Library to use Arduino USB host shield on mbed

Dependents:   USBHOST_PS5

ArduinoのUSB Host Shield 2.0をmbedで使えるようにしたライブラリです。
大体のコードがArduinoからそのまま移植可能です。

Arduino UNOやMega用のホストシールド以外にもミニサイズのホストシールドでも使用可能です https://os.mbed.com/media/uploads/kotakku/dffgfddswa.png

シールドについて

3.3VのI/O用にシールドの改造が必要になりますがネット上に記事がたくさんあるのでそちらを参考にしてください

接続例

https://os.mbed.com/media/uploads/kotakku/esgsvfvhjrekldkcjxvb.png

使い方

Arduinoのコードと違うのはUSBのインスタンスの宣言部分のみです。
ピンを自分で指定できるようにしたので使いやすくなりました。

仕様

  • Arduinoのmillis関数、micros関数の移植のために内部でTimerクラスを使用しています。

main.cpp

#include "mbed.h"
#include <PS3BT.h>
#include <usbhub.h>

Serial pc(USBTX, USBRX, 115200);

//Nucleo f303k8用
USB Usb(A6, A5, A4, A3, A2); // mosi, miso, sclk, ssel, intr
BTD Btd(&Usb);
PS3BT PS3(&Btd);

int main()
{
    bool printAngle = false;

    if (Usb.Init() == -1)
    {
        pc.printf("\r\nOSC did not start");
        while (1); // Halt
    }
    pc.printf("\r\nPS3 USB Library Started");

    while (1)
    {
        Usb.Task();
        
        if (PS3.PS3Connected || PS3.PS3NavigationConnected) {
            if (PS3.getAnalogHat(LeftHatX) > 137 || PS3.getAnalogHat(LeftHatX) < 117 || PS3.getAnalogHat(LeftHatY) > 137 || PS3.getAnalogHat(LeftHatY) < 117 || PS3.getAnalogHat(RightHatX) > 137 || PS3.getAnalogHat(RightHatX) < 117 || PS3.getAnalogHat(RightHatY) > 137 || PS3.getAnalogHat(RightHatY) < 117)
            {
                pc.printf("\r\nLeftHatX: %d", PS3.getAnalogHat(LeftHatX));
                pc.printf("\tLeftHatY: %d", PS3.getAnalogHat(LeftHatY));
                if (PS3.PS3Connected)
                { // The Navigation controller only have one joystick
                    pc.printf("\tRightHatX: %d", PS3.getAnalogHat(RightHatX));
                    pc.printf("\tRightHatY: %d", PS3.getAnalogHat(RightHatY));
                }
            }
            // Analog button values can be read from almost all buttons
            if (PS3.getAnalogButton(L2) || PS3.getAnalogButton(R2))
            {
                pc.printf("\r\nL2: %d", PS3.getAnalogButton(L2));
                if (!PS3.PS3NavigationConnected)
                {
                    pc.printf("\tR2: %d", PS3.getAnalogButton(R2));
                }
            }
            if (PS3.getButtonClick(PS))
            {
                PS3.disconnect();
                pc.printf("\r\nPS");
            }
    
            if (PS3.getButtonClick(TRIANGLE))
                pc.printf("\r\nTriangle");
            if (PS3.getButtonClick(CIRCLE))
                pc.printf("\r\nCircle");
            if (PS3.getButtonClick(CROSS))
                pc.printf("\r\nCross");
            if (PS3.getButtonClick(SQUARE))
                pc.printf("\r\nSquare");
    
            if (PS3.getButtonClick(UP))
            {
                pc.printf("\r\nUp");
                PS3.setLedOff();
                PS3.setLedOn(CONTROLLER_LED4);
            }
            if (PS3.getButtonClick(RIGHT))
            {
                pc.printf("\r\nRight");
                PS3.setLedOff();
                PS3.setLedOn(CONTROLLER_LED1);
            }
            if (PS3.getButtonClick(DOWN))
            {
                pc.printf("\r\nDown");
                PS3.setLedOff();
                PS3.setLedOn(CONTROLLER_LED2);
            }
            if (PS3.getButtonClick(LEFT))
            {
                pc.printf("\r\nLeft");
                PS3.setLedOff();
                PS3.setLedOn(CONTROLLER_LED3);
            }
    
            if (PS3.getButtonClick(L1))
                pc.printf("\r\nL1");
            if (PS3.getButtonClick(L3))
                pc.printf("\r\nL3");
            if (PS3.getButtonClick(R1))
                pc.printf("\r\nR1");
            if (PS3.getButtonClick(R3))
                pc.printf("\r\nR3");
    
            if (PS3.getButtonClick(SELECT))
            {
                pc.printf("\r\nSelect - ");
                PS3.printStatusString();
            }
            if (PS3.getButtonClick(START))
            {
                pc.printf("\r\nStart");
                printAngle = !printAngle;
            }
            if (printAngle)
            {
                pc.printf("\r\nPitch: %.3lf", PS3.getAngle(Pitch));
                pc.printf("\tRoll: %.3lf", PS3.getAngle(Roll));
            }
        }
        else
        {
            pc.printf("not connect\n");
        }
    }
}

USB_Host/SPP.cpp

Committer:
kotakku
Date:
2020-01-18
Revision:
0:b1ce54272580

File content as of revision 0:b1ce54272580:

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.

 This software may be distributed and modified under the terms of the GNU
 General Public License version 2 (GPL2) as published by the Free Software
 Foundation and appearing in the file GPL2.TXT included in the packaging of
 this file. Please note that GPL2 Section 2[b] requires that all works based
 on this software must also be made publicly available under the terms of
 the GPL2 ("Copyleft").

