Fork of mbed-dev build 137, last build before FAT file system appears to be broken. Also reduced HSE timeout time in STM4XX HAL
Fork of mbed-dev by
targets/TARGET_Maxim/TARGET_MAX32625/mxc/tmr.c
- Committer:
- <>
- Date:
- 2016-11-08
- Revision:
- 150:02e0a0aed4ec
File content as of revision 150:02e0a0aed4ec:
/******************************************************************************* * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. * * $Date: 2016-03-11 11:46:37 -0600 (Fri, 11 Mar 2016) $ * $Revision: 21839 $ * ******************************************************************************/ #include <stddef.h> #include "mxc_assert.h" #include "tmr.h" static tmr_prescale_t prescaler[MXC_CFG_TMR_INSTANCES]; /******************************************************************************/ int TMR_Init(mxc_tmr_regs_t *tmr, tmr_prescale_t prescale, const sys_cfg_tmr_t *sysCfg) { int err; int tmrNum; //get the timer number tmrNum = MXC_TMR_GET_IDX(tmr); //check for valid pointer MXC_ASSERT(tmrNum >= 0); //steup system GPIO config if((err = SYS_TMR_Init(tmr, sysCfg)) != E_NO_ERROR) return err; //save the prescale value for this timer prescaler[tmrNum] = prescale; //Disable timer and clear settings tmr->ctrl = 0; //reset all counts to 0 tmr->count32 = 0; tmr->count16_0 = 0; tmr->count16_1 = 0; // Clear interrupt flag tmr->intfl = MXC_F_TMR_INTFL_TIMER0 | MXC_F_TMR_INTFL_TIMER1; return E_NO_ERROR; } /******************************************************************************/ void TMR32_Config(mxc_tmr_regs_t *tmr, const tmr32_cfg_t *config) { //stop timer TMR32_Stop(tmr); //setup timer configuration register //clear tmr2x16 (32bit mode), mode and polarity bits tmr->ctrl &= ~(MXC_F_TMR_CTRL_TMR2X16 | MXC_F_TMR_CTRL_MODE | MXC_F_TMR_CTRL_POLARITY); //set mode and polarity tmr->ctrl |= ((config->mode << MXC_F_TMR_CTRL_MODE_POS) | (config->polarity << MXC_F_TMR_CTRL_POLARITY_POS)); //setup timer Tick registers tmr->term_cnt32 = config->compareCount; return; } /******************************************************************************/ void TMR32_PWMConfig(mxc_tmr_regs_t *tmr, const tmr32_cfg_pwm_t *config) { //stop timer TMR32_Stop(tmr); //setup timer configuration register //clear tmr2x16 (32bit mode), mode and polarity bits tmr->ctrl &= ~(MXC_F_TMR_CTRL_TMR2X16 | MXC_F_TMR_CTRL_MODE | MXC_F_TMR_CTRL_POLARITY); //set mode and polarity tmr->ctrl |= ((TMR32_MODE_PWM << MXC_F_TMR_CTRL_MODE_POS) | (config->polarity << MXC_F_TMR_CTRL_POLARITY_POS)); tmr->pwm_cap32 = config->dutyCount; //setup timer Tick registers tmr->count32 = 0; tmr->term_cnt32 = config->periodCount; return; } /******************************************************************************/ void TMR16_Config(mxc_tmr_regs_t *tmr, uint8_t index, const tmr16_cfg_t *config) { //stop timer TMR16_Stop(tmr, index); if(index > 0) { //configure timer 16_1 //setup timer configuration register tmr->ctrl |= MXC_F_TMR_CTRL_TMR2X16; //1 = 16bit mode //set mode if(config->mode) tmr->ctrl |= MXC_F_TMR_CTRL_MODE_16_1; else tmr->ctrl &= ~MXC_F_TMR_CTRL_MODE_16_1; //setup timer Ticks registers tmr->term_cnt16_1 = config->compareCount; } else { //configure timer 16_0 //setup timer configuration register tmr->ctrl |= MXC_F_TMR_CTRL_TMR2X16; //1 = 16bit mode //set mode if(config->mode) tmr->ctrl |= MXC_F_TMR_CTRL_MODE_16_0; else tmr->ctrl &= ~MXC_F_TMR_CTRL_MODE_16_0; //setup timer Ticks registers tmr->term_cnt16_0 = config->compareCount; } return; } /******************************************************************************/ void TMR32_Start(mxc_tmr_regs_t *tmr) { int tmrNum; uint32_t ctrl; //get the timer number tmrNum = MXC_TMR_GET_IDX(tmr); //prescaler gets reset to 0 when timer is disabled //set the prescale to the saved value for this timer ctrl = tmr->ctrl; ctrl &= ~(MXC_F_TMR_CTRL_PRESCALE); //clear prescaler bits ctrl |= prescaler[tmrNum] << MXC_F_TMR_CTRL_PRESCALE_POS; //set prescaler ctrl |= MXC_F_TMR_CTRL_ENABLE0; //set enable to start the timer tmr->ctrl = ctrl; return; } /******************************************************************************/ void TMR16_Start(mxc_tmr_regs_t *tmr, uint8_t index) { int tmrNum; uint32_t ctrl; //get the timer number tmrNum = MXC_TMR_GET_IDX(tmr); ctrl = tmr->ctrl; //prescaler gets reset to 0 when both 16 bit timers are disabled //set the prescale to the saved value for this timer if is is not already set if((ctrl & MXC_F_TMR_CTRL_PRESCALE) != ((uint32_t)prescaler[tmrNum] << MXC_F_TMR_CTRL_PRESCALE_POS)) { ctrl &= ~(MXC_F_TMR_CTRL_PRESCALE); //clear prescaler bits ctrl |= prescaler[tmrNum] << MXC_F_TMR_CTRL_PRESCALE_POS; //set prescaler } if(index > 0) ctrl |= MXC_F_TMR_CTRL_ENABLE1; //start timer 16_1 else ctrl |= MXC_F_TMR_CTRL_ENABLE0; //start timer 16_0 tmr->ctrl = ctrl; return; } /******************************************************************************/ uint32_t TMR_GetPrescaler(mxc_tmr_regs_t *tmr) { int tmrNum; //get the timer number tmrNum = MXC_TMR_GET_IDX(tmr); return ((uint32_t)prescaler[tmrNum]); } /******************************************************************************/ int TMR32_GetPWMTicks(mxc_tmr_regs_t *tmr, uint8_t dutyPercent, uint32_t freq, uint32_t *dutyTicks, uint32_t *periodTicks) { uint32_t timerClock; uint32_t prescale; uint64_t ticks; if(dutyPercent > 100) return E_BAD_PARAM; if(freq == 0) return E_BAD_PARAM; timerClock = SYS_TMR_GetFreq(tmr); prescale = TMR_GetPrescaler(tmr); if(timerClock == 0 || prescale > TMR_PRESCALE_DIV_2_12) return E_UNINITIALIZED; ticks = timerClock / (1 << (prescale & 0xF)) / freq; //make sure ticks is within a 32 bit value if (!