Library to use Arduino USB host shield on mbed
ArduinoのUSB Host Shield 2.0をmbedで使えるようにしたライブラリです。
大体のコードがArduinoからそのまま移植可能です。
Arduino UNOやMega用のホストシールド以外にもミニサイズのホストシールドでも使用可能です
シールドについて
3.3VのI/O用にシールドの改造が必要になりますがネット上に記事がたくさんあるのでそちらを参考にしてください
接続例
使い方
Arduinoのコードと違うのはUSBのインスタンスの宣言部分のみです。
ピンを自分で指定できるようにしたので使いやすくなりました。
仕様
- Arduinoのmillis関数、micros関数の移植のために内部でTimerクラスを使用しています。
main.cpp
#include "mbed.h" #include <PS3BT.h> #include <usbhub.h> Serial pc(USBTX, USBRX, 115200); //Nucleo f303k8用 USB Usb(A6, A5, A4, A3, A2); // mosi, miso, sclk, ssel, intr BTD Btd(&Usb); PS3BT PS3(&Btd); int main() { bool printAngle = false; if (Usb.Init() == -1) { pc.printf("\r\nOSC did not start"); while (1); // Halt } pc.printf("\r\nPS3 USB Library Started"); while (1) { Usb.Task(); if (PS3.PS3Connected || PS3.PS3NavigationConnected) { if (PS3.getAnalogHat(LeftHatX) > 137 || PS3.getAnalogHat(LeftHatX) < 117 || PS3.getAnalogHat(LeftHatY) > 137 || PS3.getAnalogHat(LeftHatY) < 117 || PS3.getAnalogHat(RightHatX) > 137 || PS3.getAnalogHat(RightHatX) < 117 || PS3.getAnalogHat(RightHatY) > 137 || PS3.getAnalogHat(RightHatY) < 117) { pc.printf("\r\nLeftHatX: %d", PS3.getAnalogHat(LeftHatX)); pc.printf("\tLeftHatY: %d", PS3.getAnalogHat(LeftHatY)); if (PS3.PS3Connected) { // The Navigation controller only have one joystick pc.printf("\tRightHatX: %d", PS3.getAnalogHat(RightHatX)); pc.printf("\tRightHatY: %d", PS3.getAnalogHat(RightHatY)); } } // Analog button values can be read from almost all buttons if (PS3.getAnalogButton(L2) || PS3.getAnalogButton(R2)) { pc.printf("\r\nL2: %d", PS3.getAnalogButton(L2)); if (!PS3.PS3NavigationConnected) { pc.printf("\tR2: %d", PS3.getAnalogButton(R2)); } } if (PS3.getButtonClick(PS)) { PS3.disconnect(); pc.printf("\r\nPS"); } if (PS3.getButtonClick(TRIANGLE)) pc.printf("\r\nTriangle"); if (PS3.getButtonClick(CIRCLE)) pc.printf("\r\nCircle"); if (PS3.getButtonClick(CROSS)) pc.printf("\r\nCross"); if (PS3.getButtonClick(SQUARE)) pc.printf("\r\nSquare"); if (PS3.getButtonClick(UP)) { pc.printf("\r\nUp"); PS3.setLedOff(); PS3.setLedOn(CONTROLLER_LED4); } if (PS3.getButtonClick(RIGHT)) { pc.printf("\r\nRight"); PS3.setLedOff(); PS3.setLedOn(CONTROLLER_LED1); } if (PS3.getButtonClick(DOWN)) { pc.printf("\r\nDown"); PS3.setLedOff(); PS3.setLedOn(CONTROLLER_LED2); } if (PS3.getButtonClick(LEFT)) { pc.printf("\r\nLeft"); PS3.setLedOff(); PS3.setLedOn(CONTROLLER_LED3); } if (PS3.getButtonClick(L1)) pc.printf("\r\nL1"); if (PS3.getButtonClick(L3)) pc.printf("\r\nL3"); if (PS3.getButtonClick(R1)) pc.printf("\r\nR1"); if (PS3.getButtonClick(R3)) pc.printf("\r\nR3"); if (PS3.getButtonClick(SELECT)) { pc.printf("\r\nSelect - "); PS3.printStatusString(); } if (PS3.getButtonClick(START)) { pc.printf("\r\nStart"); printAngle = !printAngle; } if (printAngle) { pc.printf("\r\nPitch: %.3lf", PS3.getAngle(Pitch)); pc.printf("\tRoll: %.3lf", PS3.getAngle(Roll)); } } else { pc.printf("not connect\n"); } } }
USB_Host/SPP.cpp
- Committer:
- kotakku
- Date:
- 2020-01-18
- Revision:
- 0:b1ce54272580
File content as of revision 0:b1ce54272580:
/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved. This software may be distributed and modified under the terms of the GNU General Public License version 2 (GPL2) as published by the Free Software Foundation and appearing in the file GPL2.TXT included in the packaging of this file. Please note that GPL2 Section 2[b] requires that all works based on this software must also be made publicly available under the terms of the GPL2 ("Copyleft"). Contact information ------------------- Kristian Lauszus, TKJ Electronics Web : http://www.tkjelectronics.com e-mail : kristianl@tkjelectronics.com */ #include "SPP.h" // To enable serial debugging see "settings.h" //#define EXTRADEBUG // Uncomment to get even more debugging data //#define PRINTREPORT // Uncomment to print the report sent to the Arduino /* * CRC (reversed crc) lookup table as calculated by the table generator in ETSI TS 101 369 V6.3.0. */ const uint8_t rfcomm_crc_table[256] PROGMEM = {/* reversed, 8-bit, poly=0x07 */ 0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B, 0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67, 