CMSIS DSP Lib
Fork of mbed-dsp by
cmsis_dsp/StatisticsFunctions/arm_rms_f32.c
- Committer:
- emilmont
- Date:
- 2013-05-30
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
File content as of revision 2:da51fb522205:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_rms_f32.c * * Description: Root mean square value of an array of F32 type * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * ---------------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupStats */ /** * @defgroup RMS Root mean square (RMS) * * * Calculates the Root Mean Sqaure of the elements in the input vector. * The underlying algorithm is used: * * <pre> * Result = sqrt(((pSrc[0] * pSrc[0] + pSrc[1] * pSrc[1] + ... + pSrc[blockSize-1] * pSrc[blockSize-1]) / blockSize)); * </pre> * * There are separate functions for floating point, Q31, and Q15 data types. */ /** * @addtogroup RMS * @{ */ /** * @brief Root Mean Square of the elements of a floating-point vector. * @param[in] *pSrc points to the input vector * @param[in] blockSize length of the input vector * @param[out] *pResult rms value returned here * @return none. * */ void arm_rms_f32( float32_t * pSrc, uint32_t blockSize, float32_t * pResult) { float32_t sum = 0.0f; /* Accumulator */ float32_t in; /* Tempoprary variable to store input value */ uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ /* loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */ /* Compute sum of the squares and then store the result in a temporary variable, sum */ in = *pSrc++; sum += in * in; in = *pSrc++; sum += in * in; in = *pSrc++; sum += in * in; in = *pSrc++; sum += in * in; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Loop over blockSize number of values */ blkCnt = blockSize; #endif /* #ifndef ARM_MATH_CM0 */ while(blkCnt > 0u) { /* C = A[0] * A[0] + A[1] * A[1] + A[2] * A[2] + ... + A[blockSize-1] * A[blockSize-1] */ /* Compute sum of the squares and then store the results in a temporary variable, sum */ in = *pSrc++; sum += in * in; /* Decrement the loop counter */ blkCnt--; } /* Compute Rms and store the result in the destination */ arm_sqrt_f32(sum / (float32_t) blockSize, pResult); } /** * @} end of RMS group */