mx, my, and mz variables. Read - * those _after_ calling readMag(). - */ - void readMag(); - - /** int16_t readMag(axis) -- Read a specific axis of the magnetometer. - * [axis] can be any of X_AXIS, Y_AXIS, or Z_AXIS. - * Input: - * - axis: can be either X_AXIS, Y_AXIS, or Z_AXIS. - * Output: - * A 16-bit signed integer with sensor data on requested axis. - */ - int16_t readMag(lsm9ds1_axis axis); - - /** readTemp() -- Read the temperature output register. - * This function will read two temperature output registers. - * The combined readings are stored in the class' temperature variables. Read - * those _after_ calling readTemp(). - */ - void readTemp(); - - /** calcGyro() -- Convert from RAW signed 16-bit value to degrees per second - * This function reads in a signed 16-bit value and returns the scaled - * DPS. This function relies on gScale and gRes being correct. - * Input: - * - gyro = A signed 16-bit raw reading from the gyroscope. - */ - float calcGyro(int16_t gyro); - - /** calcAccel() -- Convert from RAW signed 16-bit value to gravity (g's). - * This function reads in a signed 16-bit value and returns the scaled - * g's. This function relies on aScale and aRes being correct. - * Input: - * - accel = A signed 16-bit raw reading from the accelerometer. - */ - float calcAccel(int16_t accel); - - /** calcMag() -- Convert from RAW signed 16-bit value to Gauss (Gs) - * This function reads in a signed 16-bit value and returns the scaled - * Gs. This function relies on mScale and mRes being correct. - * Input: - * - mag = A signed 16-bit raw reading from the magnetometer. - */ - float calcMag(int16_t mag); - - /** setGyroScale() -- Set the full-scale range of the gyroscope. - * This function can be called to set the scale of the gyroscope to - * 245, 500, or 200 degrees per second. - * Input: - * - gScl = The desired gyroscope scale. Must be one of three possible - * values from the gyro_scale. - */ - void setGyroScale(uint16_t gScl); - - /** setAccelScale() -- Set the full-scale range of the accelerometer. - * This function can be called to set the scale of the accelerometer to - * 2, 4, 6, 8, or 16 g's. - * Input: - * - aScl = The desired accelerometer scale. Must be one of five possible - * values from the accel_scale. - */ - void setAccelScale(uint8_t aScl); - - /** setMagScale() -- Set the full-scale range of the magnetometer. - * This function can be called to set the scale of the magnetometer to - * 2, 4, 8, or 12 Gs. - * Input: - * - mScl = The desired magnetometer scale. Must be one of four possible - * values from the mag_scale. - */ - void setMagScale(uint8_t mScl); - - /** setGyroODR() -- Set the output data rate and bandwidth of the gyroscope - * Input: - * - gRate = The desired output rate and cutoff frequency of the gyro. - */ - void setGyroODR(uint8_t gRate); - - // setAccelODR() -- Set the output data rate of the accelerometer - // Input: - // - aRate = The desired output rate of the accel. - void setAccelODR(uint8_t aRate); - - // setMagODR() -- Set the output data rate of the magnetometer - // Input: - // - mRate = The desired output rate of the mag. - void setMagODR(uint8_t mRate); - - // configInactivity() -- Configure inactivity interrupt parameters - // Input: - // - duration = Inactivity duration - actual value depends on gyro ODR - // - threshold = Activity Threshold - // - sleepOn = Gyroscope operating mode during inactivity. - // true: gyroscope in sleep mode - // false: gyroscope in power-down - void configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn); - - // configAccelInt() -- Configure Accelerometer Interrupt Generator - // Input: - // - generator = Interrupt axis/high-low events - // Any OR'd combination of ZHIE_XL, ZLIE_XL, YHIE_XL, YLIE_XL, XHIE_XL, XLIE_XL - // - andInterrupts = AND/OR combination of interrupt events - // true: AND combination - // false: OR combination - void configAccelInt(uint8_t generator, bool andInterrupts = false); - - // configAccelThs() -- Configure the threshold of an accelereomter axis - // Input: - // - threshold = Interrupt threshold. Possible values: 0-255. - // Multiply by 128 to get the actual raw accel value. - // - axis = Axis to be configured. Either X_AXIS, Y_AXIS, or Z_AXIS - // - duration = Duration value must be above or below threshold to trigger interrupt - // - wait = Wait function on duration counter - // true: Wait for duration samples before exiting interrupt - // false: Wait function off - void configAccelThs(uint8_t threshold, lsm9ds1_axis axis, uint8_t duration = 0, bool wait = 0); - - // configGyroInt() -- Configure Gyroscope Interrupt Generator - // Input: - // - generator = Interrupt axis/high-low events - // Any OR'd combination of ZHIE_G, ZLIE_G, YHIE_G, YLIE_G, XHIE_G, XLIE_G - // - aoi = AND/OR combination of interrupt events - // true: AND combination - // false: OR combination - // - latch: latch gyroscope interrupt request. - void configGyroInt(uint8_t generator, bool aoi, bool latch); - - // configGyroThs() -- Configure the threshold of a gyroscope axis - // Input: - // - threshold = Interrupt threshold. Possible values: 0-0x7FF. - // Value is equivalent to raw gyroscope value. - // - axis = Axis to be configured. Either X_AXIS, Y_AXIS, or Z_AXIS - // - duration = Duration value must be above or below threshold to