CMSIS DSP Lib
Fork of mbed-dsp by
cmsis_dsp/StatisticsFunctions/arm_rms_q15.c
- Committer:
- emilmont
- Date:
- 2013-05-30
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
File content as of revision 2:da51fb522205:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_rms_q15.c * * Description: Root Mean Square of the elements of a Q15 vector. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * ---------------------------------------------------------------------------- */ #include "arm_math.h" /** * @addtogroup RMS * @{ */ /** * @brief Root Mean Square of the elements of a Q15 vector. * @param[in] *pSrc points to the input vector * @param[in] blockSize length of the input vector * @param[out] *pResult rms value returned here * @return none. * * @details * <b>Scaling and Overflow Behavior:</b> * * \par * The function is implemented using a 64-bit internal accumulator. * The input is represented in 1.15 format. * Intermediate multiplication yields a 2.30 format, and this * result is added without saturation to a 64-bit accumulator in 34.30 format. * With 33 guard bits in the accumulator, there is no risk of overflow, and the * full precision of the intermediate multiplication is preserved. * Finally, the 34.30 result is truncated to 34.15 format by discarding the lower * 15 bits, and then saturated to yield a result in 1.15 format. * */ void arm_rms_q15( q15_t * pSrc, uint32_t blockSize, q15_t * pResult) { q63_t sum = 0; /* accumulator */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t in; /* temporary variable to store the input value */ q15_t in1; /* temporary variable to store the input value */ uint32_t blkCnt; /* loop counter */ /* loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute sum of the squares and then store the results in a temporary variable, sum */ in = *__SIMD32(pSrc)++; sum = __SMLALD(in, in, sum); in = *__SIMD32(pSrc)++; sum = __SMLALD(in, in, sum); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute sum of the squares and then store the results in a temporary variable, sum */ in1 = *pSrc++; sum = __SMLALD(in1, in1, sum); /* Decrement the loop counter */ blkCnt--; } /* Truncating and saturating the accumulator to 1.15 format */ sum = __SSAT((q31_t) (sum >> 15), 16); in1 = (q15_t) (sum / blockSize); /* Store the result in the destination */ arm_sqrt_q15(in1, pResult); #else /* Run the below code for Cortex-M0 */ q15_t in; /* temporary variable to store the input value */ uint32_t blkCnt; /* loop counter */ /* Loop over blockSize number of values */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = (A[0] * A[0] + A[1] * A[1] + ... + A[blockSize-1] * A[blockSize-1]) */ /* Compute sum of the squares and then store the results in a temporary variable, sum */ in = *pSrc++; sum += ((q31_t) in * in); /* Decrement the loop counter */ blkCnt--; } /* Truncating and saturating the accumulator to 1.15 format */ sum = __SSAT((q31_t) (sum >> 15), 16); in = (q15_t) (sum / blockSize); /* Store the result in the destination */ arm_sqrt_q15(in, pResult); #endif /* #ifndef ARM_MATH_CM0 */ } /** * @} end of RMS group */