RTC auf true

Committer:
kevman
Date:
Wed Nov 28 15:10:15 2018 +0000
Revision:
0:38ceb79fef03
RTC modified

Who changed what in which revision?

UserRevisionLine numberNew contents of line
kevman 0:38ceb79fef03 1 /*
kevman 0:38ceb79fef03 2 * Elliptic curves over GF(p): curve-specific data and functions
kevman 0:38ceb79fef03 3 *
kevman 0:38ceb79fef03 4 * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
kevman 0:38ceb79fef03 5 * SPDX-License-Identifier: Apache-2.0
kevman 0:38ceb79fef03 6 *
kevman 0:38ceb79fef03 7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
kevman 0:38ceb79fef03 8 * not use this file except in compliance with the License.
kevman 0:38ceb79fef03 9 * You may obtain a copy of the License at
kevman 0:38ceb79fef03 10 *
kevman 0:38ceb79fef03 11 * http://www.apache.org/licenses/LICENSE-2.0
kevman 0:38ceb79fef03 12 *
kevman 0:38ceb79fef03 13 * Unless required by applicable law or agreed to in writing, software
kevman 0:38ceb79fef03 14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
kevman 0:38ceb79fef03 15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
kevman 0:38ceb79fef03 16 * See the License for the specific language governing permissions and
kevman 0:38ceb79fef03 17 * limitations under the License.
kevman 0:38ceb79fef03 18 *
kevman 0:38ceb79fef03 19 * This file is part of mbed TLS (https://tls.mbed.org)
kevman 0:38ceb79fef03 20 */
kevman 0:38ceb79fef03 21
kevman 0:38ceb79fef03 22 #if !defined(MBEDTLS_CONFIG_FILE)
kevman 0:38ceb79fef03 23 #include "mbedtls/config.h"
kevman 0:38ceb79fef03 24 #else
kevman 0:38ceb79fef03 25 #include MBEDTLS_CONFIG_FILE
kevman 0:38ceb79fef03 26 #endif
kevman 0:38ceb79fef03 27
kevman 0:38ceb79fef03 28 #if defined(MBEDTLS_ECP_C)
kevman 0:38ceb79fef03 29
kevman 0:38ceb79fef03 30 #include "mbedtls/ecp.h"
kevman 0:38ceb79fef03 31
kevman 0:38ceb79fef03 32 #include <string.h>
kevman 0:38ceb79fef03 33
kevman 0:38ceb79fef03 34 #if !defined(MBEDTLS_ECP_ALT)
kevman 0:38ceb79fef03 35
kevman 0:38ceb79fef03 36 #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
kevman 0:38ceb79fef03 37 !defined(inline) && !defined(__cplusplus)
kevman 0:38ceb79fef03 38 #define inline __inline
kevman 0:38ceb79fef03 39 #endif
kevman 0:38ceb79fef03 40
kevman 0:38ceb79fef03 41 /*
kevman 0:38ceb79fef03 42 * Conversion macros for embedded constants:
kevman 0:38ceb79fef03 43 * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
kevman 0:38ceb79fef03 44 */
kevman 0:38ceb79fef03 45 #if defined(MBEDTLS_HAVE_INT32)
kevman 0:38ceb79fef03 46
kevman 0:38ceb79fef03 47 #define BYTES_TO_T_UINT_4( a, b, c, d ) \
kevman 0:38ceb79fef03 48 ( (mbedtls_mpi_uint) a << 0 ) | \
kevman 0:38ceb79fef03 49 ( (mbedtls_mpi_uint) b << 8 ) | \
kevman 0:38ceb79fef03 50 ( (mbedtls_mpi_uint) c << 16 ) | \
kevman 0:38ceb79fef03 51 ( (mbedtls_mpi_uint) d << 24 )
kevman 0:38ceb79fef03 52
kevman 0:38ceb79fef03 53 #define BYTES_TO_T_UINT_2( a, b ) \
kevman 0:38ceb79fef03 54 BYTES_TO_T_UINT_4( a, b, 0, 0 )
kevman 0:38ceb79fef03 55
kevman 0:38ceb79fef03 56 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
kevman 0:38ceb79fef03 57 BYTES_TO_T_UINT_4( a, b, c, d ), \
kevman 0:38ceb79fef03 58 BYTES_TO_T_UINT_4( e, f, g, h )
kevman 0:38ceb79fef03 59
kevman 0:38ceb79fef03 60 #else /* 64-bits */
kevman 0:38ceb79fef03 61
kevman 0:38ceb79fef03 62 #define BYTES_TO_T_UINT_8( a, b, c, d, e, f, g, h ) \
kevman 0:38ceb79fef03 63 ( (mbedtls_mpi_uint) a << 0 ) | \
kevman 0:38ceb79fef03 64 ( (mbedtls_mpi_uint) b << 8 ) | \
kevman 0:38ceb79fef03 65 ( (mbedtls_mpi_uint) c << 16 ) | \
kevman 0:38ceb79fef03 66 ( (mbedtls_mpi_uint) d << 24 ) | \
kevman 0:38ceb79fef03 67 ( (mbedtls_mpi_uint) e << 32 ) | \