trigger interrupt - // - wait = Wait function on duration counter - // true: Wait for duration samples before exiting interrupt - // false: Wait function off - void configGyroThs(int16_t threshold, lsm9ds1_axis axis, uint8_t duration, bool wait); - - // configInt() -- Configure INT1 or INT2 (Gyro and Accel Interrupts only) - // Input: - // - interrupt = Select INT1 or INT2 - // Possible values: XG_INT1 or XG_INT2 - // - generator = Or'd combination of interrupt generators. - // Possible values: INT_DRDY_XL, INT_DRDY_G, INT1_BOOT (INT1 only), INT2_DRDY_TEMP (INT2 only) - // INT_FTH, INT_OVR, INT_FSS5, INT_IG_XL (INT1 only), INT1_IG_G (INT1 only), INT2_INACT (INT2 only) - // - activeLow = Interrupt active configuration - // Can be either INT_ACTIVE_HIGH or INT_ACTIVE_LOW - // - pushPull = Push-pull or open drain interrupt configuration - // Can be either INT_PUSH_PULL or INT_OPEN_DRAIN - void configInt(interrupt_select interupt, uint8_t generator, - h_lactive activeLow = INT_ACTIVE_LOW, pp_od pushPull = INT_PUSH_PULL); - - /** configMagInt() -- Configure Magnetometer Interrupt Generator - * Input: - * - generator = Interrupt axis/high-low events - * Any OR'd combination of ZIEN, YIEN, XIEN - * - activeLow = Interrupt active configuration - * Can be either INT_ACTIVE_HIGH or INT_ACTIVE_LOW - * - latch: latch gyroscope interrupt request. - */ - void configMagInt(uint8_t generator, h_lactive activeLow, bool latch = true); - - /** configMagThs() -- Configure the threshold of a gyroscope axis - * Input: - * - threshold = Interrupt threshold. Possible values: 0-0x7FF. - * Value is equivalent to raw magnetometer value. - */ - void configMagThs(uint16_t threshold); - - //! getGyroIntSrc() -- Get contents of Gyroscope interrupt source register - uint8_t getGyroIntSrc(); - - //! getGyroIntSrc() -- Get contents of accelerometer interrupt source register - uint8_t getAccelIntSrc(); - - //! getGyroIntSrc() -- Get contents of magnetometer interrupt source register - uint8_t getMagIntSrc(); - - //! getGyroIntSrc() -- Get status of inactivity interrupt - uint8_t getInactivity(); - - /** sleepGyro() -- Sleep or wake the gyroscope - * Input: - * - enable: True = sleep gyro. False = wake gyro. - */ - void sleepGyro(bool enable = true); - - /** enableFIFO() - Enable or disable the FIFO - * Input: - * - enable: true = enable, false = disable. - */ - void enableFIFO(bool enable = true); - - /** setFIFO() - Configure FIFO mode and Threshold - * Input: - * - fifoMode: Set FIFO mode to off, FIFO (stop when full), continuous, bypass - * Possible inputs: FIFO_OFF, FIFO_THS, FIFO_CONT_TRIGGER, FIFO_OFF_TRIGGER, FIFO_CONT - * - fifoThs: FIFO threshold level setting - * Any value from 0-0x1F is acceptable. - */ - void setFIFO(fifoMode_type fifoMode, uint8_t fifoThs); - - //! getFIFOSamples() - Get number of FIFO samples - uint8_t getFIFOSamples(); - - -protected: - // x_mAddress and gAddress store the I2C address or SPI chip select pin - // for each sensor. - uint8_t _mAddress, _xgAddress; - - // gRes, aRes, and mRes store the current resolution for each sensor. - // Units of these values would be DPS (or g's or Gs's) per ADC tick. - // This value is calculated as (sensor scale) / (2^15). - float gRes, aRes, mRes; - - // _autoCalc keeps track of whether we're automatically subtracting off - // accelerometer and gyroscope bias calculated in calibrate(). - bool _autoCalc; - - // init() -- Sets up gyro, accel, and mag settings to default. - // - interface - Sets the interface mode (IMU_MODE_I2C or IMU_MODE_SPI) - // - xgAddr - Sets either the I2C address of the accel/gyro or SPI chip - // select pin connected to the CS_XG pin. - // - mAddr - Sets either the I2C address of the magnetometer or SPI chip - // select pin connected to the CS_M pin. - void init(interface_mode interface, uint8_t xgAddr, uint8_t mAddr); - - // initGyro() -- Sets up the gyroscope to begin reading. - // This function steps through all five gyroscope control registers. - // Upon exit, the following parameters will be set: - // - CTRL_REG1_G = 0x0F: Normal operation mode, all axes enabled. - // 95 Hz ODR, 12.5 Hz cutoff frequency. - // - CTRL_REG2_G = 0x00: HPF set to normal mode, cutoff frequency - // set to 7.2 Hz (depends on ODR). - // - CTRL_REG3_G = 0x88: Interrupt enabled on INT_G (set to push-pull and - // active high). Data-ready output enabled on DRDY_G. - // - CTRL_REG4_G = 0x00: Continuous update mode. Data LSB stored in lower - // address. Scale set to 245 DPS. SPI mode set to 4-wire. - // - CTRL_REG5_G = 0x00: FIFO disabled. HPF disabled. - void initGyro(); - - // initAccel() -- Sets up the accelerometer to begin reading. - // This function steps through all accelerometer related control registers. - // Upon exit these registers will be set as: - // - CTRL_REG0_XM = 0x00: FIFO disabled. HPF bypassed. Normal mode. - // - CTRL_REG1_XM = 0x57: 100 Hz data rate. Continuous update. - // all axes enabled. - // - CTRL_REG2_XM = 0x00: 2g scale. 