0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43, 0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F, 0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B, 0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17, 0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33, 0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F, 0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B, 0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87, 0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3, 0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF, 0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB, 0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7, 0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3, 0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF }; SPP::SPP(BTD *p, const char* name, const char* pin) : BluetoothService(p) // Pointer to BTD class instance - mandatory { pBtd->btdName = name; pBtd->btdPin = pin; /* Set device cid for the SDP and RFCOMM channelse */ sdp_dcid[0] = 0x50; // 0x0050 sdp_dcid[1] = 0x00; rfcomm_dcid[0] = 0x51; // 0x0051 rfcomm_dcid[1] = 0x00; Reset(); } void SPP::Reset() { connected = false; RFCOMMConnected = false; SDPConnected = false; waitForLastCommand = false; l2cap_sdp_state = L2CAP_SDP_WAIT; l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; l2cap_event_flag = 0; sppIndex = 0; creditSent = false; } void SPP::disconnect() { connected = false; // First the two L2CAP channels has to be disconnected and then the HCI connection if(RFCOMMConnected) pBtd->l2cap_disconnection_request(hci_handle, ++identifier, rfcomm_scid, rfcomm_dcid); if(RFCOMMConnected && SDPConnected) delay(1); // Add delay between commands if(SDPConnected) pBtd->l2cap_disconnection_request(hci_handle, ++identifier, sdp_scid, sdp_dcid); l2cap_sdp_state = L2CAP_DISCONNECT_RESPONSE; } void SPP::ACLData(uint8_t* l2capinbuf) { if(!connected) { if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM && !pBtd->sdpConnectionClaimed) { pBtd->sdpConnectionClaimed = true; hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection l2cap_sdp_state = L2CAP_SDP_WAIT; // Reset state } else if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM && !pBtd->rfcommConnectionClaimed) { pBtd->rfcommConnectionClaimed = true; hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; // Reset state } } } if(checkHciHandle(l2capinbuf, hci_handle)) { // acl_handle_ok if((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001U) { // l2cap_control - Channel ID for ACL-U if(l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) { #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); Notify(PSTR(" "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[12], 0x80); Notify(PSTR(" Data: "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[17], 0x80); Notify(PSTR(" "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[16], 0x80); Notify(PSTR(" "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[15], 0x80); Notify(PSTR(" "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[14], 0x80); #endif } else if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) { #ifdef EXTRADEBUG Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[13], 0x80); Notify(PSTR(" "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[12], 0x80); Notify(PSTR(" SCID: "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[15], 0x80); Notify(PSTR(" "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[14], 0x80); Notify(PSTR(" Identifier: "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[9], 0x80); #endif if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) { // It doesn't matter if it receives another reqeust, since it waits for the channel to disconnect in the L2CAP_SDP_DONE state, and the l2cap_event_flag will be cleared if so identifier = l2capinbuf[9]; sdp_scid[0] = l2capinbuf[14]; sdp_scid[1] = l2capinbuf[15]; l2cap_set_flag(L2CAP_FLAG_CONNECTION_SDP_REQUEST); } else if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM) { // ----- || ----- identifier = l2capinbuf[9]; rfcomm_scid[0] = l2capinbuf[14]; rfcomm_scid[1] = l2capinbuf[15]; l2cap_set_flag(L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST); } } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) { if((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success