CMSIS DSP Lib
Fork of mbed-dsp by
cmsis_dsp/BasicMathFunctions/arm_dot_prod_q31.c
- Committer:
- emilmont
- Date:
- 2012-11-28
- Revision:
- 1:fdd22bb7aa52
- Child:
- 2:da51fb522205
File content as of revision 1:fdd22bb7aa52:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_dot_prod_q31.c * * Description: Q31 dot product. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * * Version 0.0.7 2010/06/10 * Misra-C changes done * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @addtogroup dot_prod * @{ */ /** * @brief Dot product of Q31 vectors. * @param[in] *pSrcA points to the first input vector * @param[in] *pSrcB points to the second input vector * @param[in] blockSize number of samples in each vector * @param[out] *result output result returned here * @return none. * * <b>Scaling and Overflow Behavior:</b> * \par * The intermediate multiplications are in 1.31 x 1.31 = 2.62 format and these * are truncated to 2.48 format by discarding the lower 14 bits. * The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format. * There are 15 guard bits in the accumulator and there is no risk of overflow as long as * the length of the vectors is less than 2^16 elements. * The return result is in 16.48 format. */ void arm_dot_prod_q31( q31_t * pSrcA, q31_t * pSrcB, uint32_t blockSize, q63_t * result) { q63_t sum = 0; /* Temporary result storage */ uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t inA1, inA2, inA3, inA4; q31_t inB1, inB2, inB3, inB4; /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ /* Calculate dot product and then store the result in a temporary buffer. */ inA1 = *pSrcA++; inA2 = *pSrcA++; inA3 = *pSrcA++; inA4 = *pSrcA++; inB1 = *pSrcB++; inB2 = *pSrcB++; inB3 = *pSrcB++; inB4 = *pSrcB++; sum += ((q63_t) inA1 * inB1) >> 14u; sum += ((q63_t) inA2 * inB2) >> 14u; sum += ((q63_t) inA3 * inB3) >> 14u; sum += ((q63_t) inA4 * inB4) >> 14u; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; #endif /* #ifndef ARM_MATH_CM0 */ while(blkCnt > 0u) { /* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ /* Calculate dot product and then store the result in a temporary buffer. */ sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u; /* Decrement the loop counter */ blkCnt--; } /* Store the result in the destination buffer in 16.48 format */ *result = sum; } /** * @} end of dot_prod group */