Library to use Arduino USB host shield on mbed
ArduinoのUSB Host Shield 2.0をmbedで使えるようにしたライブラリです。
大体のコードがArduinoからそのまま移植可能です。
Arduino UNOやMega用のホストシールド以外にもミニサイズのホストシールドでも使用可能です
シールドについて
3.3VのI/O用にシールドの改造が必要になりますがネット上に記事がたくさんあるのでそちらを参考にしてください
接続例
使い方
Arduinoのコードと違うのはUSBのインスタンスの宣言部分のみです。
ピンを自分で指定できるようにしたので使いやすくなりました。
仕様
- Arduinoのmillis関数、micros関数の移植のために内部でTimerクラスを使用しています。
main.cpp
#include "mbed.h" #include <PS3BT.h> #include <usbhub.h> Serial pc(USBTX, USBRX, 115200); //Nucleo f303k8用 USB Usb(A6, A5, A4, A3, A2); // mosi, miso, sclk, ssel, intr BTD Btd(&Usb); PS3BT PS3(&Btd); int main() { bool printAngle = false; if (Usb.Init() == -1) { pc.printf("\r\nOSC did not start"); while (1); // Halt } pc.printf("\r\nPS3 USB Library Started"); while (1) { Usb.Task(); if (PS3.PS3Connected || PS3.PS3NavigationConnected) { if (PS3.getAnalogHat(LeftHatX) > 137 || PS3.getAnalogHat(LeftHatX) < 117 || PS3.getAnalogHat(LeftHatY) > 137 || PS3.getAnalogHat(LeftHatY) < 117 || PS3.getAnalogHat(RightHatX) > 137 || PS3.getAnalogHat(RightHatX) < 117 || PS3.getAnalogHat(RightHatY) > 137 || PS3.getAnalogHat(RightHatY) < 117) { pc.printf("\r\nLeftHatX: %d", PS3.getAnalogHat(LeftHatX)); pc.printf("\tLeftHatY: %d", PS3.getAnalogHat(LeftHatY)); if (PS3.PS3Connected) { // The Navigation controller only have one joystick pc.printf("\tRightHatX: %d", PS3.getAnalogHat(RightHatX)); pc.printf("\tRightHatY: %d", PS3.getAnalogHat(RightHatY)); } } // Analog button values can be read from almost all buttons if (PS3.getAnalogButton(L2) || PS3.getAnalogButton(R2)) { pc.printf("\r\nL2: %d", PS3.getAnalogButton(L2)); if (!PS3.PS3NavigationConnected) { pc.printf("\tR2: %d", PS3.getAnalogButton(R2)); } } if (PS3.getButtonClick(PS)) { PS3.disconnect(); pc.printf("\r\nPS"); } if (PS3.getButtonClick(TRIANGLE)) pc.printf("\r\nTriangle"); if (PS3.getButtonClick(CIRCLE)) pc.printf("\r\nCircle"); if (PS3.getButtonClick(CROSS)) pc.printf("\r\nCross"); if (PS3.getButtonClick(SQUARE)) pc.printf("\r\nSquare"); if (PS3.getButtonClick(UP)) { pc.printf("\r\nUp"); PS3.setLedOff(); PS3.setLedOn(CONTROLLER_LED4); } if (PS3.getButtonClick(RIGHT)) { pc.printf("\r\nRight"); PS3.setLedOff(); PS3.setLedOn(CONTROLLER_LED1); } if (PS3.getButtonClick(DOWN)) { pc.printf("\r\nDown"); PS3.setLedOff(); PS3.setLedOn(CONTROLLER_LED2); } if (PS3.getButtonClick(LEFT)) { pc.printf("\r\nLeft"); PS3.setLedOff(); PS3.setLedOn(CONTROLLER_LED3); } if (PS3.getButtonClick(L1)) pc.printf("\r\nL1"); if (PS3.getButtonClick(L3)) pc.printf("\r\nL3"); if (PS3.getButtonClick(R1)) pc.printf("\r\nR1"); if (PS3.getButtonClick(R3)) pc.printf("\r\nR3"); if (PS3.getButtonClick(SELECT)) { pc.printf("\r\nSelect - "); PS3.printStatusString(); } if (PS3.getButtonClick(START)) { pc.printf("\r\nStart"); printAngle = !printAngle; } if (printAngle) { pc.printf("\r\nPitch: %.3lf", PS3.getAngle(Pitch)); pc.printf("\tRoll: %.3lf", PS3.getAngle(Roll)); } } else { pc.printf("not connect\n"); } } }
USB_Host/cdcftdi.cpp
- Committer:
- robo_ichinoseki_a
- Date:
- 2020-05-02
- Revision:
- 1:da31140f2a1c
- Parent:
- 0:b1ce54272580
File content as of revision 1:da31140f2a1c:
