Library to use Arduino USB host shield on mbed

Dependents:   USBHOST_PS5

ArduinoのUSB Host Shield 2.0をmbedで使えるようにしたライブラリです。
大体のコードがArduinoからそのまま移植可能です。

Arduino UNOやMega用のホストシールド以外にもミニサイズのホストシールドでも使用可能です https://os.mbed.com/media/uploads/kotakku/dffgfddswa.png

シールドについて

3.3VのI/O用にシールドの改造が必要になりますがネット上に記事がたくさんあるのでそちらを参考にしてください

接続例

https://os.mbed.com/media/uploads/kotakku/esgsvfvhjrekldkcjxvb.png

使い方

Arduinoのコードと違うのはUSBのインスタンスの宣言部分のみです。
ピンを自分で指定できるようにしたので使いやすくなりました。

仕様

  • Arduinoのmillis関数、micros関数の移植のために内部でTimerクラスを使用しています。

main.cpp

#include "mbed.h"
#include <PS3BT.h>
#include <usbhub.h>

Serial pc(USBTX, USBRX, 115200);

//Nucleo f303k8用
USB Usb(A6, A5, A4, A3, A2); // mosi, miso, sclk, ssel, intr
BTD Btd(&Usb);
PS3BT PS3(&Btd);

int main()
{
    bool printAngle = false;

    if (Usb.Init() == -1)
    {
        pc.printf("\r\nOSC did not start");
        while (1); // Halt
    }
    pc.printf("\r\nPS3 USB Library Started");

    while (1)
    {
        Usb.Task();
        
        if (PS3.PS3Connected || PS3.PS3NavigationConnected) {
            if (PS3.getAnalogHat(LeftHatX) > 137 || PS3.getAnalogHat(LeftHatX) < 117 || PS3.getAnalogHat(LeftHatY) > 137 || PS3.getAnalogHat(LeftHatY) < 117 || PS3.getAnalogHat(RightHatX) > 137 || PS3.getAnalogHat(RightHatX) < 117 || PS3.getAnalogHat(RightHatY) > 137 || PS3.getAnalogHat(RightHatY) < 117)
            {
                pc.printf("\r\nLeftHatX: %d", PS3.getAnalogHat(LeftHatX));
                pc.printf("\tLeftHatY: %d", PS3.getAnalogHat(LeftHatY));
                if (PS3.PS3Connected)
                { // The Navigation controller only have one joystick
                    pc.printf("\tRightHatX: %d", PS3.getAnalogHat(RightHatX));
                    pc.printf("\tRightHatY: %d", PS3.getAnalogHat(RightHatY));
                }
            }
            // Analog button values can be read from almost all buttons
            if (PS3.getAnalogButton(L2) || PS3.getAnalogButton(R2))
            {
                pc.printf("\r\nL2: %d", PS3.getAnalogButton(L2));
                if (!PS3.PS3NavigationConnected)
                {
                    pc.printf("\tR2: %d", PS3.getAnalogButton(R2));
                }
            }
            if (PS3.getButtonClick(PS))
            {
                PS3.disconnect();
                pc.printf("\r\nPS");
            }
    
            if (PS3.getButtonClick(TRIANGLE))
                pc.printf("\r\nTriangle");
            if (PS3.getButtonClick(CIRCLE))
                pc.printf("\r\nCircle");
            if (PS3.getButtonClick(CROSS))
                pc.printf("\r\nCross");
            if (PS3.getButtonClick(SQUARE))
                pc.printf("\r\nSquare");
    
            if (PS3.getButtonClick(UP))
            {
                pc.printf("\r\nUp");
                PS3.setLedOff();
                PS3.setLedOn(CONTROLLER_LED4);
            }
            if (PS3.getButtonClick(RIGHT))
            {
                pc.printf("\r\nRight");
                PS3.setLedOff();
                PS3.setLedOn(CONTROLLER_LED1);
            }
            if (PS3.getButtonClick(DOWN))
            {
                pc.printf("\r\nDown");
                PS3.setLedOff();
                PS3.setLedOn(CONTROLLER_LED2);
            }
            if (PS3.getButtonClick(LEFT))
            {
                pc.printf("\r\nLeft");
                PS3.setLedOff();
                PS3.setLedOn(CONTROLLER_LED3);
            }
    
            if (PS3.getButtonClick(L1))
                pc.printf("\r\nL1");
            if (PS3.getButtonClick(L3))
                pc.printf("\r\nL3");
            if (PS3.getButtonClick(R1))
                pc.printf("\r\nR1");
            if (PS3.getButtonClick(R3))
                pc.printf("\r\nR3");
    
            if (PS3.getButtonClick(SELECT))
            {
                pc.printf("\r\nSelect - ");
                PS3.printStatusString();
            }
            if (PS3.getButtonClick(START))
            {
                pc.printf("\r\nStart");
                printAngle = !printAngle;
            }
            if (printAngle)
            {
                pc.printf("\r\nPitch: %.3lf", PS3.getAngle(Pitch));
                pc.printf("\tRoll: %.3lf", PS3.getAngle(Roll));
            }
        }
        else
        {
            pc.printf("not connect\n");
        }
    }
}