 Contact information
 -------------------

 Kristian Lauszus, TKJ Electronics
 Web      :  http://www.tkjelectronics.com
 e-mail   :  kristianl@tkjelectronics.com
 */

#include "SPP.h"
// To enable serial debugging see "settings.h"
//#define EXTRADEBUG // Uncomment to get even more debugging data
//#define PRINTREPORT // Uncomment to print the report sent to the Arduino

/*
 * CRC (reversed crc) lookup table as calculated by the table generator in ETSI TS 101 369 V6.3.0.
 */
const uint8_t rfcomm_crc_table[256] PROGMEM = {/* reversed, 8-bit, poly=0x07 */
        0x00, 0x91, 0xE3, 0x72, 0x07, 0x96, 0xE4, 0x75, 0x0E, 0x9F, 0xED, 0x7C, 0x09, 0x98, 0xEA, 0x7B,
        0x1C, 0x8D, 0xFF, 0x6E, 0x1B, 0x8A, 0xF8, 0x69, 0x12, 0x83, 0xF1, 0x60, 0x15, 0x84, 0xF6, 0x67,
        0x38, 0xA9, 0xDB, 0x4A, 0x3F, 0xAE, 0xDC, 0x4D, 0x36, 0xA7, 0xD5, 0x44, 0x31, 0xA0, 0xD2, 0x43,
        0x24, 0xB5, 0xC7, 0x56, 0x23, 0xB2, 0xC0, 0x51, 0x2A, 0xBB, 0xC9, 0x58, 0x2D, 0xBC, 0xCE, 0x5F,
        0x70, 0xE1, 0x93, 0x02, 0x77, 0xE6, 0x94, 0x05, 0x7E, 0xEF, 0x9D, 0x0C, 0x79, 0xE8, 0x9A, 0x0B,
        0x6C, 0xFD, 0x8F, 0x1E, 0x6B, 0xFA, 0x88, 0x19, 0x62, 0xF3, 0x81, 0x10, 0x65, 0xF4, 0x86, 0x17,
        0x48, 0xD9, 0xAB, 0x3A, 0x4F, 0xDE, 0xAC, 0x3D, 0x46, 0xD7, 0xA5, 0x34, 0x41, 0xD0, 0xA2, 0x33,
        0x54, 0xC5, 0xB7, 0x26, 0x53, 0xC2, 0xB0, 0x21, 0x5A, 0xCB, 0xB9, 0x28, 0x5D, 0xCC, 0xBE, 0x2F,
        0xE0, 0x71, 0x03, 0x92, 0xE7, 0x76, 0x04, 0x95, 0xEE, 0x7F, 0x0D, 0x9C, 0xE9, 0x78, 0x0A, 0x9B,
        0xFC, 0x6D, 0x1F, 0x8E, 0xFB, 0x6A, 0x18, 0x89, 0xF2, 0x63, 0x11, 0x80, 0xF5, 0x64, 0x16, 0x87,
        0xD8, 0x49, 0x3B, 0xAA, 0xDF, 0x4E, 0x3C, 0xAD, 0xD6, 0x47, 0x35, 0xA4, 0xD1, 0x40, 0x32, 0xA3,
        0xC4, 0x55, 0x27, 0xB6, 0xC3, 0x52, 0x20, 0xB1, 0xCA, 0x5B, 0x29, 0xB8, 0xCD, 0x5C, 0x2E, 0xBF,
        0x90, 0x01, 0x73, 0xE2, 0x97, 0x06, 0x74, 0xE5, 0x9E, 0x0F, 0x7D, 0xEC, 0x99, 0x08, 0x7A, 0xEB,
        0x8C, 0x1D, 0x6F, 0xFE, 0x8B, 0x1A, 0x68, 0xF9, 0x82, 0x13, 0x61, 0xF0, 0x85, 0x14, 0x66, 0xF7,
        0xA8, 0x39, 0x4B, 0xDA, 0xAF, 0x3E, 0x4C, 0xDD, 0xA6, 0x37, 0x45, 0xD4, 0xA1, 0x30, 0x42, 0xD3,
        0xB4, 0x25, 0x57, 0xC6, 0xB3, 0x22, 0x50, 0xC1, 0xBA, 0x2B, 0x59, 0xC8, 0xBD, 0x2C, 0x5E, 0xCF
};

SPP::SPP(BTD *p, const char* name, const char* pin) :
BluetoothService(p) // Pointer to BTD class instance - mandatory
{
        pBtd->btdName = name;
        pBtd->btdPin = pin;

        /* Set device cid for the SDP and RFCOMM channelse */
        sdp_dcid[0] = 0x50; // 0x0050
        sdp_dcid[1] = 0x00;
        rfcomm_dcid[0] = 0x51; // 0x0051
        rfcomm_dcid[1] = 0x00;

        Reset();
}

void SPP::Reset() {
        connected = false;
        RFCOMMConnected = false;
        SDPConnected = false;
        waitForLastCommand = false;
        l2cap_sdp_state = L2CAP_SDP_WAIT;
        l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
        l2cap_event_flag = 0;
        sppIndex = 0;
        creditSent = false;
}

void SPP::disconnect() {
        connected = false;
        // First the two L2CAP channels has to be disconnected and then the HCI connection
        if(RFCOMMConnected)
                pBtd->l2cap_disconnection_request(hci_handle, ++identifier, rfcomm_scid, rfcomm_dcid);
        if(RFCOMMConnected && SDPConnected)
                delay(1); // Add delay between commands
        if(SDPConnected)
                pBtd->l2cap_disconnection_request(hci_handle, ++identifier, sdp_scid, sdp_dcid);
        l2cap_sdp_state = L2CAP_DISCONNECT_RESPONSE;
}

void SPP::ACLData(uint8_t* l2capinbuf) {
        if(!connected) {
                if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
                        if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM && !pBtd->sdpConnectionClaimed) {
                                pBtd->sdpConnectionClaimed = true;
                                hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection
                                l2cap_sdp_state = L2CAP_SDP_WAIT; // Reset state
                        } else if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM && !pBtd->rfcommConnectionClaimed) {
                                pBtd->rfcommConnectionClaimed = true;
                                hci_handle = pBtd->hci_handle; // Store the HCI Handle for the connection
                                l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT; // Reset state
                        }
                }
        }