773 Hz anti-alias filter BW. - // - CTRL_REG3_XM = 0x04: Accel data ready signal on INT1_XM pin. - void initAccel(); - - // initMag() -- Sets up the magnetometer to begin reading. - // This function steps through all magnetometer-related control registers. - // Upon exit these registers will be set as: - // - CTRL_REG4_XM = 0x04: Mag data ready signal on INT2_XM pin. - // - CTRL_REG5_XM = 0x14: 100 Hz update rate. Low resolution. Interrupt - // requests don't latch. Temperature sensor disabled. - // - CTRL_REG6_XM = 0x00: 2 Gs scale. - // - CTRL_REG7_XM = 0x00: Continuous conversion mode. Normal HPF mode. - // - INT_CTRL_REG_M = 0x09: Interrupt active-high. Enable interrupts. - void initMag(); - - // gReadByte() -- Reads a byte from a specified gyroscope register. - // Input: - // - subAddress = Register to be read from. - // Output: - // - An 8-bit value read from the requested address. - uint8_t mReadByte(uint8_t subAddress); - - // gReadBytes() -- Reads a number of bytes -- beginning at an address - // and incrementing from there -- from the gyroscope. - // Input: - // - subAddress = Register to be read from. - // - * dest = A pointer to an array of uint8_t's. Values read will be - // stored in here on return. - // - count = The number of bytes to be read. - // Output: No value is returned, but the `dest` array will store - // the data read upon exit. - void mReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count); - - // gWriteByte() -- Write a byte to a register in the gyroscope. - // Input: - // - subAddress = Register to be written to. - // - data = data to be written to the register. - void mWriteByte(uint8_t subAddress, uint8_t data); - - // xmReadByte() -- Read a byte from a register in the accel/mag sensor - // Input: - // - subAddress = Register to be read from. - // Output: - // - An 8-bit value read from the requested register. - uint8_t xgReadByte(uint8_t subAddress); - - // xmReadBytes() -- Reads a number of bytes -- beginning at an address - // and incrementing from there -- from the accelerometer/magnetometer. - // Input: - // - subAddress = Register to be read from. - // - * dest = A pointer to an array of uint8_t's. Values read will be - // stored in here on return. - // - count = The number of bytes to be read. - // Output: No value is returned, but the `dest` array will store - // the data read upon exit. - void xgReadBytes(uint8_t subAddress, uint8_t * dest, uint8_t count); - - // xmWriteByte() -- Write a byte to a register in the accel/mag sensor. - // Input: - // - subAddress = Register to be written to. - // - data = data to be written to the register. - void xgWriteByte(uint8_t subAddress, uint8_t data); - - // calcgRes() -- Calculate the resolution of the gyroscope. - // This function will set the value of the gRes variable. gScale must - // be set prior to calling this function. - void calcgRes(); - - // calcmRes() -- Calculate the resolution of the magnetometer. - // This function will set the value of the mRes variable. mScale must - // be set prior to calling this function. - void calcmRes(); - - // calcaRes() -- Calculate the resolution of the accelerometer. - // This function will set the value of the aRes variable. aScale must - // be set prior to calling this function. - void calcaRes(); - - ////////////////////// - // Helper Functions // - ////////////////////// - void constrainScales(); - - /////////////////// - // SPI Functions // - /////////////////// - // initSPI() -- Initialize the SPI hardware. - // This function will setup all SPI pins and related hardware. - void initSPI(); - - // SPIwriteByte() -- Write a byte out of SPI to a register in the device - // Input: - // - csPin = The chip select pin of the slave device. - // - subAddress = The register to be written to. - // - data = Byte to be written to the register. - void SPIwriteByte(uint8_t csPin, uint8_t subAddress, uint8_t data); - - // SPIreadByte() -- Read a single byte from a register over SPI. - // Input: - // - csPin = The chip select pin of the slave device. - // - subAddress = The register to be read from. - // Output: - // - The byte read from the requested address. - uint8_t SPIreadByte(uint8_t csPin, uint8_t subAddress); - - // SPIreadBytes() -- Read a series of bytes, starting at a register via SPI - // Input: - // - csPin = The chip select pin of a slave device. - // - subAddress = The register to begin reading. - // - * dest = Pointer to an array where we'll store the readings. - // - count = Number of registers to be read. - // Output: No value is returned by the function, but the registers read are - // all stored in the *dest array given. - void SPIreadBytes(uint8_t csPin, uint8_t subAddress, - uint8_t * dest, uint8_t count); - - /////////////////// - // I2C Functions // - /////////////////// - // initI2C() -- Initialize the I2C hardware. - // This function will setup all I2C pins and related hardware. - void initI2C(); - - // I2CwriteByte() -- Write a byte out of I2C to a register in the device - // Input: - // - address = The 7-bit I2C address of the slave device. - // - subAddress = The register to be written to. - // - data = Byte to be written to the register. - void I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data); - - // I2CreadByte() -- Read a single byte from a register over I2C. - // Input: - // - address = The 7-bit I2C address of the slave device. - // - subAddress = The register to be read from. - // Output: - // - The byte read from the requested address. - uint8_t I2CreadByte(uint8_t address, uint8_t subAddress); - - // I2CreadBytes() -- Read a series of bytes, starting at a register via SPI - // Input: - // - address = The 7-bit I2C address of the slave device. - // - subAddress = The register to begin reading. - // - * dest = Pointer to an array where we'll store the readings. - // - count = Number of registers to be read. - // Output: No value is returned by the function, but the registers read are - // all stored in the *dest array given. - uint8_t I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count); - -private: - I2C i2c; -}; - -#endif // SFE_LSM9DS1_H //
