Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of lwip by
mem.c
00001 /** 00002 * @file 00003 * Dynamic memory manager 00004 * 00005 * This is a lightweight replacement for the standard C library malloc(). 00006 * 00007 * If you want to use the standard C library malloc() instead, define 00008 * MEM_LIBC_MALLOC to 1 in your lwipopts.h 00009 * 00010 * To let mem_malloc() use pools (prevents fragmentation and is much faster than 00011 * a heap but might waste some memory), define MEM_USE_POOLS to 1, define 00012 * MEM_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list 00013 * of pools like this (more pools can be added between _START and _END): 00014 * 00015 * Define three pools with sizes 256, 512, and 1512 bytes 00016 * LWIP_MALLOC_MEMPOOL_START 00017 * LWIP_MALLOC_MEMPOOL(20, 256) 00018 * LWIP_MALLOC_MEMPOOL(10, 512) 00019 * LWIP_MALLOC_MEMPOOL(5, 1512) 00020 * LWIP_MALLOC_MEMPOOL_END 00021 */ 00022 00023 /* 00024 * Copyright (c) 2001-2004 Swedish Institute of Computer Science. 00025 * All rights reserved. 00026 * 00027 * Redistribution and use in source and binary forms, with or without modification, 00028 * are permitted provided that the following conditions are met: 00029 * 00030 * 1. Redistributions of source code must retain the above copyright notice, 00031 * this list of conditions and the following disclaimer. 00032 * 2. Redistributions in binary form must reproduce the above copyright notice, 00033 * this list of conditions and the following disclaimer in the documentation 00034 * and/or other materials provided with the distribution. 00035 * 3. The name of the author may not be used to endorse or promote products 00036 * derived from this software without specific prior written permission. 00037 * 00038 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 00039 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 00040 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 00041 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 00042 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 00043 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00044 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 00045 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 00046 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 00047 * OF SUCH DAMAGE. 00048 * 00049 * This file is part of the lwIP TCP/IP stack. 00050 * 00051 * Author: Adam Dunkels <adam@sics.se> 00052 * Simon Goldschmidt 00053 * 00054 */ 00055 00056 #include "lwip/opt.h" 00057 00058 #if !MEM_LIBC_MALLOC /* don't build if not configured for use in lwipopts.h */ 00059 00060 #include "lwip/def.h" 00061 #include "lwip/mem.h" 00062 #include "lwip/sys.h" 00063 #include "lwip/stats.h" 00064 #include "lwip/err.h" 00065 00066 #include <string.h> 00067 00068 #if MEM_USE_POOLS 00069 /* lwIP head implemented with different sized pools */ 00070 00071 /** 00072 * Allocate memory: determine the smallest pool that is big enough 00073 * to contain an element of 'size' and get an element from that pool. 00074 * 00075 * @param size the size in bytes of the memory needed 00076 * @return a pointer to the allocated memory or NULL if the pool is empty 00077 */ 00078 void * 00079 mem_malloc(mem_size_t size) 00080 { 00081 struct memp_malloc_helper *element; 00082 memp_t poolnr; 00083 mem_size_t required_size = size + sizeof(struct memp_malloc_helper); 00084 00085 for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) { 00086 #if MEM_USE_POOLS_TRY_BIGGER_POOL 00087 again: 00088 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */ 00089 /* is this pool big enough to hold an element of the required size 00090 plus a struct memp_malloc_helper that saves the pool this element came from? */ 00091 if (required_size <= memp_sizes[poolnr]) { 00092 break; 00093 } 00094 } 00095 if (poolnr > MEMP_POOL_LAST) { 00096 LWIP_ASSERT("mem_malloc(): no pool is that big!", 0); 00097 return NULL; 00098 } 00099 element = (struct memp_malloc_helper*)memp_malloc(poolnr); 00100 if (element == NULL) { 00101 /* No need to DEBUGF or ASSERT: This error is already 00102 taken care of in memp.c */ 00103 #if MEM_USE_POOLS_TRY_BIGGER_POOL 00104 /** Try a bigger pool if this one is empty! */ 00105 if (poolnr < MEMP_POOL_LAST) { 00106 poolnr++; 00107 goto again; 00108 } 00109 #endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */ 00110 return NULL; 00111 } 00112 00113 /* save the pool number this element came from */ 00114 element->poolnr = poolnr; 00115 /* and return a pointer to the memory directly after the struct memp_malloc_helper */ 00116 element++; 00117 00118 return element; 00119 } 00120 00121 /** 00122 * Free memory previously allocated by mem_malloc. Loads the pool number 00123 * and calls memp_free with that pool number to put the element back into 00124 * its pool 00125 * 00126 * @param rmem the memory element to free 00127 */ 00128 void 00129 mem_free(void *rmem) 00130 { 00131 struct memp_malloc_helper *hmem = (struct memp_malloc_helper*)rmem; 00132 00133 LWIP_ASSERT("rmem != NULL", (rmem != NULL)); 00134 LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem))); 00135 00136 /* get the original struct memp_malloc_helper */ 00137 hmem--; 00138 00139 LWIP_ASSERT("hmem != NULL", (hmem != NULL)); 00140 LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem))); 00141 LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX)); 00142 00143 /* and put it in the pool we saved earlier */ 00144 memp_free(hmem->poolnr, hmem); 00145 } 00146 00147 #else /* MEM_USE_POOLS */ 00148 /* lwIP replacement for your libc malloc() */ 00149 00150 /** 00151 * The heap is made up as a list of structs of this type. 00152 * This does not have to be aligned since for getting its size, 00153 * we only use the macro SIZEOF_STRUCT_MEM, which automatically alignes. 00154 */ 00155 struct mem { 00156 /** index (-> ram[next]) of the next struct */ 00157 mem_size_t next; 00158 /** index (-> ram[prev]) of the previous struct */ 00159 mem_size_t prev; 00160 /** 1: this area is used; 0: this area is unused */ 00161 u8_t used; 00162 }; 00163 00164 /** All allocated blocks will be MIN_SIZE bytes big, at least! 00165 * MIN_SIZE can be overridden to suit your needs. Smaller values save space, 00166 * larger values could prevent too small blocks to fragment the RAM too much. */ 00167 #ifndef MIN_SIZE 00168 #define MIN_SIZE 12 00169 #endif /* MIN_SIZE */ 00170 /* some alignment macros: we define them here for better source code layout */ 00171 #define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE) 00172 #define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem)) 00173 #define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE) 00174 00175 /** If you want to relocate the heap to external memory, simply define 00176 * LWIP_RAM_HEAP_POINTER as a void-pointer to that location. 00177 * If so, make sure the memory at that location is big enough (see below on 00178 * how that space is calculated). */ 00179 #ifndef LWIP_RAM_HEAP_POINTER 00180 00181 #if defined(TARGET_LPC4088) 00182 # if defined (__ICCARM__) 00183 # define ETHMEM_SECTION 00184 # elif defined(TOOLCHAIN_GCC_CR) 00185 # define ETHMEM_SECTION __attribute__((section(".data.$RamPeriph32"))) 00186 # else 00187 # define ETHMEM_SECTION __attribute__((section("AHBSRAM1"),aligned)) 00188 # endif 00189 #else 00190 # define ETHMEM_SECTION __attribute((section("AHBSRAM0"))) 00191 #endif 00192 00193 /** the heap. we need one struct mem at the end and some room for alignment */ 00194 u8_t ram_heap[MEM_SIZE_ALIGNED + (2*SIZEOF_STRUCT_MEM) + MEM_ALIGNMENT] ETHMEM_SECTION; 00195 #define LWIP_RAM_HEAP_POINTER ram_heap 00196 #endif /* LWIP_RAM_HEAP_POINTER */ 00197 00198 /** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */ 00199 static u8_t *ram; 00200 /** the last entry, always unused! */ 00201 static struct mem *ram_end; 00202 /** pointer to the lowest free block, this is used for faster search */ 00203 static struct mem *lfree; 00204 00205 /** concurrent access protection */ 00206 static sys_mutex_t mem_mutex; 00207 00208 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00209 00210 static volatile u8_t mem_free_count; 00211 00212 /* Allow mem_free from other (e.g. interrupt) context */ 00213 #define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free) 00214 #define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free) 00215 #define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free) 00216 #define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc) 00217 #define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc) 00218 #define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc) 00219 00220 #else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00221 00222 /* Protect the heap only by using a semaphore */ 00223 #define LWIP_MEM_FREE_DECL_PROTECT() 00224 #define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex) 00225 #define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex) 00226 /* mem_malloc is protected using semaphore AND LWIP_MEM_ALLOC_PROTECT */ 00227 #define LWIP_MEM_ALLOC_DECL_PROTECT() 00228 #define LWIP_MEM_ALLOC_PROTECT() 00229 #define LWIP_MEM_ALLOC_UNPROTECT() 00230 00231 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00232 00233 00234 /** 00235 * "Plug holes" by combining adjacent empty struct mems. 00236 * After this function is through, there should not exist 00237 * one empty struct mem pointing to another empty struct mem. 00238 * 00239 * @param mem this points to a struct mem which just has been freed 00240 * @internal this function is only called by mem_free() and mem_trim() 00241 * 00242 * This assumes access to the heap is protected by the calling function 00243 * already. 00244 */ 00245 static void 00246 plug_holes(struct mem *mem) 00247 { 00248 struct mem *nmem; 00249 struct mem *pmem; 00250 00251 LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram); 00252 LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end); 00253 LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0); 00254 00255 /* plug hole forward */ 00256 LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED); 00257 00258 nmem = (struct mem *)(void *)&ram[mem->next]; 00259 if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) { 00260 /* if mem->next is unused and not end of ram, combine mem and mem->next */ 00261 if (lfree == nmem) { 00262 lfree = mem; 00263 } 00264 mem->next = nmem->next; 00265 ((struct mem *)(void *)&ram[nmem->next])->prev = (mem_size_t)((u8_t *)mem - ram); 00266 } 00267 00268 /* plug hole backward */ 00269 pmem = (struct mem *)(void *)&ram[mem->prev]; 00270 if (pmem != mem && pmem->used == 0) { 00271 /* if mem->prev is unused, combine mem and mem->prev */ 00272 if (lfree == mem) { 00273 lfree = pmem; 00274 } 00275 pmem->next = mem->next; 00276 ((struct mem *)(void *)&ram[mem->next])->prev = (mem_size_t)((u8_t *)pmem - ram); 00277 } 00278 } 00279 00280 /** 00281 * Zero the heap and initialize start, end and lowest-free 00282 */ 00283 void 00284 mem_init(void) 00285 { 00286 struct mem *mem; 00287 00288 LWIP_ASSERT("Sanity check alignment", 00289 (SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT-1)) == 0); 00290 00291 /* align the heap */ 00292 ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER); 00293 /* initialize the start of the heap */ 00294 mem = (struct mem *)(void *)ram; 00295 mem->next = MEM_SIZE_ALIGNED; 00296 mem->prev = 0; 00297 mem->used = 0; 00298 /* initialize the end of the heap */ 00299 ram_end = (struct mem *)(void *)&ram[MEM_SIZE_ALIGNED]; 00300 ram_end->used = 1; 00301 ram_end->next = MEM_SIZE_ALIGNED; 00302 ram_end->prev = MEM_SIZE_ALIGNED; 00303 00304 /* initialize the lowest-free pointer to the start of the heap */ 00305 lfree = (struct mem *)(void *)ram; 00306 00307 MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED); 00308 00309 if(sys_mutex_new(&mem_mutex) != ERR_OK) { 00310 LWIP_ASSERT("failed to create mem_mutex", 0); 00311 } 00312 } 00313 00314 /** 00315 * Put a struct mem back on the heap 00316 * 00317 * @param rmem is the data portion of a struct mem as returned by a previous 00318 * call to mem_malloc() 00319 */ 00320 void 00321 mem_free(void *rmem) 00322 { 00323 struct mem *mem; 00324 LWIP_MEM_FREE_DECL_PROTECT(); 00325 00326 if (rmem == NULL) { 00327 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n")); 