        if(checkHciHandle(l2capinbuf, hci_handle)) { // acl_handle_ok
                if((l2capinbuf[6] | (l2capinbuf[7] << 8)) == 0x0001U) { // l2cap_control - Channel ID for ACL-U
                        if(l2capinbuf[8] == L2CAP_CMD_COMMAND_REJECT) {
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nL2CAP Command Rejected - Reason: "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
                                Notify(PSTR(" "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[12], 0x80);
                                Notify(PSTR(" Data: "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[17], 0x80);
                                Notify(PSTR(" "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[16], 0x80);
                                Notify(PSTR(" "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[15], 0x80);
                                Notify(PSTR(" "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[14], 0x80);
#endif
                        } else if(l2capinbuf[8] == L2CAP_CMD_CONNECTION_REQUEST) {
#ifdef EXTRADEBUG
                                Notify(PSTR("\r\nL2CAP Connection Request - PSM: "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[13], 0x80);
                                Notify(PSTR(" "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[12], 0x80);
                                Notify(PSTR(" SCID: "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[15], 0x80);
                                Notify(PSTR(" "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[14], 0x80);
                                Notify(PSTR(" Identifier: "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[9], 0x80);
#endif
                                if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == SDP_PSM) { // It doesn't matter if it receives another reqeust, since it waits for the channel to disconnect in the L2CAP_SDP_DONE state, and the l2cap_event_flag will be cleared if so
                                        identifier = l2capinbuf[9];
                                        sdp_scid[0] = l2capinbuf[14];
                                        sdp_scid[1] = l2capinbuf[15];
                                        l2cap_set_flag(L2CAP_FLAG_CONNECTION_SDP_REQUEST);
                                } else if((l2capinbuf[12] | (l2capinbuf[13] << 8)) == RFCOMM_PSM) { // ----- || -----
                                        identifier = l2capinbuf[9];
                                        rfcomm_scid[0] = l2capinbuf[14];
                                        rfcomm_scid[1] = l2capinbuf[15];
                                        l2cap_set_flag(L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST);
                                }
                        } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_RESPONSE) {
                                if((l2capinbuf[16] | (l2capinbuf[17] << 8)) == 0x0000) { // Success
                                        if(l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
                                                //Notify(PSTR("\r\nSDP Configuration Complete"), 0x80);
                                                l2cap_set_flag(L2CAP_FLAG_CONFIG_SDP_SUCCESS);
                                        } else if(l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
                                                //Notify(PSTR("\r\nRFCOMM Configuration Complete"), 0x80);
                                                l2cap_set_flag(L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS);
                                        }
                                }
                        } else if(l2capinbuf[8] == L2CAP_CMD_CONFIG_REQUEST) {
                                if(l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
                                        //Notify(PSTR("\r\nSDP Configuration Request"), 0x80);
                                        pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], sdp_scid);
                                } else if(l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
                                        //Notify(PSTR("\r\nRFCOMM Configuration Request"), 0x80);
                                        pBtd->l2cap_config_response(hci_handle, l2capinbuf[9], rfcomm_scid);
                                }
                        } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_REQUEST) {
                                if(l2capinbuf[12] == sdp_dcid[0] && l2capinbuf[13] == sdp_dcid[1]) {
                                        //Notify(PSTR("\r\nDisconnect Request: SDP Channel"), 0x80);
                                        identifier = l2capinbuf[9];
                                        l2cap_set_flag(L2CAP_FLAG_DISCONNECT_SDP_REQUEST);
                                } else if(l2capinbuf[12] == rfcomm_dcid[0] && l2capinbuf[13] == rfcomm_dcid[1]) {
                                        //Notify(PSTR("\r\nDisconnect Request: RFCOMM Channel"), 0x80);
                                        identifier = l2capinbuf[9];
                                        l2cap_set_flag(L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST);
                                }
                        } else if(l2capinbuf[8] == L2CAP_CMD_DISCONNECT_RESPONSE) {
                                if(l2capinbuf[12] == sdp_scid[0] && l2capinbuf[13] == sdp_scid[1]) {
                                        //Notify(PSTR("\r\nDisconnect Response: SDP Channel"), 0x80);
                                        identifier = l2capinbuf[9];
                                        l2cap_set_flag(L2CAP_FLAG_DISCONNECT_RESPONSE);
                                } else if(l2capinbuf[12] == rfcomm_scid[0] && l2capinbuf[13] == rfcomm_scid[1]) {
                                        //Notify(PSTR("\r\nDisconnect Response: RFCOMM Channel"), 0x80);
                                        identifier = l2capinbuf[9];
                                        l2cap_set_flag(L2CAP_FLAG_DISCONNECT_RESPONSE);
                                }
                        } else if(l2capinbuf[8] == L2CAP_CMD_INFORMATION_REQUEST) {
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nInformation request"), 0x80);
#endif
                                identifier = l2capinbuf[9];
                                pBtd->l2cap_information_response(hci_handle, identifier, l2capinbuf[12], l2capinbuf[13]);
                        }
#ifdef EXTRADEBUG
                        else {
                                Notify(PSTR("\r\nL2CAP Unknown Signaling Command: "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[8], 0x80);
                        }
#endif
                } else if(l2capinbuf[6] == sdp_dcid[0] && l2capinbuf[7] == sdp_dcid[1]) { // SDP
                        if(l2capinbuf[8] == SDP_SERVICE_SEARCH_ATTRIBUTE_REQUEST_PDU) {
                                if(((l2capinbuf[16] << 8 | l2capinbuf[17]) == SERIALPORT_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == SERIALPORT_UUID)) { // Check if it's sending the full UUID, see: https://www.bluetooth.org/Technical/AssignedNumbers/service_discovery.htm, we will just check the first four bytes
                                        if(firstMessage) {
                                                serialPortResponse1(l2capinbuf[9], l2capinbuf[10]);
                                                firstMessage = false;
                                        } else {
                                                serialPortResponse2(l2capinbuf[9], l2capinbuf[10]); // Serialport continuation state
                                                firstMessage = true;
                                        }
                                } else if(((l2capinbuf[16] << 8 | l2capinbuf[17]) == L2CAP_UUID) || ((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000 && (l2capinbuf[18] << 8 | l2capinbuf[19]) == L2CAP_UUID)) {
                                        if(firstMessage) {
                                                l2capResponse1(l2capinbuf[9], l2capinbuf[10]);
                                                firstMessage = false;
                                        } else {
                                                l2capResponse2(l2capinbuf[9], l2capinbuf[10]); // L2CAP continuation state
                                                firstMessage = true;
                                        }
                                } else
                                        serviceNotSupported(l2capinbuf[9], l2capinbuf[10]); // The service is not supported
#ifdef EXTRADEBUG
                                Notify(PSTR("\r\nUUID: "), 0x80);
                                uint16_t uuid;
                                if((l2capinbuf[16] << 8 | l2capinbuf[17]) == 0x0000) // Check if it's sending the UUID as a 128-bit UUID
                                        uuid = (l2capinbuf[18] << 8 | l2capinbuf[19]);
                                else // Short UUID
                                        uuid = (l2capinbuf[16] << 8 | l2capinbuf[17]);
                                D_PrintHex<uint16_t > (uuid, 0x80);