/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved. This software may be distributed and modified under the terms of the GNU General Public License version 2 (GPL2) as published by the Free Software Foundation and appearing in the file GPL2.TXT included in the packaging of this file. Please note that GPL2 Section 2[b] requires that all works based on this software must also be made publicly available under the terms of the GPL2 ("Copyleft"). Contact information ------------------- Circuits At Home, LTD Web : http://www.circuitsathome.com e-mail : support@circuitsathome.com */ #include "cdcftdi.h" const uint8_t FTDI::epDataInIndex = 1; const uint8_t FTDI::epDataOutIndex = 2; const uint8_t FTDI::epInterruptInIndex = 3; FTDI::FTDI(USB *p, FTDIAsyncOper *pasync, uint16_t idProduct) : pAsync(pasync), pUsb(p), bAddress(0), bNumEP(1), wFTDIType(0), wIdProduct(idProduct) { for(uint8_t i = 0; i < FTDI_MAX_ENDPOINTS; i++) { epInfo[i].epAddr = 0; epInfo[i].maxPktSize = (i) ? 0 : 8; epInfo[i].bmSndToggle = 0; epInfo[i].bmRcvToggle = 0; epInfo[i].bmNakPower = (i == epDataInIndex) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER; } if(pUsb) pUsb->RegisterDeviceClass(this); } uint8_t FTDI::Init(uint8_t parent, uint8_t port, bool lowspeed) { const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR); uint8_t buf[constBufSize]; USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf); uint8_t rcode; UsbDevice *p = NULL; EpInfo *oldep_ptr = NULL; uint8_t num_of_conf; // number of configurations AddressPool &addrPool = pUsb->GetAddressPool(); USBTRACE("FTDI Init\r\n"); if(bAddress) { USBTRACE("FTDI CLASS IN USE??\r\n"); return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE; } // Get pointer to pseudo device with address 0 assigned p = addrPool.GetUsbDevicePtr(0); if(!p) { USBTRACE("FTDI NO ADDRESS??\r\n"); return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; } if(!p->epinfo) { USBTRACE("epinfo\r\n"); return USB_ERROR_EPINFO_IS_NULL; } // Save old pointer to EP_RECORD of address 0 oldep_ptr = p->epinfo; // Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence p->epinfo = epInfo; p->lowspeed = lowspeed; // Get device descriptor rcode = pUsb->getDevDescr(0, 0, sizeof (USB_DEVICE_DESCRIPTOR), buf); // Restore p->epinfo p->epinfo = oldep_ptr; if(rcode) { goto FailGetDevDescr; } if(udd->idVendor != FTDI_VID || udd->idProduct != wIdProduct) { USBTRACE("FTDI Init: Product not supported\r\n"); USBTRACE2("Expected VID:", FTDI_VID); USBTRACE2("Found VID:", udd->idVendor); USBTRACE2("Expected PID:", wIdProduct); USBTRACE2("Found PID:", udd->idProduct); return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; } // Save type of FTDI chip wFTDIType = udd->bcdDevice; // Allocate new address according to device class bAddress = addrPool.AllocAddress(parent, false, port); if(!bAddress) return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL; // Extract Max Packet Size from the device descriptor epInfo[0].maxPktSize = udd->bMaxPacketSize0; // Some devices set endpoint lengths to zero, which is incorrect. // we should check them, and if zero, set them to 64. if(epInfo[0].maxPktSize == 0) epInfo[0].maxPktSize = 64; // Assign new address to the device rcode = pUsb->setAddr(0, 0, bAddress); if(rcode) { p->lowspeed = false; addrPool.FreeAddress(bAddress); bAddress = 0; USBTRACE2("setAddr:", rcode); return rcode; } USBTRACE2("Addr:", bAddress); p->lowspeed = false; p = addrPool.GetUsbDevicePtr(bAddress); if(!