00328 return; 00329 } 00330 LWIP_ASSERT("mem_free: sanity check alignment", (((mem_ptr_t)rmem) & (MEM_ALIGNMENT-1)) == 0); 00331 00332 LWIP_ASSERT("mem_free: legal memory", (u8_t *)rmem >= (u8_t *)ram && 00333 (u8_t *)rmem < (u8_t *)ram_end); 00334 00335 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) { 00336 SYS_ARCH_DECL_PROTECT(lev); 00337 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n")); 00338 /* protect mem stats from concurrent access */ 00339 SYS_ARCH_PROTECT(lev); 00340 MEM_STATS_INC(illegal); 00341 SYS_ARCH_UNPROTECT(lev); 00342 return; 00343 } 00344 /* protect the heap from concurrent access */ 00345 LWIP_MEM_FREE_PROTECT(); 00346 /* Get the corresponding struct mem ... */ 00347 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM); 00348 /* ... which has to be in a used state ... */ 00349 LWIP_ASSERT("mem_free: mem->used", mem->used); 00350 /* ... and is now unused. */ 00351 mem->used = 0; 00352 00353 if (mem < lfree) { 00354 /* the newly freed struct is now the lowest */ 00355 lfree = mem; 00356 } 00357 00358 MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram))); 00359 00360 /* finally, see if prev or next are free also */ 00361 plug_holes(mem); 00362 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00363 mem_free_count = 1; 00364 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00365 LWIP_MEM_FREE_UNPROTECT(); 00366 } 00367 00368 /** 00369 * Shrink memory returned by mem_malloc(). 00370 * 00371 * @param rmem pointer to memory allocated by mem_malloc the is to be shrinked 00372 * @param newsize required size after shrinking (needs to be smaller than or 00373 * equal to the previous size) 00374 * @return for compatibility reasons: is always == rmem, at the moment 00375 * or NULL if newsize is > old size, in which case rmem is NOT touched 00376 * or freed! 00377 */ 00378 void * 00379 mem_trim(void *rmem, mem_size_t newsize) 00380 { 00381 mem_size_t size; 00382 mem_size_t ptr, ptr2; 00383 struct mem *mem, *mem2; 00384 /* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */ 00385 LWIP_MEM_FREE_DECL_PROTECT(); 00386 00387 /* Expand the size of the allocated memory region so that we can 00388 adjust for alignment. */ 00389 newsize = LWIP_MEM_ALIGN_SIZE(newsize); 00390 00391 if(newsize < MIN_SIZE_ALIGNED) { 00392 /* every data block must be at least MIN_SIZE_ALIGNED long */ 00393 newsize = MIN_SIZE_ALIGNED; 00394 } 00395 00396 if (newsize > MEM_SIZE_ALIGNED) { 00397 return NULL; 00398 } 00399 00400 LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram && 00401 (u8_t *)rmem < (u8_t *)ram_end); 00402 00403 if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) { 00404 SYS_ARCH_DECL_PROTECT(lev); 00405 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n")); 00406 /* protect mem stats from concurrent access */ 00407 SYS_ARCH_PROTECT(lev); 00408 MEM_STATS_INC(illegal); 00409 SYS_ARCH_UNPROTECT(lev); 00410 return rmem; 00411 } 00412 /* Get the corresponding struct mem ... */ 00413 mem = (struct mem *)(void *)((u8_t *)rmem - SIZEOF_STRUCT_MEM); 00414 /* ... and its offset pointer */ 00415 ptr = (mem_size_t)((u8_t *)mem - ram); 00416 00417 size = mem->next - ptr - SIZEOF_STRUCT_MEM; 00418 LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size); 00419 if (newsize > size) { 00420 /* not supported */ 00421 return NULL; 00422 } 00423 if (newsize == size) { 00424 /* No change in size, simply return */ 00425 return rmem; 00426 } 00427 00428 /* protect the heap from concurrent access */ 00429 LWIP_MEM_FREE_PROTECT(); 00430 00431 mem2 = (struct mem *)(void *)&ram[mem->next]; 00432 if(mem2->used == 0) { 00433 /* The next struct is unused, we can simply move it at little */ 00434 mem_size_t next; 00435 /* remember the old next pointer */ 00436 next = mem2->next; 00437 /* create new struct mem which is moved directly after the shrinked mem */ 00438 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize; 00439 if (lfree == mem2) { 00440 lfree = (struct mem *)(void *)&ram[ptr2]; 00441 } 00442 mem2 = (struct mem *)(void *)&ram[ptr2]; 00443 mem2->used = 0; 00444 /* restore the next pointer */ 