--- a/LSM9DS1_Registers.h Sun Dec 12 23:31:10 2021 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,112 +0,0 @@ -/****************************************************************************** -LSM9DS1_Registers.h -SFE_LSM9DS1 Library - LSM9DS1 Register Map -Jim Lindblom @ SparkFun Electronics -Original Creation Date: April 21, 2015 -https://github.com/sparkfun/LSM9DS1_Breakout - -This file defines all registers internal to the gyro/accel and magnetometer -devices in the LSM9DS1. - -Development environment specifics: - IDE: Arduino 1.6.0 - Hardware Platform: Arduino Uno - LSM9DS1 Breakout Version: 1.0 - -This code is beerware; if you see me (or any other SparkFun employee) at the -local, and you've found our code helpful, please buy us a round! - -Distributed as-is; no warranty is given. -******************************************************************************/ - -#ifndef __LSM9DS1_Registers_H__ -#define __LSM9DS1_Registers_H__ - -///////////////////////////////////////// -// LSM9DS1 Accel/Gyro (XL/G) Registers // -///////////////////////////////////////// -#define ACT_THS 0x04 -#define ACT_DUR 0x05 -#define INT_GEN_CFG_XL 0x06 -#define INT_GEN_THS_X_XL 0x07 -#define INT_GEN_THS_Y_XL 0x08 -#define INT_GEN_THS_Z_XL 0x09 -#define INT_GEN_DUR_XL 0x0A -#define REFERENCE_G 0x0B -#define INT1_CTRL 0x0C -#define INT2_CTRL 0x0D -#define WHO_AM_I_XG 0x0F -#define CTRL_REG1_G 0x10 -#define CTRL_REG2_G 0x11 -#define CTRL_REG3_G 0x12 -#define ORIENT_CFG_G 0x13 -#define INT_GEN_SRC_G 0x14 -#define OUT_TEMP_L 0x15 -#define OUT_TEMP_H 0x16 -#define STATUS_REG_0 0x17 -#define OUT_X_L_G 0x18 -#define OUT_X_H_G 0x19 -#define OUT_Y_L_G 0x1A -#define OUT_Y_H_G 0x1B -#define OUT_Z_L_G 0x1C -#define OUT_Z_H_G 0x1D -#define CTRL_REG4 0x1E -#define CTRL_REG5_XL 0x1F -#define CTRL_REG6_XL 0x20 -#define CTRL_REG7_XL 0x21 -#define CTRL_REG8 0x22 -#define CTRL_REG9 0x23 -#define CTRL_REG10 0x24 -#define INT_GEN_SRC_XL 0x26 -#define STATUS_REG_1 0x27 -#define OUT_X_L_XL 0x28 -#define OUT_X_H_XL 0x29 -#define OUT_Y_L_XL 0x2A -#define OUT_Y_H_XL 0x2B -#define OUT_Z_L_XL 0x2C -#define OUT_Z_H_XL 0x2D -#define FIFO_CTRL 0x2E -#define FIFO_SRC 0x2F -#define INT_GEN_CFG_G 0x30 -#define INT_GEN_THS_XH_G 0x31 -#define INT_GEN_THS_XL_G 0x32 -#define INT_GEN_THS_YH_G 0x33 -#define INT_GEN_THS_YL_G 0x34 -#define INT_GEN_THS_ZH_G 0x35 -#define INT_GEN_THS_ZL_G 0x36 -#define INT_GEN_DUR_G 0x37 - -/////////////////////////////// -// LSM9DS1 Magneto Registers // -/////////////////////////////// -#define OFFSET_X_REG_L_M 0x05 -#define OFFSET_X_REG_H_M 0x06 -#define OFFSET_Y_REG_L_M 0x07 -#define OFFSET_Y_REG_H_M 0x08 -#define OFFSET_Z_REG_L_M 0x09 -#define OFFSET_Z_REG_H_M 0x0A -#define WHO_AM_I_M 0x0F -#define CTRL_REG1_M 0x20 -#define CTRL_REG2_M 0x21 -#define CTRL_REG3_M 0x22 -#define CTRL_REG4_M 0x23 -#define CTRL_REG5_M 0x24 -#define STATUS_REG_M 0x27 -#define OUT_X_L_M 0x28 -#define OUT_X_H_M 0x29 -#define OUT_Y_L_M 0x2A -#define OUT_Y_H_M 0x2B -#define OUT_Z_L_M 0x2C -#define OUT_Z_H_M 0x2D -#define INT_CFG_M 0x30 -#define INT_SRC_M 0x30 -#define INT_THS_L_M 0x32 -#define INT_THS_H_M 0x33 - -//////////////////////////////// -// LSM9DS1 WHO_AM_I Responses // -//////////////////////////////// -#define WHO_AM_I_AG_RSP 0x68 -#define WHO_AM_I_M_RSP 0x3D - -#endif \ No newline at end of file
--- a/LSM9DS1_Types.h Sun Dec 12 23:31:10 2021 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,251 +0,0 @@ -/****************************************************************************** -LSM9DS1_Types.h -SFE_LSM9DS1 Library - LSM9DS1 Types and Enumerations -Jim Lindblom @ SparkFun Electronics -Original Creation Date: April 21, 2015 -https://github.com/sparkfun/LSM9DS1_Breakout - -This file defines all types and enumerations used by the LSM9DS1 class. - -Development environment specifics: - IDE: Arduino 1.6.0 - Hardware Platform: Arduino Uno - LSM9DS1 Breakout Version: 1.0 - -This code is beerware; if you see me (or any other SparkFun employee) at the -local, and you've found our code helpful, please buy us a round! - -Distributed as-is; no warranty is given. -******************************************************************************/ - -#ifndef __LSM9DS1_Types_H__ -#define __LSM9DS1_Types_H__ - -#include "LSM9DS1_Registers.h" - -// The LSM9DS1 functions over both I2C or SPI. This library supports both. -// But the interface mode used must be sent to the LSM9DS1 constructor. Use -// one of these two as the first parameter of the constructor. -enum interface_mode -{ - IMU_MODE_SPI, - IMU_MODE_I2C, -}; - -// accel_scale defines all possible FSR's of the accelerometer: -enum accel_scale -{ - A_SCALE_2G, // 00: 2g - A_SCALE_16G,// 01: 16g - A_SCALE_4G, // 10: 4g - A_SCALE_8G // 11: 8g -}; - -// gyro_scale defines the possible full-scale ranges of the gyroscope: -enum gyro_scale -{ - G_SCALE_245DPS, // 00: 245 