                                Notify(PSTR("\r\nLength: "), 0x80);
                                uint16_t length = l2capinbuf[11] << 8 | l2capinbuf[12];
                                D_PrintHex<uint16_t > (length, 0x80);
                                Notify(PSTR("\r\nData: "), 0x80);
                                for(uint8_t i = 0; i < length; i++) {
                                        D_PrintHex<uint8_t > (l2capinbuf[13 + i], 0x80);
                                        Notify(PSTR(" "), 0x80);
                                }
#endif
                        }
#ifdef EXTRADEBUG
                        else {
                                Notify(PSTR("\r\nUnknown PDU: "), 0x80);
                                D_PrintHex<uint8_t > (l2capinbuf[8], 0x80);
                        }
#endif
                } else if(l2capinbuf[6] == rfcomm_dcid[0] && l2capinbuf[7] == rfcomm_dcid[1]) { // RFCOMM
                        rfcommChannel = l2capinbuf[8] & 0xF8;
                        rfcommDirection = l2capinbuf[8] & 0x04;
                        rfcommCommandResponse = l2capinbuf[8] & 0x02;
                        rfcommChannelType = l2capinbuf[9] & 0xEF;
                        rfcommPfBit = l2capinbuf[9] & 0x10;

                        if(rfcommChannel >> 3 != 0x00)
                                rfcommChannelConnection = rfcommChannel;

#ifdef EXTRADEBUG
                        Notify(PSTR("\r\nRFCOMM Channel: "), 0x80);
                        D_PrintHex<uint8_t > (rfcommChannel >> 3, 0x80);
                        Notify(PSTR(" Direction: "), 0x80);
                        D_PrintHex<uint8_t > (rfcommDirection >> 2, 0x80);
                        Notify(PSTR(" CommandResponse: "), 0x80);
                        D_PrintHex<uint8_t > (rfcommCommandResponse >> 1, 0x80);
                        Notify(PSTR(" ChannelType: "), 0x80);
                        D_PrintHex<uint8_t > (rfcommChannelType, 0x80);
                        Notify(PSTR(" PF_BIT: "), 0x80);
                        D_PrintHex<uint8_t > (rfcommPfBit, 0x80);
#endif
                        if(rfcommChannelType == RFCOMM_DISC) {
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nReceived Disconnect RFCOMM Command on channel: "), 0x80);
                                D_PrintHex<uint8_t > (rfcommChannel >> 3, 0x80);
#endif
                                connected = false;
                                sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command
                        }
                        if(connected) {
                                /* Read the incoming message */
                                if(rfcommChannelType == RFCOMM_UIH && rfcommChannel == rfcommChannelConnection) {
                                        uint8_t length = l2capinbuf[10] >> 1; // Get length
                                        uint8_t offset = l2capinbuf[4] - length - 4; // Check if there is credit
                                        if(checkFcs(&l2capinbuf[8], l2capinbuf[11 + length + offset])) {
                                                uint8_t i = 0;
                                                for(; i < length; i++) {
                                                        if(rfcommAvailable + i >= sizeof (rfcommDataBuffer)) {
#ifdef DEBUG_USB_HOST
                                                                Notify(PSTR("\r\nWarning: Buffer is full!"), 0x80);
#endif
                                                                break;
                                                        }
                                                        rfcommDataBuffer[rfcommAvailable + i] = l2capinbuf[11 + i + offset];
                                                }
                                                rfcommAvailable += i;
#ifdef EXTRADEBUG
                                                Notify(PSTR("\r\nRFCOMM Data Available: "), 0x80);
                                                Notify(rfcommAvailable, 0x80);
                                                if(offset) {
                                                        Notify(PSTR(" - Credit: 0x"), 0x80);
                                                        D_PrintHex<uint8_t > (l2capinbuf[11], 0x80);
                                                }
#endif
                                        }
#ifdef DEBUG_USB_HOST
                                        else
                                                Notify(PSTR("\r\nError in FCS checksum!"), 0x80);
#endif
#ifdef PRINTREPORT // Uncomment "#define PRINTREPORT" to print the report send to the Arduino via Bluetooth
                                        for(uint8_t i = 0; i < length; i++)
                                                Notifyc(l2capinbuf[i + 11 + offset], 0x80);
#endif
                                } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command
#ifdef DEBUG_USB_HOST
                                        Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80);
#endif
                                        rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command
                                        rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
                                        rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
                                        rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
                                        rfcommbuf[4] = l2capinbuf[15]; // Priority
                                        rfcommbuf[5] = l2capinbuf[16]; // Timer
                                        rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB
                                        rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB
                                        rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm.
                                        rfcommbuf[9] = l2capinbuf[20]; // Number of Frames
                                        sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); // UIH Remote Port Negotiation Response
                                } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command
#ifdef DEBUG_USB_HOST
                                        Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80);
#endif
                                        rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response
                                        rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
                                        rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
                                        rfcommbuf[3] = l2capinbuf[14];
                                        sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04);
                                }
                        } else {
                                if(rfcommChannelType == RFCOMM_SABM) { // SABM Command - this is sent twice: once for channel 0 and then for the channel to establish
#ifdef DEBUG_USB_HOST
                                        Notify(PSTR("\r\nReceived SABM Command"), 0x80);
#endif
                                        sendRfcomm(rfcommChannel, rfcommDirection, rfcommCommandResponse, RFCOMM_UA, rfcommPfBit, rfcommbuf, 0x00); // UA Command
                                } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_PN_CMD) { // UIH Parameter Negotiation Command
#ifdef DEBUG_USB_HOST
                                        Notify(PSTR("\r\nReceived UIH Parameter Negotiation Command"), 0x80);
#endif
                                        rfcommbuf[0] = BT_RFCOMM_PN_RSP; // UIH Parameter Negotiation Response
                                        rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
                                        rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
                                        rfcommbuf[3] = 0xE0; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
                                        rfcommbuf[4] = 0x00; // Priority
                                        rfcommbuf[5] = 0x00; // Timer
                                        rfcommbuf[6] = BULK_MAXPKTSIZE - 14; // Max Fram Size LSB - set to the size of received data (50)
                                        rfcommbuf[7] = 0x00; // Max Fram Size MSB
                                        rfcommbuf[8] = 0x00; // MaxRatransm.
                                        rfcommbuf[9] = 0x00; // Number of Frames
                                        sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A);
                                } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_CMD) { // UIH Modem Status Command
#ifdef DEBUG_USB_HOST
                                        Notify(PSTR("\r\nSend UIH Modem Status Response"), 0x80);
#endif
                                        rfcommbuf[0] = BT_RFCOMM_MSC_RSP; // UIH Modem Status Response
                                        rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
                                        rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
                                        rfcommbuf[3] = l2capinbuf[14];
                                        sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04);