00445 mem2->next = next; 00446 /* link it back to mem */ 00447 mem2->prev = ptr; 00448 /* link mem to it */ 00449 mem->next = ptr2; 00450 /* last thing to restore linked list: as we have moved mem2, 00451 * let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not 00452 * the end of the heap */ 00453 if (mem2->next != MEM_SIZE_ALIGNED) { 00454 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00455 } 00456 MEM_STATS_DEC_USED(used, (size - newsize)); 00457 /* no need to plug holes, we've already done that */ 00458 } else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) { 00459 /* Next struct is used but there's room for another struct mem with 00460 * at least MIN_SIZE_ALIGNED of data. 00461 * Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem 00462 * ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED'). 00463 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty 00464 * region that couldn't hold data, but when mem->next gets freed, 00465 * the 2 regions would be combined, resulting in more free memory */ 00466 ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize; 00467 mem2 = (struct mem *)(void *)&ram[ptr2]; 00468 if (mem2 < lfree) { 00469 lfree = mem2; 00470 } 00471 mem2->used = 0; 00472 mem2->next = mem->next; 00473 mem2->prev = ptr; 00474 mem->next = ptr2; 00475 if (mem2->next != MEM_SIZE_ALIGNED) { 00476 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00477 } 00478 MEM_STATS_DEC_USED(used, (size - newsize)); 00479 /* the original mem->next is used, so no need to plug holes! */ 00480 } 00481 /* else { 00482 next struct mem is used but size between mem and mem2 is not big enough 00483 to create another struct mem 00484 -> don't do anyhting. 00485 -> the remaining space stays unused since it is too small 00486 } */ 00487 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00488 mem_free_count = 1; 00489 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00490 LWIP_MEM_FREE_UNPROTECT(); 00491 return rmem; 00492 } 00493 00494 /** 00495 * Adam's mem_malloc() plus solution for bug #17922 00496 * Allocate a block of memory with a minimum of 'size' bytes. 00497 * 00498 * @param size is the minimum size of the requested block in bytes. 00499 * @return pointer to allocated memory or NULL if no free memory was found. 00500 * 00501 * Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT). 00502 */ 00503 void * 00504 mem_malloc(mem_size_t size) 00505 { 00506 mem_size_t ptr, ptr2; 00507 struct mem *mem, *mem2; 00508 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00509 u8_t local_mem_free_count = 0; 00510 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00511 LWIP_MEM_ALLOC_DECL_PROTECT(); 00512 00513 if (size == 0) { 00514 return NULL; 00515 } 00516 00517 /* Expand the size of the allocated memory region so that we can 00518 adjust for alignment. */ 00519 size = LWIP_MEM_ALIGN_SIZE(size); 00520 00521 if(size < MIN_SIZE_ALIGNED) { 00522 /* every data block must be at least MIN_SIZE_ALIGNED long */ 00523 size = MIN_SIZE_ALIGNED; 00524 } 00525 00526 if (size > MEM_SIZE_ALIGNED) { 00527 return NULL; 00528 } 00529 00530 /* protect the heap from concurrent access */ 00531 sys_mutex_lock(&mem_mutex); 00532 LWIP_MEM_ALLOC_PROTECT(); 00533 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00534 /* run as long as a mem_free disturbed mem_malloc */ 00535 do { 00536 local_mem_free_count = 0; 00537 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00538 00539 /* Scan through the heap searching for a free block that is big enough, 00540 * beginning with the lowest free block. 