CMSIS DSP Lib
Fork of mbed-dsp by
cmsis_dsp/BasicMathFunctions/arm_sub_q15.c
- Committer:
- emilmont
- Date:
- 2013-05-30
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
File content as of revision 2:da51fb522205:
/* ---------------------------------------------------------------------- * Copyright (C) 2010 ARM Limited. All rights reserved. * * $Date: 15. February 2012 * $Revision: V1.1.0 * * Project: CMSIS DSP Library * Title: arm_sub_q15.c * * Description: Q15 vector subtraction. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Version 1.1.0 2012/02/15 * Updated with more optimizations, bug fixes and minor API changes. * * Version 1.0.10 2011/7/15 * Big Endian support added and Merged M0 and M3/M4 Source code. * * Version 1.0.3 2010/11/29 * Re-organized the CMSIS folders and updated documentation. * * Version 1.0.2 2010/11/11 * Documentation updated. * * Version 1.0.1 2010/10/05 * Production release and review comments incorporated. * * Version 1.0.0 2010/09/20 * Production release and review comments incorporated. * * Version 0.0.7 2010/06/10 * Misra-C changes done * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMath */ /** * @addtogroup BasicSub * @{ */ /** * @brief Q15 vector subtraction. * @param[in] *pSrcA points to the first input vector * @param[in] *pSrcB points to the second input vector * @param[out] *pDst points to the output vector * @param[in] blockSize number of samples in each vector * @return none. * * <b>Scaling and Overflow Behavior:</b> * \par * The function uses saturating arithmetic. * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. */ void arm_sub_q15( q15_t * pSrcA, q15_t * pSrcB, q15_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t inA1, inA2; q31_t inB1, inB2; /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A - B */ /* Subtract and then store the results in the destination buffer two samples at a time. */ inA1 = *__SIMD32(pSrcA)++; inA2 = *__SIMD32(pSrcA)++; inB1 = *__SIMD32(pSrcB)++; inB2 = *__SIMD32(pSrcB)++; *__SIMD32(pDst)++ = __QSUB16(inA1, inB1); *__SIMD32(pDst)++ = __QSUB16(inA2, inB2); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A - B */ /* Subtract and then store the result in the destination buffer. */ *pDst++ = (q15_t) __QSUB16(*pSrcA++, *pSrcB++); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = A - B */ /* Subtract and then store the result in the destination buffer. */ *pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ - *pSrcB++), 16); /* Decrement the loop counter */ blkCnt--; } #endif /* #ifndef ARM_MATH_CM0 */ } /** * @} end of BasicSub group */