                                        delay(1);
#ifdef DEBUG_USB_HOST
                                        Notify(PSTR("\r\nSend UIH Modem Status Command"), 0x80);
#endif
                                        rfcommbuf[0] = BT_RFCOMM_MSC_CMD; // UIH Modem Status Command
                                        rfcommbuf[1] = 2 << 1 | 1; // Length and shiftet like so: length << 1 | 1
                                        rfcommbuf[2] = l2capinbuf[13]; // Channel: (1 << 0) | (1 << 1) | (0 << 2) | (channel << 3)
                                        rfcommbuf[3] = 0x8D; // Can receive frames (YES), Ready to Communicate (YES), Ready to Receive (YES), Incomig Call (NO), Data is Value (YES)

                                        sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x04);
                                } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_MSC_RSP) { // UIH Modem Status Response
                                        if(!creditSent) {
#ifdef DEBUG_USB_HOST
                                                Notify(PSTR("\r\nSend UIH Command with credit"), 0x80);
#endif
                                                sendRfcommCredit(rfcommChannelConnection, rfcommDirection, 0, RFCOMM_UIH, 0x10, sizeof (rfcommDataBuffer)); // Send credit
                                                creditSent = true;
                                                timer = (uint32_t)millis();
                                                waitForLastCommand = true;
                                        }
                                } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[10] == 0x01) { // UIH Command with credit
#ifdef DEBUG_USB_HOST
                                        Notify(PSTR("\r\nReceived UIH Command with credit"), 0x80);
#endif
                                } else if(rfcommChannelType == RFCOMM_UIH && l2capinbuf[11] == BT_RFCOMM_RPN_CMD) { // UIH Remote Port Negotiation Command
#ifdef DEBUG_USB_HOST
                                        Notify(PSTR("\r\nReceived UIH Remote Port Negotiation Command"), 0x80);
#endif
                                        rfcommbuf[0] = BT_RFCOMM_RPN_RSP; // Command
                                        rfcommbuf[1] = l2capinbuf[12]; // Length and shiftet like so: length << 1 | 1
                                        rfcommbuf[2] = l2capinbuf[13]; // Channel: channel << 1 | 1
                                        rfcommbuf[3] = l2capinbuf[14]; // Pre difined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
                                        rfcommbuf[4] = l2capinbuf[15]; // Priority
                                        rfcommbuf[5] = l2capinbuf[16]; // Timer
                                        rfcommbuf[6] = l2capinbuf[17]; // Max Fram Size LSB
                                        rfcommbuf[7] = l2capinbuf[18]; // Max Fram Size MSB
                                        rfcommbuf[8] = l2capinbuf[19]; // MaxRatransm.
                                        rfcommbuf[9] = l2capinbuf[20]; // Number of Frames
                                        sendRfcomm(rfcommChannel, rfcommDirection, 0, RFCOMM_UIH, rfcommPfBit, rfcommbuf, 0x0A); // UIH Remote Port Negotiation Response
#ifdef DEBUG_USB_HOST
                                        Notify(PSTR("\r\nRFCOMM Connection is now established\r\n"), 0x80);
#endif
                                        onInit();
                                }
#ifdef EXTRADEBUG
                                else if(rfcommChannelType != RFCOMM_DISC) {
                                        Notify(PSTR("\r\nUnsupported RFCOMM Data - ChannelType: "), 0x80);
                                        D_PrintHex<uint8_t > (rfcommChannelType, 0x80);
                                        Notify(PSTR(" Command: "), 0x80);
                                        D_PrintHex<uint8_t > (l2capinbuf[11], 0x80);
                                }
#endif
                        }
                }
#ifdef EXTRADEBUG
                else {
                        Notify(PSTR("\r\nUnsupported L2CAP Data - Channel ID: "), 0x80);
                        D_PrintHex<uint8_t > (l2capinbuf[7], 0x80);
                        Notify(PSTR(" "), 0x80);
                        D_PrintHex<uint8_t > (l2capinbuf[6], 0x80);
                }
#endif
                SDP_task();
                RFCOMM_task();
        }
}

void SPP::Run() {
        if(waitForLastCommand && (int32_t)((uint32_t)millis() - timer) > 100) { // We will only wait 100ms and see if the UIH Remote Port Negotiation Command is send, as some deviced don't send it
#ifdef DEBUG_USB_HOST
                Notify(PSTR("\r\nRFCOMM Connection is now established - Automatic\r\n"), 0x80);
#endif
                onInit();
        }
        send(); // Send all bytes currently in the buffer
}

void SPP::onInit() {
        creditSent = false;
        waitForLastCommand = false;
        connected = true; // The RFCOMM channel is now established
        sppIndex = 0;
        if(pFuncOnInit)
                pFuncOnInit(); // Call the user function
};