00541 */ 00542 for (ptr = (mem_size_t)((u8_t *)lfree - ram); ptr < MEM_SIZE_ALIGNED - size; 00543 ptr = ((struct mem *)(void *)&ram[ptr])->next) { 00544 mem = (struct mem *)(void *)&ram[ptr]; 00545 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00546 mem_free_count = 0; 00547 LWIP_MEM_ALLOC_UNPROTECT(); 00548 /* allow mem_free to run */ 00549 LWIP_MEM_ALLOC_PROTECT(); 00550 if (mem_free_count != 0) { 00551 local_mem_free_count = mem_free_count; 00552 } 00553 mem_free_count = 0; 00554 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00555 00556 if ((!mem->used) && 00557 (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) { 00558 /* mem is not used and at least perfect fit is possible: 00559 * mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */ 00560 00561 if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) { 00562 /* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing 00563 * at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem') 00564 * -> split large block, create empty remainder, 00565 * remainder must be large enough to contain MIN_SIZE_ALIGNED data: if 00566 * mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size, 00567 * struct mem would fit in but no data between mem2 and mem2->next 00568 * @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty 00569 * region that couldn't hold data, but when mem->next gets freed, 00570 * the 2 regions would be combined, resulting in more free memory 00571 */ 00572 ptr2 = ptr + SIZEOF_STRUCT_MEM + size; 00573 /* create mem2 struct */ 00574 mem2 = (struct mem *)(void *)&ram[ptr2]; 00575 mem2->used = 0; 00576 mem2->next = mem->next; 00577 mem2->prev = ptr; 00578 /* and insert it between mem and mem->next */ 00579 mem->next = ptr2; 00580 mem->used = 1; 00581 00582 if (mem2->next != MEM_SIZE_ALIGNED) { 00583 ((struct mem *)(void *)&ram[mem2->next])->prev = ptr2; 00584 } 00585 MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM)); 00586 } else { 00587 /* (a mem2 struct does no fit into the user data space of mem and mem->next will always 00588 * be used at this point: if not we have 2 unused structs in a row, plug_holes should have 00589 * take care of this). 00590 * -> near fit or excact fit: do not split, no mem2 creation 00591 * also can't move mem->next directly behind mem, since mem->next 00592 * will always be used at this point! 00593 */ 00594 mem->used = 1; 00595 MEM_STATS_INC_USED(used, mem->next - (mem_size_t)((u8_t *)mem - ram)); 00596 } 00597 00598 if (mem == lfree) { 00599 /* Find next free block after mem and update lowest free pointer */ 00600 while (lfree->used && lfree != ram_end) { 00601 LWIP_MEM_ALLOC_UNPROTECT(); 00602 /* prevent high interrupt latency... */ 00603 LWIP_MEM_ALLOC_PROTECT(); 00604 lfree = (struct mem *)(void *)&ram[lfree->next]; 00605 } 00606 LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used))); 00607 } 00608 LWIP_MEM_ALLOC_UNPROTECT(); 00609 sys_mutex_unlock(&mem_mutex); 00610 LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.", 00611 (mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end); 00612 LWIP_ASSERT("mem_malloc: allocated memory properly aligned.", 00613 ((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0); 00614 LWIP_ASSERT("mem_malloc: sanity check alignment", 00615 (((mem_ptr_t)mem) & (MEM_ALIGNMENT-1)) == 0); 00616 00617 return (u8_t *)mem + SIZEOF_STRUCT_MEM; 00618 } 00619 } 00620 #if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT 00621 /* if we got interrupted by a mem_free, try again */ 00622 } while(local_mem_free_count != 0); 00623 #endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */ 00624 LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size)); 00625 MEM_STATS_INC(err); 00626 LWIP_MEM_ALLOC_UNPROTECT(); 00627 sys_mutex_unlock(&mem_mutex); 00628 return NULL; 00629 } 00630 00631 #endif /* MEM_USE_POOLS */ 00632 /** 00633 * Contiguously allocates enough space for count objects that are size bytes 00634 * of memory each and returns a pointer to the allocated memory. 00635 * 00636 * The allocated memory is filled with bytes of value zero. 00637 * 00638 * @param count number of objects to allocate 00639 * @param size size of the objects to allocate 00640 * @return pointer to allocated memory / NULL pointer if there is an error 00641 */ 00642 void *mem_calloc(mem_size_t count, mem_size_t size) 00643 { 00644 void *p; 00645 00646 /* allocate 'count' objects of size 'size' */ 00647 p = mem_malloc(count * size); 00648 if (p) { 00649 /* zero the memory */ 00650 memset(p, 0, count * size); 00651 } 00652 return p; 00653 } 00654 00655 #endif /* !MEM_LIBC_MALLOC */
Generated on Tue Jul 12 2022 21:27:02 by