kevman 0:38ceb79fef03 68 ( (mbedtls_mpi_uint) f << 40 ) | \
kevman 0:38ceb79fef03 69 ( (mbedtls_mpi_uint) g << 48 ) | \
kevman 0:38ceb79fef03 70 ( (mbedtls_mpi_uint) h << 56 )
kevman 0:38ceb79fef03 71
kevman 0:38ceb79fef03 72 #define BYTES_TO_T_UINT_4( a, b, c, d ) \
kevman 0:38ceb79fef03 73 BYTES_TO_T_UINT_8( a, b, c, d, 0, 0, 0, 0 )
kevman 0:38ceb79fef03 74
kevman 0:38ceb79fef03 75 #define BYTES_TO_T_UINT_2( a, b ) \
kevman 0:38ceb79fef03 76 BYTES_TO_T_UINT_8( a, b, 0, 0, 0, 0, 0, 0 )
kevman 0:38ceb79fef03 77
kevman 0:38ceb79fef03 78 #endif /* bits in mbedtls_mpi_uint */
kevman 0:38ceb79fef03 79
kevman 0:38ceb79fef03 80 /*
kevman 0:38ceb79fef03 81 * Note: the constants are in little-endian order
kevman 0:38ceb79fef03 82 * to be directly usable in MPIs
kevman 0:38ceb79fef03 83 */
kevman 0:38ceb79fef03 84
kevman 0:38ceb79fef03 85 /*
kevman 0:38ceb79fef03 86 * Domain parameters for secp192r1
kevman 0:38ceb79fef03 87 */
kevman 0:38ceb79fef03 88 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
kevman 0:38ceb79fef03 89 static const mbedtls_mpi_uint secp192r1_p[] = {
kevman 0:38ceb79fef03 90 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 91 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 92 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 93 };
kevman 0:38ceb79fef03 94 static const mbedtls_mpi_uint secp192r1_b[] = {
kevman 0:38ceb79fef03 95 BYTES_TO_T_UINT_8( 0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE ),
kevman 0:38ceb79fef03 96 BYTES_TO_T_UINT_8( 0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F ),
kevman 0:38ceb79fef03 97 BYTES_TO_T_UINT_8( 0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64 ),
kevman 0:38ceb79fef03 98 };
kevman 0:38ceb79fef03 99 static const mbedtls_mpi_uint secp192r1_gx[] = {
kevman 0:38ceb79fef03 100 BYTES_TO_T_UINT_8( 0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4 ),
kevman 0:38ceb79fef03 101 BYTES_TO_T_UINT_8( 0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C ),
kevman 0:38ceb79fef03 102 BYTES_TO_T_UINT_8( 0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18 ),
kevman 0:38ceb79fef03 103 };
kevman 0:38ceb79fef03 104 static const mbedtls_mpi_uint secp192r1_gy[] = {
kevman 0:38ceb79fef03 105 BYTES_TO_T_UINT_8( 0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73 ),
kevman 0:38ceb79fef03 106 BYTES_TO_T_UINT_8( 0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63 ),
kevman 0:38ceb79fef03 107 BYTES_TO_T_UINT_8( 0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07 ),
kevman 0:38ceb79fef03 108 };
kevman 0:38ceb79fef03 109 static const mbedtls_mpi_uint secp192r1_n[] = {
kevman 0:38ceb79fef03 110 BYTES_TO_T_UINT_8( 0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14 ),
kevman 0:38ceb79fef03 111 BYTES_TO_T_UINT_8( 0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 112 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 113 };
kevman 0:38ceb79fef03 114 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
kevman 0:38ceb79fef03 115
kevman 0:38ceb79fef03 116 /*
kevman 0:38ceb79fef03 117 * Domain parameters for secp224r1
kevman 0:38ceb79fef03 118 */
kevman 0:38ceb79fef03 119 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
kevman 0:38ceb79fef03 120 static const mbedtls_mpi_uint secp224r1_p[] = {
kevman 0:38ceb79fef03 121 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
kevman 0:38ceb79fef03 122 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 123 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 124 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
kevman 0:38ceb79fef03 125 };
kevman 0:38ceb79fef03 126 static const mbedtls_mpi_uint secp224r1_b[] = {
kevman 0:38ceb79fef03 127 BYTES_TO_T_UINT_8( 0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27 ),