degrees per second - G_SCALE_500DPS, // 01: 500 dps - G_SCALE_2000DPS, // 11: 2000 dps -}; - -// mag_scale defines all possible FSR's of the magnetometer: -enum mag_scale -{ - M_SCALE_4GS, // 00: 4Gs - M_SCALE_8GS, // 01: 8Gs - M_SCALE_12GS, // 10: 12Gs - M_SCALE_16GS, // 11: 16Gs -}; - -// gyro_odr defines all possible data rate/bandwidth combos of the gyro: -enum gyro_odr -{ - //! TODO - G_ODR_PD, // Power down (0) - G_ODR_149, // 14.9 Hz (1) - G_ODR_595, // 59.5 Hz (2) - G_ODR_119, // 119 Hz (3) - G_ODR_238, // 238 Hz (4) - G_ODR_476, // 476 Hz (5) - G_ODR_952 // 952 Hz (6) -}; -// accel_oder defines all possible output data rates of the accelerometer: -enum accel_odr -{ - XL_POWER_DOWN, // Power-down mode (0x0) - XL_ODR_10, // 10 Hz (0x1) - XL_ODR_50, // 50 Hz (0x02) - XL_ODR_119, // 119 Hz (0x3) - XL_ODR_238, // 238 Hz (0x4) - XL_ODR_476, // 476 Hz (0x5) - XL_ODR_952 // 952 Hz (0x6) -}; - -// accel_abw defines all possible anti-aliasing filter rates of the accelerometer: -enum accel_abw -{ - A_ABW_408, // 408 Hz (0x0) - A_ABW_211, // 211 Hz (0x1) - A_ABW_105, // 105 Hz (0x2) - A_ABW_50, // 50 Hz (0x3) -}; - - -// mag_odr defines all possible output data rates of the magnetometer: -enum mag_odr -{ - M_ODR_0625, // 0.625 Hz (0) - M_ODR_125, // 1.25 Hz (1) - M_ODR_250, // 2.5 Hz (2) - M_ODR_5, // 5 Hz (3) - M_ODR_10, // 10 Hz (4) - M_ODR_20, // 20 Hz (5) - M_ODR_40, // 40 Hz (6) - M_ODR_80 // 80 Hz (7) -}; - -enum interrupt_select -{ - XG_INT1 = INT1_CTRL, - XG_INT2 = INT2_CTRL -}; - -enum interrupt_generators -{ - INT_DRDY_XL = (1<<0), // Accelerometer data ready (INT1 & INT2) - INT_DRDY_G = (1<<1), // Gyroscope data ready (INT1 & INT2) - INT1_BOOT = (1<<2), // Boot status (INT1) - INT2_DRDY_TEMP = (1<<2),// Temp data ready (INT2) - INT_FTH = (1<<3), // FIFO threshold interrupt (INT1 & INT2) - INT_OVR = (1<<4), // Overrun interrupt (INT1 & INT2) - INT_FSS5 = (1<<5), // FSS5 interrupt (INT1 & INT2) - INT_IG_XL = (1<<6), // Accel interrupt generator (INT1) - INT1_IG_G = (1<<7), // Gyro interrupt enable (INT1) - INT2_INACT = (1<<7), // Inactivity interrupt output (INT2) -}; - -enum accel_interrupt_generator -{ - XLIE_XL = (1<<0), - XHIE_XL = (1<<1), - YLIE_XL = (1<<2), - YHIE_XL = (1<<3), - ZLIE_XL = (1<<4), - ZHIE_XL = (1<<5), - GEN_6D = (1<<6) -}; - -enum gyro_interrupt_generator -{ - XLIE_G = (1<<0), - XHIE_G = (1<<1), - YLIE_G = (1<<2), - YHIE_G = (1<<3), - ZLIE_G = (1<<4), - ZHIE_G = (1<<5) -}; - -enum mag_interrupt_generator -{ - ZIEN = (1<<5), - YIEN = (1<<6), - XIEN = (1<<7) -}; - -enum h_lactive -{ - INT_ACTIVE_HIGH, - INT_ACTIVE_LOW -}; - -enum pp_od -{ - INT_PUSH_PULL, - INT_OPEN_DRAIN -}; - -enum fifoMode_type -{ - FIFO_OFF = 0, - FIFO_THS = 1, - FIFO_CONT_TRIGGER = 3, - FIFO_OFF_TRIGGER = 4, - FIFO_CONT = 5 -}; - -struct gyroSettings -{ - // Gyroscope settings: - uint8_t enabled; - uint16_t scale; // Changed this to 16-bit - uint8_t sampleRate; - // New gyro stuff: - uint8_t bandwidth; - uint8_t lowPowerEnable; - uint8_t HPFEnable; - uint8_t HPFCutoff; - uint8_t flipX; - uint8_t flipY; - uint8_t flipZ; - uint8_t orientation; - uint8_t enableX; - uint8_t enableY; - uint8_t enableZ; - uint8_t latchInterrupt; -}; - -struct deviceSettings -{ - uint8_t commInterface; // Can be I2C, SPI 4-wire or SPI 3-wire - uint8_t agAddress; // I2C address or SPI CS pin - uint8_t mAddress; // I2C address or SPI CS pin -}; - -struct accelSettings -{ - // Accelerometer settings: - uint8_t enabled; - uint8_t scale; - uint8_t sampleRate; - // New accel stuff: - uint8_t enableX; - uint8_t enableY; - uint8_t enableZ; - int8_t bandwidth; - uint8_t highResEnable; - uint8_t highResBandwidth; -}; - -struct magSettings -{ - // Magnetometer settings: - uint8_t enabled; - uint8_t scale; - uint8_t sampleRate; - // New mag stuff: - uint8_t tempCompensationEnable; - uint8_t XYPerformance; - uint8_t ZPerformance; - uint8_t lowPowerEnable; - uint8_t operatingMode; -}; - -struct temperatureSettings -{ - // Temperature settings - uint8_t enabled; -}; - -struct IMUSettings -{ - deviceSettings device; - - gyroSettings gyro; - accelSettings accel; - magSettings mag; - - temperatureSettings temp; -}; - -#endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/MMA8452.lib Wed Dec 15 17:17:26 2021 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/users/ashleymills/code/MMA8452/#a92a632a0cc7
--- a/MODSERIAL.lib Sun Dec 12 23:31:10 2021 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1 +0,0 @@ -https://os.mbed.com/users/AjK/code/MODSERIAL/#ae0408ebdd68
--- a/SDFileSystem.lib Sun Dec 12 23:31:10 2021 +0000 +++ b/SDFileSystem.lib Wed Dec 15 17:17:26 2021 +0000 @@ -1,1 +1,1 @@ -https://os.mbed.com/users/lfink6/code/SDFileSystem2/#b78a9e1dd613 +https://os.mbed.com/users/lfink6/code/SDFileSystem2/#336a284f5480