void SPP::SDP_task() {
        switch(l2cap_sdp_state) {
                case L2CAP_SDP_WAIT:
                        if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_SDP_REQUEST)) {
                                l2cap_clear_flag(L2CAP_FLAG_CONNECTION_SDP_REQUEST); // Clear flag
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nSDP Incoming Connection Request"), 0x80);
#endif
                                pBtd->l2cap_connection_response(hci_handle, identifier, sdp_dcid, sdp_scid, PENDING);
                                delay(1);
                                pBtd->l2cap_connection_response(hci_handle, identifier, sdp_dcid, sdp_scid, SUCCESSFUL);
                                identifier++;
                                delay(1);
                                pBtd->l2cap_config_request(hci_handle, identifier, sdp_scid);
                                l2cap_sdp_state = L2CAP_SDP_SUCCESS;
                        } else if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_SDP_REQUEST)) {
                                l2cap_clear_flag(L2CAP_FLAG_DISCONNECT_SDP_REQUEST); // Clear flag
                                SDPConnected = false;
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nDisconnected SDP Channel"), 0x80);
#endif
                                pBtd->l2cap_disconnection_response(hci_handle, identifier, sdp_dcid, sdp_scid);
                        }
                        break;
                case L2CAP_SDP_SUCCESS:
                        if(l2cap_check_flag(L2CAP_FLAG_CONFIG_SDP_SUCCESS)) {
                                l2cap_clear_flag(L2CAP_FLAG_CONFIG_SDP_SUCCESS); // Clear flag
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nSDP Successfully Configured"), 0x80);
#endif
                                firstMessage = true; // Reset bool
                                SDPConnected = true;
                                l2cap_sdp_state = L2CAP_SDP_WAIT;
                        }
                        break;

                case L2CAP_DISCONNECT_RESPONSE: // This is for both disconnection response from the RFCOMM and SDP channel if they were connected
                        if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_RESPONSE)) {
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nDisconnected L2CAP Connection"), 0x80);
#endif
                                pBtd->hci_disconnect(hci_handle);
                                hci_handle = -1; // Reset handle
                                Reset();
                        }
                        break;
        }
}

void SPP::RFCOMM_task() {
        switch(l2cap_rfcomm_state) {
                case L2CAP_RFCOMM_WAIT:
                        if(l2cap_check_flag(L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST)) {
                                l2cap_clear_flag(L2CAP_FLAG_CONNECTION_RFCOMM_REQUEST); // Clear flag
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nRFCOMM Incoming Connection Request"), 0x80);
#endif
                                pBtd->l2cap_connection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid, PENDING);
                                delay(1);
                                pBtd->l2cap_connection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid, SUCCESSFUL);
                                identifier++;
                                delay(1);
                                pBtd->l2cap_config_request(hci_handle, identifier, rfcomm_scid);
                                l2cap_rfcomm_state = L2CAP_RFCOMM_SUCCESS;
                        } else if(l2cap_check_flag(L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST)) {
                                l2cap_clear_flag(L2CAP_FLAG_DISCONNECT_RFCOMM_REQUEST); // Clear flag
                                RFCOMMConnected = false;
                                connected = false;
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nDisconnected RFCOMM Channel"), 0x80);
#endif
                                pBtd->l2cap_disconnection_response(hci_handle, identifier, rfcomm_dcid, rfcomm_scid);
                        }
                        break;
                case L2CAP_RFCOMM_SUCCESS:
                        if(l2cap_check_flag(L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS)) {
                                l2cap_clear_flag(L2CAP_FLAG_CONFIG_RFCOMM_SUCCESS); // Clear flag
#ifdef DEBUG_USB_HOST
                                Notify(PSTR("\r\nRFCOMM Successfully Configured"), 0x80);
#endif
                                rfcommAvailable = 0; // Reset number of bytes available
                                bytesRead = 0; // Reset number of bytes received
                                RFCOMMConnected = true;
                                l2cap_rfcomm_state = L2CAP_RFCOMM_WAIT;
                        }
                        break;
        }
}
/************************************************************/
/*                    SDP Commands                          */

/************************************************************/
void SPP::SDP_Command(uint8_t* data, uint8_t nbytes) { // See page 223 in the Bluetooth specs
        pBtd->L2CAP_Command(hci_handle, data, nbytes, sdp_scid[0], sdp_scid[1]);
}

void SPP::serviceNotSupported(uint8_t transactionIDHigh, uint8_t transactionIDLow) { // See page 235 in the Bluetooth specs
        l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
        l2capoutbuf[1] = transactionIDHigh;
        l2capoutbuf[2] = transactionIDLow;
        l2capoutbuf[3] = 0x00; // MSB Parameter Length
        l2capoutbuf[4] = 0x05; // LSB Parameter Length = 5
        l2capoutbuf[5] = 0x00; // MSB AttributeListsByteCount
        l2capoutbuf[6] = 0x02; // LSB AttributeListsByteCount = 2

        /* Attribute ID/Value Sequence: */
        l2capoutbuf[7] = 0x35; // Data element sequence - length in next byte
        l2capoutbuf[8] = 0x00; // Length = 0
        l2capoutbuf[9] = 0x00; // No continuation state

        SDP_Command(l2capoutbuf, 10);
}

void SPP::serialPortResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
        l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
        l2capoutbuf[1] = transactionIDHigh;
        l2capoutbuf[2] = transactionIDLow;
        l2capoutbuf[3] = 0x00; // MSB Parameter Length
        l2capoutbuf[4] = 0x2B; // LSB Parameter Length = 43
        l2capoutbuf[5] = 0x00; // MSB AttributeListsByteCount
        l2capoutbuf[6] = 0x26; // LSB AttributeListsByteCount = 38

