CMSIS DSP Lib
Fork of mbed-dsp by
cmsis_dsp/FastMathFunctions/arm_sin_f32.c
- Committer:
- emilmont
- Date:
- 2013-05-30
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
File content as of revision 2:da51fb522205:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_sin_f32.c * * Description: Fast sine calculation for floating-point values. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFastMath */ /** * @defgroup sin Sine * * Computes the trigonometric sine function using a combination of table lookup * and cubic interpolation. There are separate functions for * Q15, Q31, and floating-point data types. * The input to the floating-point version is in radians while the * fixed-point Q15 and Q31 have a scaled input with the range * [0 +0.9999] mapping to [0 2*pi), Where range excludes 2*pi. * * The implementation is based on table lookup using 256 values together with cubic interpolation. * The steps used are: * -# Calculation of the nearest integer table index * -# Fetch the four table values a, b, c, and d * -# Compute the fractional portion (fract) of the table index. * -# Calculation of wa, wb, wc, wd * -# The final result equals <code>a*wa + b*wb + c*wc + d*wd</code> * * where * <pre> * a=Table[index-1]; * b=Table[index+0]; * c=Table[index+1]; * d=Table[index+2]; * </pre> * and * <pre> * wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract; * wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1; * wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract; * wd=(1/6)*fract.^3 - (1/6)*fract; * </pre> */ /** * @addtogroup sin * @{ */ /** * \par * Example code for Generation of Floating-point Sin Table: * tableSize = 256; * <pre>for(n = -1; n < (tableSize + 1); n++) * { * sinTable[n+1]=sin(2*pi*n/tableSize); * }</pre> * \par * where pi value is 3.14159265358979 */ static const float32_t sinTable[259] = { -0.024541229009628296f, 0.000000000000000000f, 0.024541229009628296f, 0.049067676067352295f, 0.073564566671848297f, 0.098017141222953796f, 0.122410677373409270f, 0.146730467677116390f, 0.170961886644363400f, 0.195090323686599730f, 0.219101235270500180f, 0.242980182170867920f, 0.266712754964828490f, 0.290284663438797000f, 0.313681751489639280f, 0.336889863014221190f, 0.359895050525665280f, 0.382683426141738890f, 0.405241310596466060f, 0.427555084228515630f, 0.449611335992813110f, 0.471396744251251220f, 0.492898195981979370f, 0.514102756977081300f, 0.534997642040252690f, 0.555570244789123540f, 0.575808167457580570f, 0.595699310302734380f, 0.615231573581695560f, 0.634393274784088130f, 0.653172850608825680f, 0.671558976173400880f, 0.689540565013885500f, 0.707106769084930420f, 0.724247097969055180f, 0.740951120853424070f, 0.757208824157714840f, 0.773010432720184330f, 0.788346409797668460f, 0.803207516670227050f, 0.817584812641143800f, 0.831469595432281490f, 0.844853579998016360f, 0.857728600502014160f, 0.870086967945098880f, 0.881921291351318360f, 0.893224298954010010f, 0.903989315032958980f, 0.914209783077239990f, 0.923879504203796390f, 0.932992815971374510f, 0.941544055938720700f, 0.949528157711029050f, 0.956940352916717530f, 0.963776051998138430f, 0.970031261444091800f, 0.975702106952667240f, 0.980785250663757320f, 0.985277652740478520f, 0.989176511764526370f, 0.992479562759399410f, 0.995184719562530520f, 0.997290432453155520f, 0.998795449733734130f, 0.999698817729949950f, 1.000000000000000000f, 0.999698817729949950f, 0.998795449733734130f, 0.997290432453155520f, 0.995184719562530520f, 0.992479562759399410f, 0.989176511764526370f, 0.985277652740478520f, 0.980785250663757320f, 0.975702106952667240f, 0.970031261444091800f, 0.963776051998138430f, 0.956940352916717530f, 0.949528157711029050f, 0.941544055938720700f, 0.932992815971374510f, 0.923879504203796390f, 0.914209783077239990f, 0.903989315032958980f, 0.893224298954010010f, 0.881921291351318360f, 0.870086967945098880f, 0.857728600502014160f, 0.844853579998016360f, 0.831469595432281490f, 0.817584812641143800f, 0.803207516670227050f, 0.788346409797668460f, 0.773010432720184330f, 0.757208824157714840f, 0.740951120853424070f, 0.724247097969055180f, 0.707106769084930420f, 0.689540565013885500f, 0.671558976173400880f, 0.653172850608825680f, 0.634393274784088130f, 0.615231573581695560f, 0.595699310302734380f, 0.575808167457580570f, 0.555570244789123540f, 0.534997642040252690f, 0.514102756977081300f, 0.492898195981979370f, 0.471396744251251220f, 0.449611335992813110f, 0.427555084228515630f, 0.405241310596466060f, 0.382683426141738890f, 0.359895050525665280f, 0.336889863014221190f, 0.313681751489639280f, 0.290284663438797000f, 0.266712754964828490f, 0.242980182170867920f, 0.219101235270500180f, 0.195090323686599730f, 0.170961886644363400f, 0.146730467677116390f, 0.122410677373409270f, 0.098017141222953796f, 0.073564566671848297f, 0.049067676067352295f, 0.024541229009628296f, 