--- a/main.cpp Sun Dec 12 23:31:10 2021 +0000 +++ b/main.cpp Wed Dec 15 17:17:26 2021 +0000 @@ -1,362 +1,415 @@ +/** + * @file main.cpp + * @authors Christopher Rothmann (chrisrothmann@gatech.edu) & Luke Fink (lfink6@gatech.edu) + * @brief C++ Code to create an MP3 player from an mBED + * @version 1.0 + * @date 2021-12-13 + * + * @copyright Copyright (c) 2021 +**/ + + +// Define included libraries; all libraries below must be compiled together +// Note: Some libraries have been updated to work with this code. Ensure all libraries +// are the correct by using those included in this github #include "mbed.h" #include "rtos.h" #include "SDFileSystem.h" #include "uLCD_4DGL.h" #include "wave_player.h" -#include "LSM9DS1.h" +#include "MMA8452.h" #include "PinDetect.h" #include <string> #include <vector> -DigitalOut myled(LED1); -RawSerial blue(p28,p27); +// Defining mBED inputs & outputs -SDFileSystem sd(p5, p6, p7, p8, "sd"); //SD card -uLCD_4DGL uLCD(p13,p14,p11); - -LSM9DS1 imu(p9, p10, 0xD6, 0x3C); -Serial pc(USBTX, USBRX); +// mBED LED Outputs for Audiovisualizer/Testing & Diagnostics +DigitalOut led1(LED1); +DigitalOut led2(LED2); +DigitalOut led3(LED3); +DigitalOut led4(LED4); -PinDetect playpause(p23); -PinDetect menu(p26); -PinDetect skip(p25); -PinDetect back(p30); -Mutex LCD; -Mutex Speaker; -Mutex avgs; -Mutex mentex; +// Pushbuttons for MP3 Player Controls +PinDetect prev(p21); +PinDetect next(p22); +PinDetect shuffle(p23); +PinDetect play(p24); +// Serial & Analog Inputs & Ouputs for Data Communication +RawSerial blueTooth(p28,p27); +Serial pc(USBTX, USBRX); +SDFileSystem sd(p5, p6, p7, p12, "sd"); +uLCD_4DGL uLCD(p13,p14,p11); +MMA8452 acc(p9, p10, 100000); AnalogOut DACout(p18); +wave_player waver(&DACout); -wave_player waver(&DACout); + +// Defining Internal Global Variables bool playing = false; -bool play = 1; -bool menu1 = 0; -bool inmenu=0; -int currentsong = 0; -int avgIMU; -int avgMic; -int songcount; -vector <string> songList; // vector of songs to index -string dir = "/sd/myMusic/"; +int currentSong = 0; +int songCount = 0; +vector<string> songList; +unsigned short max_range = 0xFFFF; + +// Defining Functions -class microphone -{ -public : - microphone(PinName pin); - float read(); - operator float (); -private : - AnalogIn _pin; -}; -microphone::microphone (PinName pin): - _pin(pin) -{ -} -float microphone::read() -{ - return _pin.read(); -} -inline microphone::operator float () -{ - return _pin.read(); -} - -microphone mymicrophone(p16); -void LCDThread(void const *argument) +/** + * @brief Increments integer variable currentSong by one, while circling back to first song at end of list + * @details Function is called both when "next song" pushbutton pressed or bluetooth command is sent; + * LED1 switches value when called for diagnostics & testing +**/ +void nextSong() { - while(1){ - Speaker.lock(); - if(!menu1) - { - Speaker.unlock(); - LCD.lock(); - uLCD.cls(); - uLCD.locate(1,1); - uLCD.printf("%s",songList[currentsong].substr(0,songList[currentsong].find(".wav"))); - if(play) - { - //play - - uLCD.filled_rectangle(0,118,280,40,BLACK); - uLCD.triangle(120, 100, 40, 40, 10, 100, 0x0000FF); - } - else - { - //pause - uLCD.filled_rectangle(0,118,110,40,WHITE); - uLCD.filled_rectangle(50,118,100,40,BLACK); - uLCD.filled_rectangle(180,118,280,40,WHITE); - } - LCD.unlock(); - } - else - { - - Speaker.unlock(); - mentex.lock(); - LCD.lock(); - uLCD.cls(); - LCD.unlock(); - for(int i=-1; i<2; i++) - { - //add code to display and scroll through menu here - - mentex.lock(); - if(currentsong+i>=0) - { - if(currentsong+i<songcount) - { - LCD.lock(); - uLCD.printf("%s\r\n\r\n", songList[currentsong+i].substr(0,songList[currentsong + i].find(".wav"))); - LCD.unlock(); - } - else - { - LCD.lock(); - uLCD.printf("%s\r\n\r\n", songList[0].substr(0,songList[0].find(".wav"))); - LCD.unlock(); - } - } - else if(currentsong+i<0) - { - LCD.lock(); - uLCD.printf("%s\r\n\r\n", songList[songcount-1].substr(0,songList[songcount-1].find(".wav"))); - LCD.unlock(); - } - - } - mentex.unlock(); - LCD.lock(); - uLCD.locate(2,3); - uLCD.printf("%s", "^^^"); - LCD.unlock(); - } - Thread::wait(500); - } -} -void buttonThread() -{ - //add playpause and skip features here - Speaker.lock(); - if(!menu1) + //led1 = !led1; + if (currentSong == songCount - 1) { - playing=!playing; - play=!playing; + currentSong = 0; } else { - playing=!playing; - Thread::wait(500); - playing=!playing; + currentSong++; } - myled=play; - Speaker.unlock(); - Thread::wait(10); } -void skipThread() + +/** + * @brief Increments integer variable currentSong by minus one, while circling back to last song at zero + * @details Function is called both when "previous song" pushbutton pressed or bluetooth command is sent; + * LED2 switches value when called for diagnostics & testing +**/ +void prevSong() { - //add skip features - - Speaker.lock(); - if(currentsong<songcount-1) + //led2 = !led2; + if (currentSong == 0) { - currentsong++; + currentSong = songCount - 1; } else { - currentsong=0; - } - if(!menu1) - { - playing=true; - play=!playing; - } - Speaker.unlock(); -} -void backThread() -{ - Speaker.lock(); - if(currentsong!=0) - { - currentsong--; + currentSong--; } - else - { - currentsong=songcount-1; - } - if(!menu1) - { - playing=true; - play=!playing; - } - Speaker.unlock(); } -void menuThread() -{ - menu1=!menu1; -} -void BlueThread(void const *argument) -{ - //add bluetooth control code here - char bnum =0; - char bhit=0; - while(1) - { + - if(blue.readable()&&blue.writeable()) - { - if (blue.getc()=='!') { - if (blue.getc()=='B') { //button data - bnum = blue.getc(); //button number - bhit=blue.getc(); - if ((bnum>='1')&&(bnum<='4')) //is a number button 1..4 - { - LCD.lock(); - uLCD.printf("%s", "test lol"); - LCD.unlock(); - switch (bnum) - { - case '1': //number button 1 //add playpause and skip features here - if (bhit=='1') { - Speaker.lock(); - if(play) - { - playing = false; - } - else - { - playing = true; - } - play=!play; - myled=play; - Speaker.unlock(); - Thread::wait(10); - } - break; - case '2': //number button 2 - if (bhit=='1') { - mentex.lock(); - if(currentsong<songcount-1) - { - currentsong++; - } - else - { - currentsong=0; - } - if(!menu) - { - playing=true; - play=true; - } - mentex.unlock(); - } - break; - case '3': //number button 3 - if (bhit=='1') { - mentex.lock(); - if(currentsong!