        /* Attribute ID/Value Sequence: */
        l2capoutbuf[7] = 0x36; // Data element sequence - length in next two bytes
        l2capoutbuf[8] = 0x00; // MSB Length
        l2capoutbuf[9] = 0x3C; // LSB Length = 60

        l2capoutbuf[10] = 0x36; // Data element sequence - length in next two bytes
        l2capoutbuf[11] = 0x00; // MSB Length
        l2capoutbuf[12] = 0x39; // LSB Length = 57

        l2capoutbuf[13] = 0x09; // Unsigned Integer - length 2 bytes
        l2capoutbuf[14] = 0x00; // MSB ServiceRecordHandle
        l2capoutbuf[15] = 0x00; // LSB ServiceRecordHandle
        l2capoutbuf[16] = 0x0A; // Unsigned int - length 4 bytes
        l2capoutbuf[17] = 0x00; // ServiceRecordHandle value - TODO: Is this related to HCI_Handle?
        l2capoutbuf[18] = 0x01;
        l2capoutbuf[19] = 0x00;
        l2capoutbuf[20] = 0x06;

        l2capoutbuf[21] = 0x09; // Unsigned Integer - length 2 bytes
        l2capoutbuf[22] = 0x00; // MSB ServiceClassIDList
        l2capoutbuf[23] = 0x01; // LSB ServiceClassIDList
        l2capoutbuf[24] = 0x35; // Data element sequence - length in next byte
        l2capoutbuf[25] = 0x03; // Length = 3
        l2capoutbuf[26] = 0x19; // UUID (universally unique identifier) - length = 2 bytes
        l2capoutbuf[27] = 0x11; // MSB SerialPort
        l2capoutbuf[28] = 0x01; // LSB SerialPort

        l2capoutbuf[29] = 0x09; // Unsigned Integer - length 2 bytes
        l2capoutbuf[30] = 0x00; // MSB ProtocolDescriptorList
        l2capoutbuf[31] = 0x04; // LSB ProtocolDescriptorList
        l2capoutbuf[32] = 0x35; // Data element sequence - length in next byte
        l2capoutbuf[33] = 0x0C; // Length = 12

        l2capoutbuf[34] = 0x35; // Data element sequence - length in next byte
        l2capoutbuf[35] = 0x03; // Length = 3
        l2capoutbuf[36] = 0x19; // UUID (universally unique identifier) - length = 2 bytes
        l2capoutbuf[37] = 0x01; // MSB L2CAP
        l2capoutbuf[38] = 0x00; // LSB L2CAP

        l2capoutbuf[39] = 0x35; // Data element sequence - length in next byte
        l2capoutbuf[40] = 0x05; // Length = 5
        l2capoutbuf[41] = 0x19; // UUID (universally unique identifier) - length = 2 bytes
        l2capoutbuf[42] = 0x00; // MSB RFCOMM
        l2capoutbuf[43] = 0x03; // LSB RFCOMM
        l2capoutbuf[44] = 0x08; // Unsigned Integer - length 1 byte

        l2capoutbuf[45] = 0x02; // ContinuationState - Two more bytes
        l2capoutbuf[46] = 0x00; // MSB length
        l2capoutbuf[47] = 0x19; // LSB length = 25 more bytes to come

        SDP_Command(l2capoutbuf, 48);
}

void SPP::serialPortResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
        l2capoutbuf[0] = SDP_SERVICE_SEARCH_ATTRIBUTE_RESPONSE_PDU;
        l2capoutbuf[1] = transactionIDHigh;
        l2capoutbuf[2] = transactionIDLow;
        l2capoutbuf[3] = 0x00; // MSB Parameter Length
        l2capoutbuf[4] = 0x1C; // LSB Parameter Length = 28
        l2capoutbuf[5] = 0x00; // MSB AttributeListsByteCount
        l2capoutbuf[6] = 0x19; // LSB AttributeListsByteCount = 25

        /* Attribute ID/Value Sequence: */
        l2capoutbuf[7] = 0x01; // Channel 1 - TODO: Try different values, so multiple servers can be used at once

        l2capoutbuf[8] = 0x09; // Unsigned Integer - length 2 bytes
        l2capoutbuf[9] = 0x00; // MSB LanguageBaseAttributeIDList
        l2capoutbuf[10] = 0x06; // LSB LanguageBaseAttributeIDList
        l2capoutbuf[11] = 0x35; // Data element sequence - length in next byte
        l2capoutbuf[12] = 0x09; // Length = 9

        // Identifier representing the natural language = en = English - see: "ISO 639:1988"
        l2capoutbuf[13] = 0x09; // Unsigned Integer - length 2 bytes
        l2capoutbuf[14] = 0x65; // 'e'
        l2capoutbuf[15] = 0x6E; // 'n'

        // "The second element of each triplet contains an identifier that specifies a character encoding used for the language"
        // Encoding is set to 106 (UTF-8) - see: http://www.iana.org/assignments/character-sets/character-sets.xhtml
        l2capoutbuf[16] = 0x09; // Unsigned Integer - length 2 bytes
        l2capoutbuf[17] = 0x00; // MSB of character encoding
        l2capoutbuf[18] = 0x6A; // LSB of character encoding (106)

        // Attribute ID that serves as the base attribute ID for the natural language in the service record
        // "To facilitate the retrieval of human-readable universal attributes in a principal language, the base attribute ID value for the primary language supported by a service record shall be 0x0100"
        l2capoutbuf[19] = 0x09; // Unsigned Integer - length 2 bytes
        l2capoutbuf[20] = 0x01;
        l2capoutbuf[21] = 0x00;

        l2capoutbuf[22] = 0x09; // Unsigned Integer - length 2 bytes
        l2capoutbuf[23] = 0x01; // MSB ServiceDescription
        l2capoutbuf[24] = 0x00; // LSB ServiceDescription

        l2capoutbuf[25] = 0x25; // Text string - length in next byte
        l2capoutbuf[26] = 0x05; // Name length
        l2capoutbuf[27] = 'T';
        l2capoutbuf[28] = 'K';
        l2capoutbuf[29] = 'J';
        l2capoutbuf[30] = 'S';
        l2capoutbuf[31] = 'P';
        l2capoutbuf[32] = 0x00; // No continuation state

        SDP_Command(l2capoutbuf, 33);
}

void SPP::l2capResponse1(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
        serialPortResponse1(transactionIDHigh, transactionIDLow); // These has to send all the supported functions, since it only supports virtual serialport it just sends the message again
}

void SPP::l2capResponse2(uint8_t transactionIDHigh, uint8_t transactionIDLow) {
        serialPortResponse2(transactionIDHigh, transactionIDLow); // Same data as serialPortResponse2
}
/************************************************************/
/*                    RFCOMM Commands                       */