kevman 0:38ceb79fef03 128 BYTES_TO_T_UINT_8( 0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50 ),
kevman 0:38ceb79fef03 129 BYTES_TO_T_UINT_8( 0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C ),
kevman 0:38ceb79fef03 130 BYTES_TO_T_UINT_4( 0x85, 0x0A, 0x05, 0xB4 ),
kevman 0:38ceb79fef03 131 };
kevman 0:38ceb79fef03 132 static const mbedtls_mpi_uint secp224r1_gx[] = {
kevman 0:38ceb79fef03 133 BYTES_TO_T_UINT_8( 0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34 ),
kevman 0:38ceb79fef03 134 BYTES_TO_T_UINT_8( 0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A ),
kevman 0:38ceb79fef03 135 BYTES_TO_T_UINT_8( 0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B ),
kevman 0:38ceb79fef03 136 BYTES_TO_T_UINT_4( 0xBD, 0x0C, 0x0E, 0xB7 ),
kevman 0:38ceb79fef03 137 };
kevman 0:38ceb79fef03 138 static const mbedtls_mpi_uint secp224r1_gy[] = {
kevman 0:38ceb79fef03 139 BYTES_TO_T_UINT_8( 0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44 ),
kevman 0:38ceb79fef03 140 BYTES_TO_T_UINT_8( 0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD ),
kevman 0:38ceb79fef03 141 BYTES_TO_T_UINT_8( 0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5 ),
kevman 0:38ceb79fef03 142 BYTES_TO_T_UINT_4( 0x88, 0x63, 0x37, 0xBD ),
kevman 0:38ceb79fef03 143 };
kevman 0:38ceb79fef03 144 static const mbedtls_mpi_uint secp224r1_n[] = {
kevman 0:38ceb79fef03 145 BYTES_TO_T_UINT_8( 0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13 ),
kevman 0:38ceb79fef03 146 BYTES_TO_T_UINT_8( 0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 147 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 148 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 149 };
kevman 0:38ceb79fef03 150 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
kevman 0:38ceb79fef03 151
kevman 0:38ceb79fef03 152 /*
kevman 0:38ceb79fef03 153 * Domain parameters for secp256r1
kevman 0:38ceb79fef03 154 */
kevman 0:38ceb79fef03 155 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
kevman 0:38ceb79fef03 156 static const mbedtls_mpi_uint secp256r1_p[] = {
kevman 0:38ceb79fef03 157 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 158 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
kevman 0:38ceb79fef03 159 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
kevman 0:38ceb79fef03 160 BYTES_TO_T_UINT_8( 0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 161 };
kevman 0:38ceb79fef03 162 static const mbedtls_mpi_uint secp256r1_b[] = {
kevman 0:38ceb79fef03 163 BYTES_TO_T_UINT_8( 0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B ),
kevman 0:38ceb79fef03 164 BYTES_TO_T_UINT_8( 0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65 ),
kevman 0:38ceb79fef03 165 BYTES_TO_T_UINT_8( 0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3 ),
kevman 0:38ceb79fef03 166 BYTES_TO_T_UINT_8( 0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A ),
kevman 0:38ceb79fef03 167 };
kevman 0:38ceb79fef03 168 static const mbedtls_mpi_uint secp256r1_gx[] = {
kevman 0:38ceb79fef03 169 BYTES_TO_T_UINT_8( 0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4 ),
kevman 0:38ceb79fef03 170 BYTES_TO_T_UINT_8( 0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77 ),
kevman 0:38ceb79fef03 171 BYTES_TO_T_UINT_8( 0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8 ),
kevman 0:38ceb79fef03 172 BYTES_TO_T_UINT_8( 0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B ),
kevman 0:38ceb79fef03 173 };
kevman 0:38ceb79fef03 174 static const mbedtls_mpi_uint secp256r1_gy[] = {
kevman 0:38ceb79fef03 175 BYTES_TO_T_UINT_8( 0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB ),