=0) - { - currentsong--; - } - else - { - currentsong=songcount-1; - } - if(!menu) - { - playing=true; - play=true; - } - mentex.unlock(); - } - break; - case '4': //number button 4 - if (bhit=='1') { - mentex.lock(); - menu1=!menu1; - mentex.unlock(); - } - break; - default: - break; - } - } - - } - } - } - Thread::wait(1000); - } -} -void IMUThread(void const *argument) +/** + * @brief Switches boolean variable playing + * @details Function is called both when "pause/play" pushbutton pressed or bluetooth command is sent; + * LED3 switches value when called for diagnostics & testing +**/ +void playSong() { - while(1){ - avgs.lock(); - //put imu averaging and next track selection code here if that is selected - avgMic = int(((abs((mymicrophone - (0.67/3.3)))*500.0)+avgMic)/2); - imu.readAccel(); - avgIMU=int((((imu.ax+imu.az+imu.ay)/3.0)+avgIMU)/2); - avgs.unlock(); - Thread::wait(5000); - } - + //led3 = !led3; + playing = !playing; } -int main() +/** + * @brief Generates random integer within song list range to assign integer variable currentSong + * @details Function is called both when "shuffle song" pushbutton pressed or bluetooth command is sent; + * function seeds a true random value through the noise present on the 5th decimal place of an + * accelerometer's input values; + * LED4 switches value when called for diagnostics & testing +**/ +void shuffleSong() { + //led4 = !led4; + double x, y, z; + acc.readXYZGravity(&x,&y,&z); + currentSong = int(100000 * (x + y + z)) % songCount; +} + +// Defining Threads + +/** + * @brief Updates LCD screen according to user input & selections + * @details First configures LCD screen layout & songlist, then continously checks for changes in global variables + * integer currentSong & boolean playing to update LCD screen accordingly. No updates made if no changes found. + * All LCD communications occur strictly in this thread. + * @param *arguments Input arguments to thread used for RTOS thread library. Not needed to understand thread code. + */ +void LCDThread(void const *argument) +{ + // Configure LCD screen uLCD.cls(); uLCD.baudrate(3000000); uLCD.background_color(BLACK); + uLCD.color(WHITE); uLCD.text_width(1); - uLCD.text_height(1); - imu.begin(); - if (!imu.begin()) { - //set fail flag for imu here + uLCD.text_height(1); + + // Print Song List to LCD Screen + uLCD.locate(0,0); + uLCD.printf("Song List: "); + uLCD.locate(0,1); + uLCD.printf("->"); + for(int i = 0; i < songCount; i++) + { + uLCD.locate(3,i+1); + uLCD.printf("%s\n\r", songList[i].substr(0,songList[i].find(".wav"))); + } + + // Print "NOW PLAYING: " & "STATUS: " feature; initialize to first song on SD card & paused + uLCD.locate(0,12); + uLCD.printf("NOW PLAYING:"); + uLCD.locate(0,13); + uLCD.printf("%s", songList[currentSong].substr(0,songList[currentSong].find(".wav"))); + uLCD.locate(0,14); + uLCD.printf("STATUS: PAUSED"); + + // Initialize internal thread variables to check for changes to external global variables + bool prevPlayLCD = false; + int previousSongLCD = 0; + + // Thread while loop to continously check for changes and update screen accordingly + while (true) + { + // Check if new song has been selected + if (previousSongLCD != currentSong) + { + // Update "NOW PLAYING: " feature + uLCD.locate(0,12); + uLCD.printf("NOW PLAYING:"); + uLCD.locate(0,13); + uLCD.printf("%s ", songList[currentSong].substr(0,songList[currentSong].find(".wav"))); + // Update "->" feature + uLCD.locate(0, previousSongLCD + 1); + uLCD.printf(" "); + uLCD.locate(0, currentSong + 1); + uLCD.printf("->"); + // Set internal change check to currentSong + previousSongLCD = currentSong; + } + //Check if change to play/pause status + if (prevPlayLCD != playing) + { + // Update "STATUS: " feature + uLCD.locate(0,14); + if (playing) + { + uLCD.printf("STATUS: PLAYING"); + } + else + { + uLCD.printf("STATUS: PAUSED "); + } + // Set internal change check to playing + prevPlayLCD = playing; + } + Thread::wait(50); } - imu.calibrate(); - blue.baud(9600); +} + +/** + * @brief Updates phone screen to latest currentSong playing, sends phone commands to mBED, all over BlueTooth + * @details See commenting in thread for step-by-step approach + * All BlueTooth communications occur strictly in this thread + * BlueTooth Control Pad Module Controls: 1 = Pause/Play, 2 = Next Song, 3 = Previous Song, 4 = Shuffle Song + * @param *arguments Input arguments to thread used for RTOS thread library. Not needed to understand thread code. + */ +void BluetoothThread(void const *argument) +{ + // Initialize internal thread variable to check for changes to external global variables + int previousSongBLE = 0; + // Thread while look to continously check for BlueTooth commands and update currentSong on phone + while (true) + { + // Update currentSong