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL; p->lowspeed = lowspeed; num_of_conf = udd->bNumConfigurations; // Assign epInfo to epinfo pointer rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo); if(rcode) goto FailSetDevTblEntry; USBTRACE2("NC:", num_of_conf); for(uint8_t i = 0; i < num_of_conf; i++) { ConfigDescParser < 0xFF, 0xFF, 0xFF, CP_MASK_COMPARE_ALL> confDescrParser(this); // This interferes with serial output, and should be opt-in for debugging. //HexDumper<USBReadParser, uint16_t, uint16_t> HexDump; //rcode = pUsb->getConfDescr(bAddress, 0, i, &HexDump); //if(rcode) // goto FailGetConfDescr; rcode = pUsb->getConfDescr(bAddress, 0, i, &confDescrParser); if(rcode) goto FailGetConfDescr; if(bNumEP > 1) break; } // for if(bNumEP < 2) return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED; USBTRACE2("NumEP:", bNumEP); // Assign epInfo to epinfo pointer rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo); USBTRACE2("Conf:", bConfNum); // Set Configuration Value rcode = pUsb->setConf(bAddress, 0, bConfNum); if(rcode) goto FailSetConfDescr; // default latency is 16ms on-chip, reduce it to 1 rcode = SetLatency(1); if(rcode) goto FailOnLatency; rcode = pAsync->OnInit(this); if(rcode) goto FailOnInit; USBTRACE("FTDI configured\r\n"); ready = true; return 0; FailOnLatency: #ifdef DEBUG_USB_HOST USBTRACE("SetLatency: "); goto Fail; #endif FailGetDevDescr: #ifdef DEBUG_USB_HOST NotifyFailGetDevDescr(); goto Fail; #endif FailSetDevTblEntry: #ifdef DEBUG_USB_HOST NotifyFailSetDevTblEntry(); goto Fail; #endif FailGetConfDescr: #ifdef DEBUG_USB_HOST NotifyFailGetConfDescr(); goto Fail; #endif FailSetConfDescr: #ifdef DEBUG_USB_HOST NotifyFailSetConfDescr(); goto Fail; #endif FailOnInit: #ifdef DEBUG_USB_HOST USBTRACE("OnInit:"); Fail: NotifyFail(rcode); #endif Release(); return rcode; } void FTDI::EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto __attribute__((unused)), const USB_ENDPOINT_DESCRIPTOR *pep) { ErrorMessage<uint8_t > (PSTR("Conf.Val"), conf); ErrorMessage<uint8_t > (PSTR("Iface Num"), iface); ErrorMessage<uint8_t > (PSTR("Alt.Set"), alt); bConfNum = conf; uint8_t index; if((pep->bmAttributes & bmUSB_TRANSFER_TYPE) == USB_TRANSFER_TYPE_INTERRUPT && (pep->bEndpointAddress & 0x80) == 0x80) index = epInterruptInIndex; else if((pep->bmAttributes & bmUSB_TRANSFER_TYPE) == USB_TRANSFER_TYPE_BULK) index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex; else return; // Fill in the endpoint info structure epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F); epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize; epInfo[index].bmSndToggle = 0; epInfo[index].bmRcvToggle = 0; // Some device vendors set endpoint lengths to zero, which is incorrect. // Check, and if zero, set to 64. if(epInfo[index].maxPktSize == 0) epInfo[index].maxPktSize = 64; bNumEP++; PrintEndpointDescriptor(pep); } uint8_t FTDI::Release() { pUsb->GetAddressPool().FreeAddress(bAddress); bAddress = 0; bNumEP = 1; qNextPollTime = 0; bPollEnable = false; ready = false; return pAsync->OnRelease(this); } uint8_t FTDI::Poll() { uint8_t rcode = 0; //if (!bPollEnable) // return 0; //if (qNextPollTime <= (uint32_t)millis()) //{ // USB_HOST_SERIAL.println(bAddress, HEX); // qNextPollTime = (uint32_t)millis() + 100; //} return rcode; } uint8_t FTDI::SetBaudRate(uint32_t baud) { uint16_t baud_value, baud_index = 0; uint32_t divisor3; divisor3 = 48000000 / 2 / baud; // divisor shifted 3 bits to the left if(wFTDIType == FT232AM) { if((divisor3 & 0x7) == 7) divisor3++; // round x.7/8 up to x+1 baud_value = divisor3 >> 3; divisor3 &= 0x7; if(divisor3 == 1) baud_value |= 0xc000; else // 0.125 if(divisor3 >= 4) baud_value |= 0x4000; else // 0.5 if(divisor3 != 0) baud_value |= 0x8000; // 0.25 if(baud_value == 1) baud_value = 0; /* special case for maximum baud rate */ } else { static const uint8_t divfrac [8] = {0, 3, 2, 0, 1, 1, 2, 3}; static const uint8_t divindex[8] = {0, 0, 0, 1, 0, 1, 1, 1}; baud_value = divisor3 >> 3; baud_value |= divfrac [divisor3 & 0x7] << 14; baud_index = divindex[divisor3 & 0x7]; /* Deal with special cases for highest baud rates. */ if(baud_value == 1) baud_value = 0; else // 1.0 if(baud_value == 0x4001) baud_value = 1; // 1.5 } USBTRACE2("baud_value:", baud_value); USBTRACE2("baud_index:", baud_index); uint8_t rv = pUsb->ctrlReq(bAddress, 0, bmREQ_FTDI_OUT, FTDI_SIO_SET_BAUD_RATE, baud_value & 0xff, baud_value >> 8, baud_index, 0, 0, NULL, NULL); if(rv && rv != hrNAK) { Release(); } return rv; } // No docs on if this is 8 or 16 bit, so play it safe, make maximum 255ms uint8_t FTDI::SetLatency(uint8_t l) { uint8_t rv = pUsb->ctrlReq(bAddress, 0, bmREQ_FTDI_OUT, FTDI_SIO_SET_LATENCY_TIMER, l, 0, 0, 0, 0, NULL, NULL); if(rv && rv != hrNAK) { Release(); } return rv; } // No docs on if this is 8 or 16 bit, so play it safe, make maximum 255ms uint8_t FTDI::GetLatency(uint8_t *l) { uint8_t rv = pUsb->ctrlReq(bAddress, 0, bmREQ_FTDI_OUT, FTDI_SIO_GET_LATENCY_TIMER, 0, 0, 0, 0, 1, (uint8_t *)l, NULL); if(rv && rv != hrNAK) { Release(); } return rv; } uint8_t FTDI::SetModemControl(uint16_t signal) { uint8_t rv = pUsb->ctrlReq(bAddress, 0, bmREQ_FTDI_OUT, FTDI_SIO_MODEM_CTRL, signal & 0xff, signal >> 8, 0, 0, 0, NULL, NULL); if(rv && rv != hrNAK) { Release(); } return rv; } uint8_t FTDI::SetFlowControl(uint8_t protocol, uint8_t xon, uint8_t xoff) { uint8_t rv = pUsb->ctrlReq(bAddress, 0, bmREQ_FTDI_OUT, FTDI_SIO_SET_FLOW_CTRL, xon, xoff, protocol << 8, 0, 0, NULL, NULL); if(rv && rv != hrNAK) { Release(); } return rv; } uint8_t FTDI::SetData(uint16_t databm) { uint8_t rv = pUsb->ctrlReq(bAddress, 0, bmREQ_FTDI_OUT, FTDI_SIO_SET_DATA, databm & 0xff, databm >> 8, 0, 0, 0, NULL, NULL); if(rv && rv != hrNAK) { Release(); } return rv; } uint8_t FTDI::RcvData(uint16_t *bytes_rcvd, uint8_t *dataptr) { uint8_t rv = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, bytes_rcvd, dataptr); if(rv && rv != hrNAK) { Release(); } return rv; } uint8_t FTDI::SndData(uint16_t nbytes, uint8_t *dataptr) { uint8_t rv = pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, nbytes, dataptr); if(rv && rv != hrNAK) { Release(); } return rv; } void FTDI::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR* ep_ptr) { Notify(PSTR("Endpoint descriptor:"), 0x80); Notify(PSTR("\r\nLength:\t\t"), 0x80); D_PrintHex<uint8_t > (ep_ptr->bLength, 0x80); Notify(PSTR("\r\nType:\t\t"), 0x80); D_PrintHex<uint8_t > (ep_ptr->bDescriptorType, 0x80); Notify(PSTR("\r\nAddress:\t"), 0x80); D_PrintHex<uint8_t > (ep_ptr->bEndpointAddress, 0x80); Notify(PSTR("\r\nAttributes:\t"), 0x80); D_PrintHex<uint8_t > (ep_ptr->bmAttributes, 0x80); Notify(PSTR("\r\nMaxPktSize:\t"), 0x80); D_PrintHex<uint16_t > (ep_ptr->wMaxPacketSize, 0x80); Notify(PSTR("\r\nPoll Intrv:\t"), 0x80); D_PrintHex<uint8_t > (ep_ptr->bInterval, 0x80); Notify(PSTR("\r\n"), 0x80); }