if(l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) { //Notify(PSTR("\r\nSDP Configuration Complete"), 0x80); l2cap_set_flag(L2CAP_FLAG_CONFIG_SDP_SUCCESS); } else if(l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) { //Notify(PSTR("\r\nRFCOMM Configuration Complete"), 0x80); l2cap_set_flag(L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS); } } } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) { if(l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) { //Notify(PSTR("\r\nSDP Configuration Request"), 0x80); pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], sdp_scid); } else if(l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) { //Notify(PSTR("\r\nRFCOMM Configuration Request"), 0x80); pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], rfcomm_scid); } } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) { if(l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) { //Notify(PSTR("\r\nDisconnect Request: SDP Channel"), 0x80); identifier = l2capinbuf[9]; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_SDP_REQUEST); } else if(l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) { //Notify(PSTR("\r\nDisconnect Request: RFCOMM Channel"), 0x80); identifier = l2capinbuf[9]; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST); } } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) { if(l2capinbuf[12] == sdp_scid[0] && l2capinbuf[13] == sdp_scid[1]) { //Notify(PSTR("\r\nDisconnect Response: SDP Channel"), 0x80); identifier = l2capinbuf[9]; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_RESPONSE); } else if(l2capinbuf[12] == rfcomm_scid[0] && l2capinbuf[13] == rfcomm_scid[1]) { //Notify(PSTR("\r\nDisconnect Response: RFCOMM Channel"), 0x80); identifier = l2capinbuf[9]; l2cap_set_flag(L2CAP_FLAG_DISCONNECT_RESPONSE); } } else if(l2capinbuf[8] == L2CAP_CMD_INFORMATION_REQUEST) { #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nInformation request"), 0x80); #endif identifier = l2capinbuf[9]; pBtd->l2cap_information_response(hci_handle, identifier, l2capinbuf[12], l2capinbuf[13]); } #ifdef EXTRADEBUG else { Notify(PSTR("\r\nL2CAP Unknown Signaling Command: "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[8], 0x80); } #endif } else if(l2capinbuf[6] == sdp_dcid[0] && l2capinbuf[7] == sdp_dcid[1]) { // SDP if(l2capinbuf[8] == SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU) { if(((l2capinbuf[16] << 8 | l2capinbuf[17]) == SERIALPORT_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == SERIALPORT_UUID)) { // Check if it's sending the full UUID, see: https://www.bluetooth.org/Technical/AssignedNumbers/service_discovery.htm, we will just check the first four bytes if(firstMessage) { serialPortResponse1(l2capinbuf[9], l2capinbuf[10]); firstMessage = false; } else { serialPortResponse2(l2capinbuf[9], l2capinbuf[10]); // Serialport continuation state firstMessage = true; } } else if(((l2capinbuf[16] << 8 | l2capinbuf[17]) == L2CAP_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == L2CAP_UUID)) { if(firstMessage) { l2capResponse1(l2capinbuf[9], l2capinbuf[10]); firstMessage = false; } else { l2capResponse2(l2capinbuf[9], l2capinbuf[10]); // L2CAP continuation state firstMessage = true; } } else serviceNotSupported(l2capinbuf[9], l2capinbuf[10]); // The service is not supported #ifdef EXTRADEBUG Notify(PSTR("\r\nUUID: "), 0x80); uint16_t uuid; if((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000) // Check if it's sending the UUID as a 128-bit UUID uuid = (l2capinbuf[18] << 8 | l2capinbuf[19]); else // Short UUID uuid = (l2capinbuf[16] << 8 | l2capinbuf[17]); D_PrintHex<uint16_t > (uuid, 0x80); Notify(PSTR("\r\nLength: "), 0x80); uint16_t length = l2capinbuf[11] << 8 | l2capinbuf[12]; D_PrintHex<uint16_t > (length, 0x80); Notify(PSTR("\r\nData: "), 0x80); for(uint8_t i = 0; i < length; i++) { D_PrintHex<uint8_t > (l2capinbuf[13 + i], 0x80); Notify(PSTR(" "), 0x80); } #endif } #ifdef EXTRADEBUG else { Notify(PSTR("\r\nUnknown PDU: "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[8], 0x80); } #endif } else