USB_Host/cdcacm.cpp

Committer:
robo_ichinoseki_a
Date:
2020-05-02
Revision:
1:da31140f2a1c
Parent:
0:b1ce54272580

File content as of revision 1:da31140f2a1c:

/* Copyright (C) 2011 Circuits At Home, LTD. All rights reserved.

This software may be distributed and modified under the terms of the GNU
General Public License version 2 (GPL2) as published by the Free Software
Foundation and appearing in the file GPL2.TXT included in the packaging of
this file. Please note that GPL2 Section 2[b] requires that all works based
on this software must also be made publicly available under the terms of
the GPL2 ("Copyleft").

Contact information
-------------------

Circuits At Home, LTD
Web      :  http://www.circuitsathome.com
e-mail   :  support@circuitsathome.com
 */
#include "cdcacm.h"

const uint8_t ACM::epDataInIndex = 1;
const uint8_t ACM::epDataOutIndex = 2;
const uint8_t ACM::epInterruptInIndex = 3;

ACM::ACM(USB *p, CDCAsyncOper *pasync) :
pUsb(p),
pAsync(pasync),
bAddress(0),
bControlIface(0),
bDataIface(0),
bNumEP(1),
qNextPollTime(0),
bPollEnable(false),
ready(false) {
        _enhanced_status = enhanced_features(); // Set up features
        for(uint8_t i = 0; i < ACM_MAX_ENDPOINTS; i++) {
                epInfo[i].epAddr = 0;
                epInfo[i].maxPktSize = (i) ? 0 : 8;
                epInfo[i].bmSndToggle = 0;
                epInfo[i].bmRcvToggle = 0;
                epInfo[i].bmNakPower = (i == epDataInIndex) ? USB_NAK_NOWAIT : USB_NAK_MAX_POWER;

        }
        if(pUsb)
                pUsb->RegisterDeviceClass(this);
}

uint8_t ACM::Init(uint8_t parent, uint8_t port, bool lowspeed) {

        const uint8_t constBufSize = sizeof (USB_DEVICE_DESCRIPTOR);

        uint8_t buf[constBufSize];
        USB_DEVICE_DESCRIPTOR * udd = reinterpret_cast<USB_DEVICE_DESCRIPTOR*>(buf);

        uint8_t rcode;
        UsbDevice *p = NULL;
        EpInfo *oldep_ptr = NULL;
        uint8_t num_of_conf; // number of configurations

        AddressPool &addrPool = pUsb->GetAddressPool();

        USBTRACE("ACM Init\r\n");

        if(bAddress)
                return USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE;

        // Get pointer to pseudo device with address 0 assigned
        p = addrPool.GetUsbDevicePtr(0);

        if(!p)
                return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;

        if(!p->epinfo) {
                USBTRACE("epinfo\r\n");
                return USB_ERROR_EPINFO_IS_NULL;
        }

        // Save old pointer to EP_RECORD of address 0
        oldep_ptr = p->epinfo;

        // Temporary assign new pointer to epInfo to p->epinfo in order to avoid toggle inconsistence
        p->epinfo = epInfo;

        p->lowspeed = lowspeed;

        // Get device descriptor
        rcode = pUsb->getDevDescr(0, 0, constBufSize, (uint8_t*)buf);

        // Restore p->epinfo
        p->epinfo = oldep_ptr;

        if(rcode)
                goto FailGetDevDescr;

        // Allocate new address according to device class
        bAddress = addrPool.AllocAddress(parent, false, port);

        if(!bAddress)
                return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;

        // Extract Max Packet Size from the device descriptor
        epInfo[0].maxPktSize = udd->bMaxPacketSize0;

        // Assign new address to the device
        rcode = pUsb->setAddr(0, 0, bAddress);

        if(rcode) {
                p->lowspeed = false;
                addrPool.FreeAddress(bAddress);
                bAddress = 0;
                USBTRACE2("setAddr:", rcode);
                return rcode;
        }

        USBTRACE2("Addr:", bAddress);

        p->lowspeed = false;

        p = addrPool.GetUsbDevicePtr(bAddress);

        if(!p)
                return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;

        p->lowspeed = lowspeed;

        num_of_conf = udd->bNumConfigurations;

        // Assign epInfo to epinfo pointer
        rcode = pUsb->setEpInfoEntry(bAddress, 1, epInfo);

        if(rcode)
                goto FailSetDevTblEntry;

