CMSIS DSP Lib
Fork of mbed-dsp by
cmsis_dsp/MatrixFunctions/arm_mat_mult_f32.c
- Committer:
- mbed_official
- Date:
- 2013-11-08
- Revision:
- 3:7a284390b0ce
- Parent:
- 2:da51fb522205
File content as of revision 3:7a284390b0ce:
/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_mat_mult_f32.c * * Description: Floating-point matrix multiplication. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @defgroup MatrixMult Matrix Multiplication * * Multiplies two matrices. * * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices" * Matrix multiplication is only defined if the number of columns of the * first matrix equals the number of rows of the second matrix. * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results * in an <code>M x P</code> matrix. * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>. */ /** * @addtogroup MatrixMult * @{ */ /** * @brief Floating-point matrix multiplication. * @param[in] *pSrcA points to the first input matrix structure * @param[in] *pSrcB points to the second input matrix structure * @param[out] *pDst points to output matrix structure * @return The function returns either * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. */ arm_status arm_mat_mult_f32( const arm_matrix_instance_f32 * pSrcA, const arm_matrix_instance_f32 * pSrcB, arm_matrix_instance_f32 * pDst) { float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ float32_t *px; /* Temporary output data matrix pointer */ float32_t sum; /* Accumulator */ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ float32_t in1, in2, in3, in4; uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */ arm_status status; /* status of matrix multiplication */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if((pSrcA->numCols != pSrcB->numRows) || (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ /* row loop */ do { /* Output pointer is set to starting address of the row being processed */ px = pOut + i; /* For every row wise process, the column loop counter is to be initiated */ col = numColsB; /* For every row wise process, the pIn2 pointer is set ** to the starting address of the pSrcB data */ pIn2 = pSrcB->pData; j = 0u; /* column loop */ do { /* Set the variable sum, that acts as accumulator, to zero */ sum = 0.0f; /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ pIn1 = pInA; /* Apply loop unrolling and compute 4 MACs simultaneously. */ colCnt = numColsA >> 2u; /* matrix multiplication */ while(colCnt > 0u) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ in3 = *pIn2; pIn2 += numColsB; in1 = pIn1[0]; in2 = pIn1[1]; sum += in1 * in3; in4 = *pIn2; pIn2 += numColsB; sum += in2 * in4; in3 = *pIn2; pIn2 += numColsB; in1 = pIn1[2]; in2 = pIn1[3]; sum += in1 * in3; in4 = *pIn2; pIn2 += numColsB; sum += in2 * in4; pIn1 += 4u; /* Decrement the loop count */ colCnt--; } /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ colCnt = numColsA % 0x4u; while(colCnt > 0u) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ sum += *pIn1++ * (*pIn2); pIn2 += numColsB; /* Decrement the loop counter */ colCnt--; } /* Store the result in the destination buffer */ *px++ = sum; /* Update the pointer pIn2 to point to the starting address of the next column */ j++; pIn2 = pSrcB->pData + j; /* Decrement the column loop counter */ col--; } while(col > 0u); #else /* Run the below code for Cortex-M0 */ float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */ uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */ arm_status status; /* status of matrix multiplication */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if((pSrcA->numCols != pSrcB->numRows) || (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* The following loop performs the dot-product of each row in pInA with each column in pInB */ /* row loop */ do { /* Output pointer is set to starting address of the row being processed */ px = pOut + i; /* For every row wise process, the column loop counter is to be initiated */ col = numColsB; /* For every row wise process, the pIn2 pointer is set ** to the starting address of the pSrcB data */ pIn2 = pSrcB->pData; /* column loop */ do { /* Set the variable sum, that acts as accumulator, to zero */ sum = 0.0f; /* Initialize the pointer pIn1 to point to the starting address of the row being processed */ pIn1 = pInA; /* Matrix A columns number of MAC operations are to be performed */ colCnt = numColsA; while(colCnt > 0u) { /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ sum += *pIn1++ * (*pIn2); pIn2 += numColsB; /* Decrement the loop counter */ colCnt--; } /* Store the result in the destination buffer */ *px++ = sum; /* Decrement the column loop counter */ col--; /* Update the pointer pIn2 to point to the starting address of the next column */ pIn2 = pInB + (numColsB - col); } while(col > 0u); #endif /* #ifndef ARM_MATH_CM0_FAMILY */ /* Update the pointer pInA to point to the starting address of the next row */ i = i + numColsB; pInA = pInA + numColsA; /* Decrement the row loop counter */ row--; } while(row > 0u); /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixMult group */