0.000000000000000122f, -0.024541229009628296f, -0.049067676067352295f, -0.073564566671848297f, -0.098017141222953796f, -0.122410677373409270f, -0.146730467677116390f, -0.170961886644363400f, -0.195090323686599730f, -0.219101235270500180f, -0.242980182170867920f, -0.266712754964828490f, -0.290284663438797000f, -0.313681751489639280f, -0.336889863014221190f, -0.359895050525665280f, -0.382683426141738890f, -0.405241310596466060f, -0.427555084228515630f, -0.449611335992813110f, -0.471396744251251220f, -0.492898195981979370f, -0.514102756977081300f, -0.534997642040252690f, -0.555570244789123540f, -0.575808167457580570f, -0.595699310302734380f, -0.615231573581695560f, -0.634393274784088130f, -0.653172850608825680f, -0.671558976173400880f, -0.689540565013885500f, -0.707106769084930420f, -0.724247097969055180f, -0.740951120853424070f, -0.757208824157714840f, -0.773010432720184330f, -0.788346409797668460f, -0.803207516670227050f, -0.817584812641143800f, -0.831469595432281490f, -0.844853579998016360f, -0.857728600502014160f, -0.870086967945098880f, -0.881921291351318360f, -0.893224298954010010f, -0.903989315032958980f, -0.914209783077239990f, -0.923879504203796390f, -0.932992815971374510f, -0.941544055938720700f, -0.949528157711029050f, -0.956940352916717530f, -0.963776051998138430f, -0.970031261444091800f, -0.975702106952667240f, -0.980785250663757320f, -0.985277652740478520f, -0.989176511764526370f, -0.992479562759399410f, -0.995184719562530520f, -0.997290432453155520f, -0.998795449733734130f, -0.999698817729949950f, -1.000000000000000000f, -0.999698817729949950f, -0.998795449733734130f, -0.997290432453155520f, -0.995184719562530520f, -0.992479562759399410f, -0.989176511764526370f, -0.985277652740478520f, -0.980785250663757320f, -0.975702106952667240f, -0.970031261444091800f, -0.963776051998138430f, -0.956940352916717530f, -0.949528157711029050f, -0.941544055938720700f, -0.932992815971374510f, -0.923879504203796390f, -0.914209783077239990f, -0.903989315032958980f, -0.893224298954010010f, -0.881921291351318360f, -0.870086967945098880f, -0.857728600502014160f, -0.844853579998016360f, -0.831469595432281490f, -0.817584812641143800f, -0.803207516670227050f, -0.788346409797668460f, -0.773010432720184330f, -0.757208824157714840f, -0.740951120853424070f, -0.724247097969055180f, -0.707106769084930420f, -0.689540565013885500f, -0.671558976173400880f, -0.653172850608825680f, -0.634393274784088130f, -0.615231573581695560f, -0.595699310302734380f, -0.575808167457580570f, -0.555570244789123540f, -0.534997642040252690f, -0.514102756977081300f, -0.492898195981979370f, -0.471396744251251220f, -0.449611335992813110f, -0.427555084228515630f, -0.405241310596466060f, -0.382683426141738890f, -0.359895050525665280f, -0.336889863014221190f, -0.313681751489639280f, -0.290284663438797000f, -0.266712754964828490f, -0.242980182170867920f, -0.219101235270500180f, -0.195090323686599730f, -0.170961886644363400f, -0.146730467677116390f, -0.122410677373409270f, -0.098017141222953796f, -0.073564566671848297f, -0.049067676067352295f, -0.024541229009628296f, -0.000000000000000245f, 0.024541229009628296f }; /** * @brief Fast approximation to the trigonometric sine function for floating-point data. * @param[in] x input value in radians. * @return sin(x). */ float32_t arm_sin_f32( float32_t x) { float32_t sinVal, fract, in; /* Temporary variables for input, output */ int32_t index; /* Index variable */ uint32_t tableSize = (uint32_t) TABLE_SIZE; /* Initialise tablesize */ float32_t wa, wb, wc, wd; /* Cubic interpolation coefficients */ float32_t a, b, c, d; /* Four nearest output values */ float32_t *tablePtr; /* Pointer to table */ int32_t n; float32_t fractsq, fractby2, fractby6, fractby3, fractsqby2; float32_t oneminusfractby2; float32_t frby2xfrsq, frby6xfrsq; /* input x is in radians */ /* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */ in = x * 0.159154943092f; /* Calculation of floor value of input */ n = (int32_t) in; /* Make negative values towards -infinity */ if(x < 0.0f) { n = n - 1; } /* Map input value to [0 1] */ in = in - (float32_t) n; /* Calculation of index of the table */ index = (uint32_t) (tableSize * in); /* fractional value calculation */ fract = ((float32_t) tableSize * in) - (float32_t) index; /* Checking min and max index of table */ if(index < 0) { index = 0; } else if(index > 256) { index = 256; } /* Initialise table pointer */ tablePtr = (float32_t *) & sinTable[index]; /* Read four nearest values of input value from the sin table */ a = tablePtr[0]; b = tablePtr[1]; c = tablePtr[2]; d = tablePtr[3]; /* Cubic interpolation process */ fractsq = fract * fract; fractby2 = fract * 0.5f; fractby6 = fract * 0.166666667f; fractby3 = fract * 0.3333333333333f; fractsqby2 = fractsq * 0.5f; frby2xfrsq = (fractby2) * fractsq; frby6xfrsq = (fractby6) * fractsq; oneminusfractby2 = 1.0f - fractby2; wb = fractsqby2 - fractby3; wc = (fractsqby2 + fract); wa = wb - frby6xfrsq; wb = frby2xfrsq - fractsq; sinVal = wa * a; wc = wc - frby2xfrsq; wd = (frby6xfrsq) - fractby6; wb = wb + oneminusfractby2; /* Calculate sin value */ sinVal = (sinVal + (b * wb)) + ((c * wc) + (d * wd)); /* Return the output value */ return (sinVal); } /** * @} end of sin group */