        USBTRACE2("NC:", num_of_conf);

        for(uint8_t i = 0; i < num_of_conf; i++) {
                ConfigDescParser< USB_CLASS_COM_AND_CDC_CTRL,
                        CDC_SUBCLASS_ACM,
                        CDC_PROTOCOL_ITU_T_V_250,
                        CP_MASK_COMPARE_CLASS |
                        CP_MASK_COMPARE_SUBCLASS |
                        CP_MASK_COMPARE_PROTOCOL > CdcControlParser(this);

                ConfigDescParser<USB_CLASS_CDC_DATA, 0, 0,
                        CP_MASK_COMPARE_CLASS> CdcDataParser(this);

                rcode = pUsb->getConfDescr(bAddress, 0, i, &CdcControlParser);

                if(rcode)
                        goto FailGetConfDescr;

                rcode = pUsb->getConfDescr(bAddress, 0, i, &CdcDataParser);

                if(rcode)
                        goto FailGetConfDescr;

                if(bNumEP > 1)
                        break;
        } // for

        if(bNumEP < 4)
                return USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED;

        // Assign epInfo to epinfo pointer
        rcode = pUsb->setEpInfoEntry(bAddress, bNumEP, epInfo);

        USBTRACE2("Conf:", bConfNum);

        // Set Configuration Value
        rcode = pUsb->setConf(bAddress, 0, bConfNum);

        if(rcode)
                goto FailSetConfDescr;

        // Set up features status
        _enhanced_status = enhanced_features();
        half_duplex(false);
        autoflowRTS(false);
        autoflowDSR(false);
        autoflowXON(false);
        wide(false); // Always false, because this is only available in custom mode.
        rcode = pAsync->OnInit(this);

        if(rcode)
                goto FailOnInit;

        USBTRACE("ACM configured\r\n");

        ready = true;

        //bPollEnable = true;

        //USBTRACE("Poll enabled\r\n");
        return 0;

FailGetDevDescr:
#ifdef DEBUG_USB_HOST
        NotifyFailGetDevDescr();
        goto Fail;
#endif

FailSetDevTblEntry:
#ifdef DEBUG_USB_HOST
        NotifyFailSetDevTblEntry();
        goto Fail;
#endif

FailGetConfDescr:
#ifdef DEBUG_USB_HOST
        NotifyFailGetConfDescr();
        goto Fail;
#endif

FailSetConfDescr:
#ifdef DEBUG_USB_HOST
        NotifyFailSetConfDescr();
        goto Fail;
#endif

FailOnInit:
#ifdef DEBUG_USB_HOST
        USBTRACE("OnInit:");
#endif

#ifdef DEBUG_USB_HOST
Fail:
        NotifyFail(rcode);
#endif
        Release();
        return rcode;
}

void ACM::EndpointXtract(uint8_t conf, uint8_t iface __attribute__((unused)), uint8_t alt __attribute__((unused)), uint8_t proto __attribute__((unused)), const USB_ENDPOINT_DESCRIPTOR *pep) {
        //ErrorMessage<uint8_t > (PSTR("Conf.Val"), conf);
        //ErrorMessage<uint8_t > (PSTR("Iface Num"), iface);
        //ErrorMessage<uint8_t > (PSTR("Alt.Set"), alt);

        bConfNum = conf;

        uint8_t index;

        if((pep->bmAttributes & bmUSB_TRANSFER_TYPE) == USB_TRANSFER_TYPE_INTERRUPT && (pep->bEndpointAddress & 0x80) == 0x80)
                index = epInterruptInIndex;
        else if((pep->bmAttributes & bmUSB_TRANSFER_TYPE) == USB_TRANSFER_TYPE_BULK)
                index = ((pep->bEndpointAddress & 0x80) == 0x80) ? epDataInIndex : epDataOutIndex;
        else
                return;

        // Fill in the endpoint info structure
        epInfo[index].epAddr = (pep->bEndpointAddress & 0x0F);
        epInfo[index].maxPktSize = (uint8_t)pep->wMaxPacketSize;
        epInfo[index].bmSndToggle = 0;
        epInfo[index].bmRcvToggle = 0;

        bNumEP++;