if(l2capinbuf[6] == rfcomm_dcid[0] && l2capinbuf[7] == rfcomm_dcid[1]) { // RFCOMM rfcommChannel = l2capinbuf[8] & 0xF8; rfcommDirection = l2capinbuf[8] & 0x04; rfcommCommandResponse = l2capinbuf[8] & 0x02; rfcommChannelType = l2capinbuf[9] & 0xEF; rfcommPfBit = l2capinbuf[9] & 0x10; if(rfcommChannel >> 3 != 0x00) rfcommChannelConnection = rfcommChannel; #ifdef EXTRADEBUG Notify(PSTR("\r\nRFCOMM Channel: "), 0x80); D_PrintHex<uint8_t > (rfcommChannel >> 3, 0x80); Notify(PSTR(" Direction: "), 0x80); D_PrintHex<uint8_t > (rfcommDirection >> 2, 0x80); Notify(PSTR(" CommandResponse: "), 0x80); D_PrintHex<uint8_t > (rfcommCommandResponse >> 1, 0x80); Notify(PSTR(" ChannelType: "), 0x80); D_PrintHex<uint8_t > (rfcommChannelType, 0x80); Notify(PSTR(" PF_BIT: "), 0x80); D_PrintHex<uint8_t > (rfcommPfBit, 0x80); #endif if(rfcommChannelType == RFCOMM_DISC) { #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nReceived Disconnect RFCOMM Command on channel: "), 0x80); D_PrintHex<uint8_t > (rfcommChannel >> 3, 0x80); #endif connected = false; sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command } if(connected) { /* Read the incoming message */ if(rfcommChannelType == RFCOMM_UIH && rfcommChannel == rfcommChannelConnection) { uint8_t length = l2capinbuf[10] >> 1; // Get length uint8_t offset = l2capinbuf[4] - length - 4; // Check if there is credit if(checkFcs(&l2capinbuf[8], l2capinbuf[11 + length + offset])) { uint8_t i = 0; for(; i < length; i++) { if(rfcommAvailable + i >= sizeof (rfcommDataBuffer)) { #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nWarning: Buffer is full!"), 0x80); #endif break; } rfcommDataBuffer[rfcommAvailable + i] = l2capinbuf[11 + i + offset]; } rfcommAvailable += i; #ifdef EXTRADEBUG Notify(PSTR("\r\nRFCOMM Data Available: "), 0x80); Notify(rfcommAvailable, 0x80); if(offset) { Notify(PSTR(" - Credit: 0x"), 0x80); D_PrintHex<uint8_t > (l2capinbuf[11], 0x80); } #endif } #ifdef DEBUG_USB_HOST else Notify(PSTR("\r\nError in FCS checksum!"), 0x80); #endif #ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send to the Arduino via Bluetooth for(uint8_t i = 0; i < length; i++) Notifyc(l2capinbuf[i + 11 + offset], 0x80); #endif } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80); #endif rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1 rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM rfcommbuf[4] = l2capinbuf[15]; // Priority rfcommbuf[5] = l2capinbuf[16]; // Timer rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm. rfcommbuf[9] = l2capinbuf[20]; // Number of Frames sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); // UIH Remote Port Negotiation Response } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80); #endif rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3) rfcommbuf[3] = l2capinbuf[14]; sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04); } } else { if(rfcommChannelType == RFCOMM_SABM) { // SABM Command - this is sent twice: once for channel 0 and then for the channel to establish #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nReceived SABM Command"), 0x80); #endif sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_PN_CMD) { // UIH Parameter Negotiation Command #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nReceived UIH Parameter Negotiation Command"), 0x80); #endif rfcommbuf[0] = BT_RFCOMM_PN_RSP; // UIH Parameter Negotiation Response rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1 rfcommbuf[3] = 0xE0; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM rfcommbuf[4] = 0x00; // Priority rfcommbuf[5] = 0x00; // Timer rfcommbuf[6] = BULK_MAXPKTSIZE - 14; // Max Fram Size LSB - set to the size of received data (50) rfcommbuf[7] = 0x00; // Max Fram Size MSB rfcommbuf[8] = 0x00; // MaxRatransm. rfcommbuf[9] = 0x00; // Number of Frames sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80); #endif rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3) rfcommbuf[3] = l2capinbuf[14]; sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04); delay(1); #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nSend UIH Modem Status Command"), 0x80); #endif rfcommbuf[0] = BT_RFCOMM_MSC_CMD; // UIH Modem Status