(ticks & 0xffffffff00000000) && (ticks & 0xffffffff)) { *periodTicks = ticks; *dutyTicks = ((uint64_t)*periodTicks * dutyPercent) / 100; return E_NO_ERROR; } return E_INVALID; } /******************************************************************************/ int TMR32_TimeToTicks(mxc_tmr_regs_t *tmr, uint32_t time, tmr_unit_t units, uint32_t *ticks) { uint32_t unit_div0, unit_div1; uint32_t timerClock; uint32_t prescale; uint64_t temp_ticks; timerClock = SYS_TMR_GetFreq(tmr); prescale = TMR_GetPrescaler(tmr); if(timerClock == 0 || prescale > TMR_PRESCALE_DIV_2_12) return E_UNINITIALIZED; switch (units) { case TMR_UNIT_NANOSEC: unit_div0 = 1000000; unit_div1 = 1000; break; case TMR_UNIT_MICROSEC: unit_div0 = 1000; unit_div1 = 1000; break; case TMR_UNIT_MILLISEC: unit_div0 = 1; unit_div1 = 1000; break; case TMR_UNIT_SEC: unit_div0 = 1; unit_div1 = 1; break; default: return E_BAD_PARAM; } temp_ticks = (uint64_t)time * (timerClock / unit_div0) / (unit_div1 * (1 << (prescale & 0xF))); //make sure ticks is within a 32 bit value if (!(temp_ticks & 0xffffffff00000000) && (temp_ticks & 0xffffffff)) { *ticks = temp_ticks; return E_NO_ERROR; } return E_INVALID; } /******************************************************************************/ int TMR16_TimeToTicks(mxc_tmr_regs_t *tmr, uint32_t time, tmr_unit_t units, uint16_t *ticks) { uint32_t unit_div0, unit_div1; uint32_t timerClock; uint32_t prescale; uint64_t temp_ticks; timerClock = SYS_TMR_GetFreq(tmr); prescale = TMR_GetPrescaler(tmr); if(timerClock == 0 || prescale > TMR_PRESCALE_DIV_2_12) return E_UNINITIALIZED; switch (units) { case TMR_UNIT_NANOSEC: unit_div0 = 1000000; unit_div1 = 1000; break; case TMR_UNIT_MICROSEC: unit_div0 = 1000; unit_div1 = 1000; break; case TMR_UNIT_MILLISEC: unit_div0 = 1; unit_div1 = 1000; break; case TMR_UNIT_SEC: unit_div0 = 1; unit_div1 = 1; break; default: return E_BAD_PARAM; } temp_ticks = (uint64_t)time * (timerClock / unit_div0) / (unit_div1 * (1 << (prescale & 0xF))); //make sure ticks is within a 32 bit value if (!(temp_ticks & 0xffffffffffff0000) && (temp_ticks & 0xffff)) { *ticks = temp_ticks; return E_NO_ERROR; } return E_INVALID; } /******************************************************************************/ int TMR_TicksToTime(mxc_tmr_regs_t *tmr, uint32_t ticks, uint32_t *time, tmr_unit_t *units) { uint64_t temp_time = 0; uint32_t timerClock = SYS_TMR_GetFreq(tmr); uint32_t prescale = TMR_GetPrescaler(tmr); if(timerClock == 0 || prescale > TMR_PRESCALE_DIV_2_12) return E_UNINITIALIZED; tmr_unit_t temp_unit = TMR_UNIT_NANOSEC; temp_time = (uint64_t)ticks * 1000 * (1 << (prescale & 0xF)) / (timerClock / 1000000); if (!(temp_time & 0xffffffff00000000)) { *time = temp_time; *units = temp_unit; return E_NO_ERROR; } temp_unit = TMR_UNIT_MICROSEC; temp_time = (uint64_t)ticks * 1000 * (1 << (prescale & 0xF)) / (timerClock / 1000); if (!(temp_time & 0xffffffff00000000)) { *time = temp_time; *units = temp_unit; return E_NO_ERROR; } temp_unit = TMR_UNIT_MILLISEC; temp_time = (uint64_t)ticks * 1000 * (1 << (prescale & 0xF)) / timerClock; if (!(temp_time & 0xffffffff00000000)) { *time = temp_time; *units = temp_unit; return E_NO_ERROR; } temp_unit = TMR_UNIT_SEC; temp_time = (uint64_t)ticks * (1 << (prescale & 0xF)) / timerClock; if (!(temp_time & 0xffffffff00000000)) { *time = temp_time; *units = temp_unit; return E_NO_ERROR; } return E_INVALID; }