kevman 0:38ceb79fef03 176 BYTES_TO_T_UINT_8( 0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B ),
kevman 0:38ceb79fef03 177 BYTES_TO_T_UINT_8( 0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E ),
kevman 0:38ceb79fef03 178 BYTES_TO_T_UINT_8( 0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F ),
kevman 0:38ceb79fef03 179 };
kevman 0:38ceb79fef03 180 static const mbedtls_mpi_uint secp256r1_n[] = {
kevman 0:38ceb79fef03 181 BYTES_TO_T_UINT_8( 0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3 ),
kevman 0:38ceb79fef03 182 BYTES_TO_T_UINT_8( 0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC ),
kevman 0:38ceb79fef03 183 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 184 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 185 };
kevman 0:38ceb79fef03 186 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
kevman 0:38ceb79fef03 187
kevman 0:38ceb79fef03 188 /*
kevman 0:38ceb79fef03 189 * Domain parameters for secp384r1
kevman 0:38ceb79fef03 190 */
kevman 0:38ceb79fef03 191 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
kevman 0:38ceb79fef03 192 static const mbedtls_mpi_uint secp384r1_p[] = {
kevman 0:38ceb79fef03 193 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00 ),
kevman 0:38ceb79fef03 194 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 195 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 196 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 197 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 198 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 199 };
kevman 0:38ceb79fef03 200 static const mbedtls_mpi_uint secp384r1_b[] = {
kevman 0:38ceb79fef03 201 BYTES_TO_T_UINT_8( 0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A ),
kevman 0:38ceb79fef03 202 BYTES_TO_T_UINT_8( 0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6 ),
kevman 0:38ceb79fef03 203 BYTES_TO_T_UINT_8( 0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03 ),
kevman 0:38ceb79fef03 204 BYTES_TO_T_UINT_8( 0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18 ),
kevman 0:38ceb79fef03 205 BYTES_TO_T_UINT_8( 0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98 ),
kevman 0:38ceb79fef03 206 BYTES_TO_T_UINT_8( 0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3 ),
kevman 0:38ceb79fef03 207 };
kevman 0:38ceb79fef03 208 static const mbedtls_mpi_uint secp384r1_gx[] = {
kevman 0:38ceb79fef03 209 BYTES_TO_T_UINT_8( 0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A ),
kevman 0:38ceb79fef03 210 BYTES_TO_T_UINT_8( 0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55 ),
kevman 0:38ceb79fef03 211 BYTES_TO_T_UINT_8( 0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59 ),
kevman 0:38ceb79fef03 212 BYTES_TO_T_UINT_8( 0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E ),
kevman 0:38ceb79fef03 213 BYTES_TO_T_UINT_8( 0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E ),
kevman 0:38ceb79fef03 214 BYTES_TO_T_UINT_8( 0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA ),
kevman 0:38ceb79fef03 215 };
kevman 0:38ceb79fef03 216 static const mbedtls_mpi_uint secp384r1_gy[] = {
kevman 0:38ceb79fef03 217 BYTES_TO_T_UINT_8( 0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A ),
kevman 0:38ceb79fef03 218 BYTES_TO_T_UINT_8( 0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A ),
kevman 0:38ceb79fef03 219 BYTES_TO_T_UINT_8( 0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9 ),
kevman 0:38ceb79fef03 220 BYTES_TO_T_UINT_8( 0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8 ),
kevman 0:38ceb79fef03 221 BYTES_TO_T_UINT_8( 0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D ),
kevman 0:38ceb79fef03 222 BYTES_TO_T_UINT_8( 0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36 ),