Command rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3) rfcommbuf[3] = 0x8D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (YES) sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04); } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_RSP) { // UIH Modem Status Response if(!creditSent) { #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nSend UIH Command with credit"), 0x80); #endif sendRfcommCredit(rfcommChannelConnection, rfcommDirection, 0, RFCOMM_UIH, 0x10, sizeof (rfcommDataBuffer)); // Send credit creditSent = true; timer = (uint32_t)millis(); waitForLastCommand = true; } } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[10] == 0x01) { // UIH Command with credit #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nReceived UIH Command with credit"), 0x80); #endif } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80); #endif rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1 rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1 rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM rfcommbuf[4] = l2capinbuf[15]; // Priority rfcommbuf[5] = l2capinbuf[16]; // Timer rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm. rfcommbuf[9] = l2capinbuf[20]; // Number of Frames sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); // UIH Remote Port Negotiation Response #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nRFCOMM Connection is now established\r\n"), 0x80); #endif onInit(); } #ifdef EXTRADEBUG else if(rfcommChannelType != RFCOMM_DISC) { Notify(PSTR("\r\nUnsupported RFCOMM Data - ChannelType: "), 0x80); D_PrintHex<uint8_t > (rfcommChannelType, 0x80); Notify(PSTR(" Command: "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[11], 0x80); } #endif } } #ifdef EXTRADEBUG else { Notify(PSTR("\r\nUnsupported L2CAP Data - Channel ID: "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[7], 0x80); Notify(PSTR(" "), 0x80); D_PrintHex<uint8_t > (l2capinbuf[6], 0x80); } #endif SDP_task(); RFCOMM_task(); } } void SPP::Run() { if(waitForLastCommand && (int32_t)((uint32_t)millis() - timer) > 100) { // We will only wait 100ms and see if the UIH Remote Port Negotiation Command is send, as some deviced don't send it #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nRFCOMM Connection is now established - Automatic\r\n"), 0x80); #endif onInit(); } send(); // Send all bytes currently in the buffer } void SPP::onInit() { creditSent = false; waitForLastCommand = false; connected = true; // The RFCOMM channel is now established sppIndex = 0; if(pFuncOnInit) pFuncOnInit(); // Call the user function }; void SPP::SDP_task() { switch(l2cap_sdp_state) { case L2CAP_SDP_WAIT: if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_SDP_REQUEST)) { l2cap_clear_flag(L2CAP_FLAG_CONNECTION_SDP_REQUEST); // Clear flag #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nSDP Incoming Connection Request"), 0x80); #endif pBtd->l2cap_connection_response(hci_handle, identifier, sdp_dcid, sdp_scid, PENDING); delay(1); pBtd->l2cap_connection_response(hci_handle, identifier, sdp_dcid, sdp_scid, SUCCESSFUL); identifier++; delay(1); pBtd->l2cap_config_request(hci_handle, identifier, sdp_scid); l2cap_sdp_state = L2CAP_SDP_SUCCESS; } else if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_SDP_REQUEST)) { l2cap_clear_flag(L2CAP_FLAG_DISCONNECT_SDP_REQUEST); // Clear flag SDPConnected = false; #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nDisconnected SDP Channel"), 0x80); #endif pBtd->l2cap_disconnection_response(hci_handle, identifier, sdp_dcid, sdp_scid); } break; case L2CAP_SDP_SUCCESS: if(l2cap_check_flag(L2CAP_FLAG_CONFIG_SDP_SUCCESS)) { l2cap_clear_flag(L2CAP_FLAG_CONFIG_SDP_SUCCESS); // Clear flag #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nSDP Successfully Configured"), 0x80); #endif firstMessage = true; // Reset bool SDPConnected = true; l2cap_sdp_state = L2CAP_SDP_WAIT; } break; case L2CAP_DISCONNECT_RESPONSE: // This is for both disconnection response from the RFCOMM and SDP channel if they were connected if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_RESPONSE)) { #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nDisconnected L2CAP Connection"), 