/************************************************************/
void SPP::RFCOMM_Command(uint8_t* data, uint8_t nbytes) {
        pBtd->L2CAP_Command(hci_handle, data, nbytes, rfcomm_scid[0], rfcomm_scid[1]);
}

void SPP::sendRfcomm(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t* data, uint8_t length) {
        l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
        l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
        l2capoutbuf[2] = length << 1 | 0x01; // Length and format (always 0x01 bytes format)
        uint8_t i = 0;
        for(; i < length; i++)
                l2capoutbuf[i + 3] = data[i];
        l2capoutbuf[i + 3] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
        Notify(PSTR(" - RFCOMM Data: "), 0x80);
        for(i = 0; i < length + 4; i++) {
                D_PrintHex<uint8_t > (l2capoutbuf[i], 0x80);
                Notify(PSTR(" "), 0x80);
        }
#endif
        RFCOMM_Command(l2capoutbuf, length + 4);
}

void SPP::sendRfcommCredit(uint8_t channel, uint8_t direction, uint8_t CR, uint8_t channelType, uint8_t pfBit, uint8_t credit) {
        l2capoutbuf[0] = channel | direction | CR | extendAddress; // RFCOMM Address
        l2capoutbuf[1] = channelType | pfBit; // RFCOMM Control
        l2capoutbuf[2] = 0x01; // Length = 0
        l2capoutbuf[3] = credit; // Credit
        l2capoutbuf[4] = calcFcs(l2capoutbuf);
#ifdef EXTRADEBUG
        Notify(PSTR(" - RFCOMM Credit Data: "), 0x80);
        for(uint8_t i = 0; i < 5; i++) {
                D_PrintHex<uint8_t > (l2capoutbuf[i], 0x80);
                Notify(PSTR(" "), 0x80);
        }
#endif
        RFCOMM_Command(l2capoutbuf, 5);
}

/* CRC on 2 bytes */
uint8_t SPP::crc(uint8_t *data) {
        return (pgm_read_byte(&rfcomm_crc_table[pgm_read_byte(&rfcomm_crc_table[0xFF ^ data[0]]) ^ data[1]]));
}

/* Calculate FCS */
uint8_t SPP::calcFcs(uint8_t *data) {
        uint8_t temp = crc(data);
        if((data[1] & 0xEF) == RFCOMM_UIH)
                return (0xFF - temp); // FCS on 2 bytes
        else
                return (0xFF - pgm_read_byte(&rfcomm_crc_table[temp ^ data[2]])); // FCS on 3 bytes
}

/* Check FCS */
bool SPP::checkFcs(uint8_t *data, uint8_t fcs) {
        uint8_t temp = crc(data);
        if((data[1] & 0xEF) != RFCOMM_UIH)
                temp = pgm_read_byte(&rfcomm_crc_table[temp ^ data[2]]); // FCS on 3 bytes
        return (pgm_read_byte(&rfcomm_crc_table[temp ^ fcs]) == 0xCF);
}

/* Serial commands */
#if defined(ARDUINO) && ARDUINO >=100

size_t SPP::write(uint8_t data) {
        return write(&data, 1);
}
#else

void SPP::write(uint8_t data) {
        write(&data, 1);
}
#endif

#if defined(ARDUINO) && ARDUINO >=100

size_t SPP::write(const uint8_t *data, size_t size) {
#else

void SPP::write(const uint8_t *data, size_t size) {
#endif
        for(uint8_t i = 0; i < size; i++) {
                if(sppIndex >= sizeof (sppOutputBuffer) / sizeof (sppOutputBuffer[0]))
                        send(); // Send the current data in the buffer
                sppOutputBuffer[sppIndex++] = data[i]; // All the bytes are put into a buffer and then send using the send() function
        }
#if defined(ARDUINO) && ARDUINO >=100
        return size;
#endif
}

void SPP::send() {
        if(!connected || !sppIndex)
                return;
        uint8_t length; // This is the length of the string we are sending
        uint8_t offset = 0; // This is used to keep track of where we are in the string

        l2capoutbuf[0] = rfcommChannelConnection | 0 | 0 | extendAddress; // RFCOMM Address
        l2capoutbuf[1] = RFCOMM_UIH; // RFCOMM Control

        while(sppIndex) { // We will run this while loop until this variable is 0
                if(sppIndex > (sizeof (l2capoutbuf) - 4)) // Check if the string is larger than the outgoing buffer
                        length = sizeof (l2capoutbuf) - 4;
                else
                        length = sppIndex;

                l2capoutbuf[2] = length << 1 | 1; // Length
                uint8_t i = 0;
                for(; i < length; i++)
                        l2capoutbuf[i + 3] = sppOutputBuffer[i + offset];
                l2capoutbuf[i + 3] = calcFcs(l2capoutbuf); // Calculate checksum

                RFCOMM_Command(l2capoutbuf, length + 4);

                sppIndex -= length;
                offset += length; // Increment the offset
        }
}

int SPP::available(void) {
        return rfcommAvailable;
};

void SPP::discard(void) {
        rfcommAvailable = 0;
}

int SPP::peek(void) {
        if(rfcommAvailable == 0) // Don't read if there is nothing in the buffer
                return -1;
        return rfcommDataBuffer[0];
}

int SPP::read(void) {
        if(rfcommAvailable == 0) // Don't read if there is nothing in the buffer
                return -1;
        uint8_t output = rfcommDataBuffer[0];
        for(uint8_t i = 1; i < rfcommAvailable; i++)
                rfcommDataBuffer[i - 1] = rfcommDataBuffer[i]; // Shift the buffer one left
        rfcommAvailable--;
        bytesRead++;
        if(bytesRead > (sizeof (rfcommDataBuffer) - 5)) { // We will send the command just before it runs out of credit
                bytesRead = 0;
                sendRfcommCredit(rfcommChannelConnection, rfcommDirection, 0, RFCOMM_UIH, 0x10, sizeof (rfcommDataBuffer)); // Send more credit
#ifdef EXTRADEBUG
                Notify(PSTR("\r\nSent "), 0x80);
                Notify((uint8_t)sizeof (rfcommDataBuffer), 0x80);
                Notify(PSTR(" more credit"), 0x80);
#endif
        }
        return output;
}