        PrintEndpointDescriptor(pep);
}

uint8_t ACM::Release() {
        ready = false;
        pUsb->GetAddressPool().FreeAddress(bAddress);

        bControlIface = 0;
        bDataIface = 0;
        bNumEP = 1;

        bAddress = 0;
        qNextPollTime = 0;
        bPollEnable = false;
        return 0;
}

uint8_t ACM::Poll() {
        //uint8_t rcode = 0;
        //if(!bPollEnable)
        //        return 0;
        //return rcode;
        return 0;
}

uint8_t ACM::RcvData(uint16_t *bytes_rcvd, uint8_t *dataptr) {
        uint8_t rv = pUsb->inTransfer(bAddress, epInfo[epDataInIndex].epAddr, bytes_rcvd, dataptr);
        if(rv && rv != hrNAK) {
                Release();
        }
        return rv;
}

uint8_t ACM::SndData(uint16_t nbytes, uint8_t *dataptr) {
        uint8_t rv = pUsb->outTransfer(bAddress, epInfo[epDataOutIndex].epAddr, nbytes, dataptr);
        if(rv && rv != hrNAK) {
                Release();
        }
        return rv;
}

uint8_t ACM::SetCommFeature(uint16_t fid, uint8_t nbytes, uint8_t *dataptr) {
        uint8_t rv = ( pUsb->ctrlReq(bAddress, 0, bmREQ_CDCOUT, CDC_SET_COMM_FEATURE, (fid & 0xff), (fid >> 8), bControlIface, nbytes, nbytes, dataptr, NULL));
        if(rv && rv != hrNAK) {
                Release();
        }
        return rv;
}

uint8_t ACM::GetCommFeature(uint16_t fid, uint8_t nbytes, uint8_t *dataptr) {
        uint8_t rv = ( pUsb->ctrlReq(bAddress, 0, bmREQ_CDCIN, CDC_GET_COMM_FEATURE, (fid & 0xff), (fid >> 8), bControlIface, nbytes, nbytes, dataptr, NULL));
        if(rv && rv != hrNAK) {
                Release();
        }
        return rv;
}

uint8_t ACM::ClearCommFeature(uint16_t fid) {
        uint8_t rv = ( pUsb->ctrlReq(bAddress, 0, bmREQ_CDCOUT, CDC_CLEAR_COMM_FEATURE, (fid & 0xff), (fid >> 8), bControlIface, 0, 0, NULL, NULL));
        if(rv && rv != hrNAK) {
                Release();
        }
        return rv;
}

uint8_t ACM::SetLineCoding(const LINE_CODING *dataptr) {
        uint8_t rv = ( pUsb->ctrlReq(bAddress, 0, bmREQ_CDCOUT, CDC_SET_LINE_CODING, 0x00, 0x00, bControlIface, sizeof (LINE_CODING), sizeof (LINE_CODING), (uint8_t*)dataptr, NULL));
        if(rv && rv != hrNAK) {
                Release();
        }
        return rv;
}

uint8_t ACM::GetLineCoding(LINE_CODING *dataptr) {
        uint8_t rv = ( pUsb->ctrlReq(bAddress, 0, bmREQ_CDCIN, CDC_GET_LINE_CODING, 0x00, 0x00, bControlIface, sizeof (LINE_CODING), sizeof (LINE_CODING), (uint8_t*)dataptr, NULL));
        if(rv && rv != hrNAK) {
                Release();
        }
        return rv;
}

uint8_t ACM::SetControlLineState(uint8_t state) {
        uint8_t rv = ( pUsb->ctrlReq(bAddress, 0, bmREQ_CDCOUT, CDC_SET_CONTROL_LINE_STATE, state, 0, bControlIface, 0, 0, NULL, NULL));
        if(rv && rv != hrNAK) {
                Release();
        }
        return rv;
}

uint8_t ACM::SendBreak(uint16_t duration) {
        uint8_t rv = ( pUsb->ctrlReq(bAddress, 0, bmREQ_CDCOUT, CDC_SEND_BREAK, (duration & 0xff), (duration >> 8), bControlIface, 0, 0, NULL, NULL));
        if(rv && rv != hrNAK) {
                Release();
        }
        return rv;
}

void ACM::PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR* ep_ptr) {
        Notify(PSTR("Endpoint descriptor:"), 0x80);
        Notify(PSTR("\r\nLength:\t\t"), 0x80);
        D_PrintHex<uint8_t > (ep_ptr->bLength, 0x80);
        Notify(PSTR("\r\nType:\t\t"), 0x80);
        D_PrintHex<uint8_t > (ep_ptr->bDescriptorType, 0x80);
        Notify(PSTR("\r\nAddress:\t"), 0x80);
        D_PrintHex<uint8_t > (ep_ptr->bEndpointAddress, 0x80);
        Notify(PSTR("\r\nAttributes:\t"), 0x80);
        D_PrintHex<uint8_t > (ep_ptr->bmAttributes, 0x80);
        Notify(PSTR("\r\nMaxPktSize:\t"), 0x80);
        D_PrintHex<uint16_t > (ep_ptr->wMaxPacketSize, 0x80);
        Notify(PSTR("\r\nPoll Intrv:\t"), 0x80);
        D_PrintHex<uint8_t > (ep_ptr->bInterval, 0x80);
        Notify(PSTR("\r\n"), 0x80);
}