0x80); #endif pBtd->hci_disconnect(hci_handle); hci_handle = -1; // Reset handle Reset(); } break; } } void SPP::RFCOMM_task() { switch(l2cap_rfcomm_state) { case L2CAP_RFCOMM_WAIT: if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST)) { l2cap_clear_flag(L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST); // Clear flag #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nRFCOMM Incoming Connection Request"), 0x80); #endif pBtd->l2cap_connection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid, PENDING); delay(1); pBtd->l2cap_connection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid, SUCCESSFUL); identifier++; delay(1); pBtd->l2cap_config_request(hci_handle, identifier, rfcomm_scid); l2cap_rfcomm_state = L2CAP_RFCOMM_SUCCESS; } else if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST)) { l2cap_clear_flag(L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST); // Clear flag RFCOMMConnected = false; connected = false; #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nDisconnected RFCOMM Channel"), 0x80); #endif pBtd->l2cap_disconnection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid); } break; case L2CAP_RFCOMM_SUCCESS: if(l2cap_check_flag(L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS)) { l2cap_clear_flag(L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS); // Clear flag #ifdef DEBUG_USB_HOST Notify(PSTR("\r\nRFCOMM Successfully Configured"), 0x80); #endif rfcommAvailable = 0; // Reset number of bytes available bytesRead = 0; // Reset number of bytes received RFCOMMConnected = true; l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; } break; } } /************************************************************/ /* SDP Commands */ /************************************************************/ void SPP::SDP_Command(uint8_t* data, uint8_t nbytes) { // See page 223 in the Bluetooth specs pBtd->L2CAP_Command(hci_handle, data, nbytes, sdp_scid[0], sdp_scid[1]); } void SPP::serviceNotSupported(uint8_t transactionIDHigh, uint8_t transactionIDLow) { // See page 235 in the Bluetooth specs l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU; l2capoutbuf[1] = transactionIDHigh; l2capoutbuf[2] = transactionIDLow; l2capoutbuf[3] = 0x00; // MSB Parameter Length l2capoutbuf[4] = 0x05; // LSB Parameter Length = 5 l2capoutbuf[5] = 0x00; // MSB AttributeListsByteCount l2capoutbuf[6] = 0x02; // LSB AttributeListsByteCount = 2 /* Attribute ID/Value Sequence: */ l2capoutbuf[7] = 0x35; // Data element sequence - length in next byte l2capoutbuf[8] = 0x00; // Length = 0 l2capoutbuf[9] = 0x00; // No continuation state SDP_Command(l2capoutbuf, 10); } void SPP::serialPortResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) { l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU; l2capoutbuf[1] = transactionIDHigh; l2capoutbuf[2] = transactionIDLow; l2capoutbuf[3] = 0x00; // MSB Parameter Length l2capoutbuf[4] = 0x2B; // LSB Parameter Length = 43 l2capoutbuf[5] = 0x00; // MSB AttributeListsByteCount l2capoutbuf[6] = 0x26; // LSB AttributeListsByteCount = 38 /* Attribute ID/Value Sequence: */ l2capoutbuf[7] = 0x36; // Data element sequence - length in next two bytes l2capoutbuf[8] = 0x00; // MSB Length l2capoutbuf[9] = 0x3C; // LSB Length = 60 l2capoutbuf[10] = 0x36; // Data element sequence - length in next two bytes l2capoutbuf[11] = 0x00; // MSB Length l2capoutbuf[12] = 0x39; // LSB Length = 57 l2capoutbuf[13] = 0x09; // Unsigned Integer - length 2 bytes l2capoutbuf[14] = 0x00; // MSB ServiceRecordHandle l2capoutbuf[15] = 0x00; // LSB ServiceRecordHandle l2capoutbuf[16] = 0x0A; // Unsigned int - length 4 bytes l2capoutbuf[17] = 0x00; // ServiceRecordHandle value - TODO: Is this related to HCI_Handle? l2capoutbuf[18] = 0x01; l2capoutbuf[19] = 0x00; l2capoutbuf[20] = 0x06; l2capoutbuf[21] = 0x09; // Unsigned Integer - length 2 bytes l2capoutbuf[22] = 0x00; // MSB ServiceClassIDList l2capoutbuf[23] = 0x01; // LSB ServiceClassIDList l2capoutbuf[24] = 0x35; // Data element sequence - length in next byte l2capoutbuf[25] = 0x03; // Length = 3 l2capoutbuf[26] = 0x19; // UUID (universally unique identifier) - length = 2 bytes l2capoutbuf[27] = 0x11; // MSB SerialPort