CMSIS DSP Lib
Fork of mbed-dsp by
cmsis_dsp/StatisticsFunctions/arm_std_q31.c
- Committer:
- emilmont
- Date:
- 2012-11-28
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
File content as of revision 1:fdd22bb7aa52:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_std_q31.c * * Description: Standard deviation of an array of Q31 type. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupStats */ /** * @addtogroup STD * @{ */ /** * @brief Standard deviation of the elements of a Q31 vector. * @param[in] *pSrc points to the input vector * @param[in] blockSize length of the input vector * @param[out] *pResult standard deviation value returned here * @return none. * @details * <b>Scaling and Overflow Behavior:</b> * *\par * The function is implemented using an internal 64-bit accumulator. * The input is represented in 1.31 format, and intermediate multiplication * yields a 2.62 format. * The accumulator maintains full precision of the intermediate multiplication results, * but provides only a single guard bit. * There is no saturation on intermediate additions. * If the accumulator overflows it wraps around and distorts the result. * In order to avoid overflows completely the input signal must be scaled down by * log2(blockSize) bits, as a total of blockSize additions are performed internally. * Finally, the 2.62 accumulator is right shifted by 31 bits to yield a 1.31 format value. * */ void arm_std_q31( q31_t * pSrc, uint32_t blockSize, q31_t * pResult) { q63_t sum = 0; /* Accumulator */ q31_t meanOfSquares, squareOfMean; /* square of mean and mean of square */ q31_t mean; /* mean */ q31_t in; /* input value */ q31_t t; /* Temporary variable */ uint32_t blkCnt; /* loop counter */ q63_t sumOfSquares = 0; /* Accumulator */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sum. */ in = *pSrc++; sum += in; sumOfSquares += ((q63_t) (in) * (in)); in = *pSrc++; sum += in; sumOfSquares += ((q63_t) (in) * (in)); in = *pSrc++; sum += in; sumOfSquares += ((q63_t) (in) * (in)); in = *pSrc++; sum += in; sumOfSquares += ((q63_t) (in) * (in)); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sum. */ in = *pSrc++; sum += in; sumOfSquares += ((q63_t) (in) * (in)); /* Decrement the loop counter */ blkCnt--; } t = (q31_t) ((1.0f / (float32_t) (blockSize - 1u)) * 1073741824.0f); /* Compute Mean of squares of the input samples * and then store the result in a temporary variable, meanOfSquares. */ sumOfSquares = (sumOfSquares >> 31); meanOfSquares = (q31_t) ((sumOfSquares * t) >> 30); #else /* Run the below code for Cortex-M0 */ /* Loop over blockSize number of values */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute Sum of squares of the input samples * and then store the result in a temporary variable, sumOfSquares. */ in = *pSrc++; sumOfSquares += ((q63_t) (in) * (in)); /* C = (A[0] + A[1] + A[2] + ... + A[blockSize-1]) */ /* Compute sum of all input values and then store the result in a temporary variable, sum. */ sum += in; /* Decrement the loop counter */ blkCnt--; } /* Compute Mean of squares of the input samples * and then store the result in a temporary variable, meanOfSquares. */ t = (q31_t) ((1.0f / (float32_t) (blockSize - 1u)) * 1073741824.0f); sumOfSquares = (sumOfSquares >> 31); meanOfSquares = (q31_t) ((sumOfSquares * t) >> 30); #endif /* #ifndef ARM_MATH_CM0 */ /* Compute mean of all input values */ t = (q31_t) ((1.0f / (blockSize * (blockSize - 1u))) * 2147483648.0f); mean = (q31_t) (sum); /* Compute square of mean */ squareOfMean = (q31_t) (((q63_t) mean * mean) >> 31); squareOfMean = (q31_t) (((q63_t) squareOfMean * t) >> 31); /* Compute standard deviation and then store the result to the destination */ arm_sqrt_q31(meanOfSquares - squareOfMean, pResult); } /** * @} end of STD group */