on phone + if (blueTooth.writeable()) + { + // Check if new song has been selected + if (previousSongBLE != currentSong) + { + // Send currentSong name over BlueTooth + string str = "Current Song: "; + for (int i = 0; i < 14; i++) + { + blueTooth.putc(str[i]); + } + for (int i = 0; i < songList[currentSong].size() - 4; i++) + { + blueTooth.putc(songList[currentSong][i]); + } + blueTooth.putc('\n'); + previousSongBLE = currentSong; + } + + } + // Read in commands from BlueTooth module + if (blueTooth.readable()) + { + // Check for '!B' to be compatible with "Control Pad" Module serial output + if (blueTooth.getc()=='!') + { + if (blueTooth.getc()=='B') + { + // Check which command was hit + char bnum = blueTooth.getc(); + // Ensure mBED only updates on release, not hit + char bhit = blueTooth.getc(); + if (bhit == '0') + { + switch (bnum) + { + case '1': + playSong(); + break; + + case '2': + nextSong(); + break; + + case '3': + prevSong(); + break; + + case '4': + shuffleSong(); + break; + + default: + break; + } + } + } + } + } + Thread::wait(50); + } +} + +/** + * @brief Updates Mbed LEDs to show current volume level + * @details Read and scales analogOut level, then sets leds to show the level in 4 tiers. + * @param *arguments Input arguments to thread used for RTOS thread library. Not needed to understand thread code. + */ +void AudioVisualizerThread(void const *argument) +{ + while(1) + { + if(playing) + { + float level = (DACout.read() - 0.25f) * 3.3f; + if(level<0.825) + { + led1=true; + led2=led3=led4=false; + } + else if(level>0.825&&level<1.65) + { + led1=led2=true; + led3=led4=false; + } + else if(level>1.65&&level<2.47) + { + led1=led2=led3=true; + led4=false; + } + else if(level>2.47) + { + led1=led2=led3=led4=true; + } + Thread::wait(50); + } + } +} + +// Button Interupt Functions + +/** + * @brief runs nextSong() function on pushbotton hit. Attached using PinDetect. +**/ +void nextInt() +{ + nextSong(); +} + +/** + * @brief runs prevSong() function on pushbotton hit. Attached using PinDetect. +**/ +void prevInt() +{ + prevSong(); +} + +/** + * @brief runs playSong() function on pushbotton hit. Attached using PinDetect. +**/ +void playInt() +{ + playSong(); +} + +/** + * @brief runs shuffleSong() function on pushbotton hit. Attached using PinDetect. +**/ +void shuffleInt() +{ + shuffleSong(); +} + +/** + * @brief Program main routine. + * @return int No return expected. + */ +int main() +{ + // Attach & configure interupts to pushbuttons + next.mode(PullUp); + prev.mode(PullUp); + play.mode(PullUp); + shuffle.mode(PullUp); + next.attach_deasserted(&nextInt); + prev.attach_deasserted(&prevInt); + play.attach_deasserted(&playInt); + shuffle.attach_deasserted(&shuffleInt); + next.setSampleFrequency(); + prev.setSampleFrequency(); + play.setSampleFrequency(); + shuffle.setSampleFrequency(); + // Wait 10 milliseconds to ensure functions are attached + Thread::wait(10); + // Extract file list from SD Card, place in vector<string> songList DIR *dp; struct dirent *dirp; dp = opendir("/sd/myMusic"); - songcount = 0; if(dp !=NULL) { while ((dirp = readdir(dp)) != NULL) { songList.push_back(string(dirp->d_name)); - //uLCD.printf("\r%s\r\n", string(dirp->d_name)); - songcount++; + songCount++; } } - playpause.mode(PullUp); - playpause.attach_deasserted(&buttonThread); - playpause.setSampleFrequency(); + // Wait 10 miliseconds to ensure SD card communication complete + Thread::wait(10); - menu.mode(PullUp); - menu.attach_deasserted(&menuThread); - menu.setSampleFrequency(); - skip.mode(PullUp); - skip.attach_deasserted(&skipThread); - skip.setSampleFrequency(); - back.mode(PullUp); - back.attach_deasserted(&backThread); - back.setSampleFrequency(); - //LCD, Player, button Interrupt, bluetooth, imu+mic + // Start LCD & BlueTooth Thread Thread thread1(LCDThread); - Thread thread4(BlueThread); - Thread thread5(IMUThread); - while(1){ - FILE *wave_file; - Thread::wait(1000); - mentex.lock(); - string selectedSong= "/sd/myMusic/" + songList[currentsong]; - mentex.unlock(); - const char* song = selectedSong.c_str(); - wave_file=fopen(song,"r"); - if(wave_file==NULL) uLCD.printf("file open error!\n\n\r"); - waver.play(wave_file); - fclose(wave_file); + Thread thread2(BluetoothThread); + Thread thread3(AudioVisualizerThread); + + // Main while loop: + // Main loop is now considered the Speaker Thread, playing/pausing current song + // based on changes in global varaibles boolean playing & integer currentSong + while (true) + { + // Read in selected file + FILE *wave_file; + string selectedSong= "/sd/myMusic/" + songList[currentSong]; + const char* song = selectedSong.c_str(); + wave_file=fopen(song,"r"); + if(wave_file==NULL) + { + uLCD.locate(0,12); + uLCD.printf("file open error!"); + } + // Wait 10 miliseconds to ensure file properly loaded + Thread::wait(10); + // Play file; stop/play feature built into waver library + waver.play(wave_file); + // Close file + fclose(wave_file); + // Reset playing variable so song does not repeat + playing = false; } } \ No newline at end of file
--- a/wave_player.lib Sun Dec 12 23:31:10 2021 +0000 +++ b/wave_player.lib Wed Dec 15 17:17:26 2021 +0000 @@ -1,1 +1,1 @@ -https://os.mbed.com/users/lfink6/code/wave_player/#cb60c55b6628 +https://os.mbed.com/users/lfink6/code/wave_player/#a94dd18e8d8e