l2capoutbuf[28] = 0x01; // LSB SerialPort l2capoutbuf[29] = 0x09; // Unsigned Integer - length 2 bytes l2capoutbuf[30] = 0x00; // MSB ProtocolDescriptorList l2capoutbuf[31] = 0x04; // LSB ProtocolDescriptorList l2capoutbuf[32] = 0x35; // Data element sequence - length in next byte l2capoutbuf[33] = 0x0C; // Length = 12 l2capoutbuf[34] = 0x35; // Data element sequence - length in next byte l2capoutbuf[35] = 0x03; // Length = 3 l2capoutbuf[36] = 0x19; // UUID (universally unique identifier) - length = 2 bytes l2capoutbuf[37] = 0x01; // MSB L2CAP l2capoutbuf[38] = 0x00; // LSB L2CAP l2capoutbuf[39] = 0x35; // Data element sequence - length in next byte l2capoutbuf[40] = 0x05; // Length = 5 l2capoutbuf[41] = 0x19; // UUID (universally unique identifier) - length = 2 bytes l2capoutbuf[42] = 0x00; // MSB RFCOMM l2capoutbuf[43] = 0x03; // LSB RFCOMM l2capoutbuf[44] = 0x08; // Unsigned Integer - length 1 byte l2capoutbuf[45] = 0x02; // ContinuationState - Two more bytes l2capoutbuf[46] = 0x00; // MSB length l2capoutbuf[47] = 0x19; // LSB length = 25 more bytes to come SDP_Command(l2capoutbuf, 48); } void SPP::serialPortResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) { l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU; l2capoutbuf[1] = transactionIDHigh; l2capoutbuf[2] = transactionIDLow; l2capoutbuf[3] = 0x00; // MSB Parameter Length l2capoutbuf[4] = 0x1C; // LSB Parameter Length = 28 l2capoutbuf[5] = 0x00; // MSB AttributeListsByteCount l2capoutbuf[6] = 0x19; // LSB AttributeListsByteCount = 25 /* Attribute ID/Value Sequence: */ l2capoutbuf[7] = 0x01; // Channel 1 - TODO: Try different values, so multiple servers can be used at once l2capoutbuf[8] = 0x09; // Unsigned Integer - length 2 bytes l2capoutbuf[9] = 0x00; // MSB LanguageBaseAttributeIDList l2capoutbuf[10] = 0x06; // LSB LanguageBaseAttributeIDList l2capoutbuf[11] = 0x35; // Data element sequence - length in next byte l2capoutbuf[12] = 0x09; // Length = 9 // Identifier representing the natural language = en = English - see: "ISO 639:1988" l2capoutbuf[13] = 0x09; // Unsigned Integer - length 2 bytes l2capoutbuf[14] = 0x65; // 'e' l2capoutbuf[15] = 0x6E; // 'n' // "The second element of each triplet contains an identifier that specifies a character encoding used for the language" // Encoding is set to 106 (UTF-8) - see: http://www.iana.org/assignments/character-sets/character-sets.xhtml l2capoutbuf[16] = 0x09; // Unsigned Integer - length 2 bytes l2capoutbuf[17] = 0x00; // MSB of character encoding l2capoutbuf[18] = 0x6A; // LSB of character encoding (106) // Attribute ID that serves as the base attribute ID for the natural language in the service record // "To facilitate the retrieval of human-readable universal attributes in a principal language, the base attribute ID value for the primary language supported by a service record shall be 0x0100" l2capoutbuf[19] = 0x09; // Unsigned Integer - length 2 bytes l2capoutbuf[20] = 0x01; l2capoutbuf[21] = 0x00; l2capoutbuf[22] = 0x09; // Unsigned Integer - length 2 bytes l2capoutbuf[23] = 0x01; // MSB ServiceDescription l2capoutbuf[24] = 0x00; // LSB ServiceDescription l2capoutbuf[25] = 0x25; // Text string - length in next byte l2capoutbuf[26] = 0x05; // Name length l2capoutbuf[27] = 'T'; l2capoutbuf[28] = 'K'; l2capoutbuf[29] = 'J'; l2capoutbuf[30] = 'S'; l2capoutbuf[31] = 'P'; l2capoutbuf[32] = 0x00; // No continuation state SDP_Command(l2capoutbuf, 33); } void SPP::l2capResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) { serialPortResponse1(transactionIDHigh, transactionIDLow); // These has to send all the supported functions, since it only supports virtual serialport it just sends the message again } void SPP::l2capResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) { serialPortResponse2(transactionIDHigh, transactionIDLow); // Same data as serialPortResponse2 } /************************************************************/ /* RFCOMM Commands */ /************************************************************/ void SPP::RFCOMM_Command(uint8_t* data, uint8_t nbytes) { pBtd->L2CAP_Command(hci_handle, data, nbytes, rfcomm_scid[0], rfcomm_scid[1]); } void SPP::sendRfcomm(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t* data, uint8_t length) { l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control l2capoutbuf[2] = length << 1 | 0x01; // Length and format (always 0x01 bytes format) uint8_t i = 0; for(; i < length; i++) l2capoutbuf[i + 3] = data[i]; l2capoutbuf[i + 3] = calcFcs(l2capoutbuf); #ifdef EXTRADEBUG Notify(PSTR(" - RFCOMM Data: "), 0x80); for(i = 0; i < length + 4; i++) { D_PrintHex<uint8_t > (l2capoutbuf[i], 0x80); Notify(PSTR(" "), 0x80); } #endif RFCOMM_Command(l2capoutbuf, length + 4); } void SPP::sendRfcommCredit(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t credit) { l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control l2capoutbuf[2] = 0x01; // Length = 0 l2capoutbuf[3] = credit; // Credit l2capoutbuf[4] = calcFcs(l2capoutbuf); #ifdef EXTRADEBUG Notify(PSTR(" - RFCOMM Credit Data: "), 0x80); for(uint8_t i = 0; i < 5; i++) { D_PrintHex<uint8_t > (l2capoutbuf[i], 0x80); Notify(PSTR(" "), 0x80); } #endif RFCOMM_Command(l2capoutbuf, 5); } /* CRC on 2 bytes */ uint8_t SPP::crc(uint8_t *data) { return (pgm_read_byte(&rfcomm_crc_table[pgm_read_byte(&rfcomm_crc_table[0xFF ^ data[0]]) ^ data[1]])); } /* Calculate FCS */ uint8_t SPP::calcFcs(uint8_t *data) { uint8_t temp = crc(data); if((data[1] & 0xEF) == RFCOMM_UIH) return (0xFF - temp); // FCS on 2 bytes else return (0xFF - pgm_read_byte(&rfcomm_crc_table[temp ^ data[2]])); // FCS on 3 bytes } /* Check FCS */ bool SPP::checkFcs(uint8_t *data, uint8_t fcs) { uint8_t temp = crc(data); if((data[1] & 0xEF) != RFCOMM_UIH) temp = pgm_read_byte(&rfcomm_crc_table[temp ^ data[2]]); // FCS on 3 bytes return (pgm_read_byte(&rfcomm_crc_table[temp ^ fcs]) == 0xCF); } /* Serial commands */ #if defined(ARDUINO) && ARDUINO >=100 size_t SPP::write(uint8_t data) { return write(&data, 1); } #else void SPP::write(uint8_t data) { write(&data, 1); } #endif #if defined(ARDUINO) && ARDUINO >=100 size_t SPP::write(const uint8_t *data, size_t size) { #else void SPP::write(const uint8_t *data, size_t size) { #endif for(uint8_t i = 0; i < size; i++) { if(sppIndex >= sizeof (sppOutputBuffer) / sizeof (sppOutputBuffer[0])) send(); // Send the current data in the buffer sppOutputBuffer[sppIndex++] = data[i]; // All the bytes are put into a buffer and then send using the send() function } #if defined(ARDUINO) && ARDUINO >=100 return size; #endif } void SPP::send() { if(!connected || !sppIndex) return; uint8_t length; // This is the length of the string we are sending uint8_t offset = 0; // This is used to keep track of where we are in the string l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress; // RFCOMM Address l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control while(sppIndex) { // We will run this while loop until this variable is 0 if(sppIndex > (sizeof (l2capoutbuf) - 4)) // Check if the string is larger than the outgoing buffer length = sizeof (l2capoutbuf) - 4; else length = sppIndex; l2capoutbuf[2] = length << 1 | 1; // Length uint8_t i = 0; for(; i < length; i++) l2capoutbuf[i + 3] = sppOutputBuffer[i + offset]; l2capoutbuf[i + 3] = calcFcs(l2capoutbuf); // Calculate checksum RFCOMM_Command(l2capoutbuf, length + 4); sppIndex -= length; offset += length; // Increment the offset } } int SPP::available(void) { return rfcommAvailable; }; void SPP::discard(void) { rfcommAvailable = 0; } int SPP::peek(void) { if(rfcommAvailable == 0) // Don't read if there is nothing in the buffer return -1; return rfcommDataBuffer[0]; } int SPP::read(void) { if(rfcommAvailable == 0) // Don't read if there is nothing in the buffer return -1; uint8_t output = rfcommDataBuffer[0]; for(uint8_t i = 1; i < rfcommAvailable; i++) rfcommDataBuffer[i - 1] = rfcommDataBuffer[i]; // Shift the buffer one left rfcommAvailable--; bytesRead++; if(bytesRead > (sizeof (rfcommDataBuffer) - 5)) { // We will send the command just before it runs out of credit bytesRead = 0; sendRfcommCredit(rfcommChannelConnection, rfcommDirection, 0, RFCOMM_UIH, 0x10, sizeof (rfcommDataBuffer)); // Send more credit #ifdef EXTRADEBUG Notify(PSTR("\r\nSent "), 0x80); Notify((uint8_t)sizeof (rfcommDataBuffer), 0x80); Notify(PSTR(" more credit"), 0x80); #endif } return output; }