kevman 0:38ceb79fef03 223 };
kevman 0:38ceb79fef03 224 static const mbedtls_mpi_uint secp384r1_n[] = {
kevman 0:38ceb79fef03 225 BYTES_TO_T_UINT_8( 0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC ),
kevman 0:38ceb79fef03 226 BYTES_TO_T_UINT_8( 0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58 ),
kevman 0:38ceb79fef03 227 BYTES_TO_T_UINT_8( 0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7 ),
kevman 0:38ceb79fef03 228 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 229 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 230 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 231 };
kevman 0:38ceb79fef03 232 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
kevman 0:38ceb79fef03 233
kevman 0:38ceb79fef03 234 /*
kevman 0:38ceb79fef03 235 * Domain parameters for secp521r1
kevman 0:38ceb79fef03 236 */
kevman 0:38ceb79fef03 237 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
kevman 0:38ceb79fef03 238 static const mbedtls_mpi_uint secp521r1_p[] = {
kevman 0:38ceb79fef03 239 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 240 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 241 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 242 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 243 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 244 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 245 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 246 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 247 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
kevman 0:38ceb79fef03 248 };
kevman 0:38ceb79fef03 249 static const mbedtls_mpi_uint secp521r1_b[] = {
kevman 0:38ceb79fef03 250 BYTES_TO_T_UINT_8( 0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF ),
kevman 0:38ceb79fef03 251 BYTES_TO_T_UINT_8( 0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35 ),
kevman 0:38ceb79fef03 252 BYTES_TO_T_UINT_8( 0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16 ),
kevman 0:38ceb79fef03 253 BYTES_TO_T_UINT_8( 0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56 ),
kevman 0:38ceb79fef03 254 BYTES_TO_T_UINT_8( 0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8 ),
kevman 0:38ceb79fef03 255 BYTES_TO_T_UINT_8( 0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2 ),
kevman 0:38ceb79fef03 256 BYTES_TO_T_UINT_8( 0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92 ),
kevman 0:38ceb79fef03 257 BYTES_TO_T_UINT_8( 0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95 ),
kevman 0:38ceb79fef03 258 BYTES_TO_T_UINT_2( 0x51, 0x00 ),
kevman 0:38ceb79fef03 259 };
kevman 0:38ceb79fef03 260 static const mbedtls_mpi_uint secp521r1_gx[] = {
kevman 0:38ceb79fef03 261 BYTES_TO_T_UINT_8( 0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9 ),
kevman 0:38ceb79fef03 262 BYTES_TO_T_UINT_8( 0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33 ),
kevman 0:38ceb79fef03 263 BYTES_TO_T_UINT_8( 0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE ),
kevman 0:38ceb79fef03 264 BYTES_TO_T_UINT_8( 0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1 ),
kevman 0:38ceb79fef03 265 BYTES_TO_T_UINT_8( 0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8 ),
kevman 0:38ceb79fef03 266 BYTES_TO_T_UINT_8( 0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C ),
kevman 0:38ceb79fef03 267 BYTES_TO_T_UINT_8( 0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E ),
kevman 0:38ceb79fef03 268 BYTES_TO_T_UINT_8( 0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85 ),
kevman 0:38ceb79fef03 269 BYTES_TO_T_UINT_2( 0xC6, 0x00 ),
kevman 0:38ceb79fef03 270 };
kevman 0:38ceb79fef03 271 static const mbedtls_mpi_uint secp521r1_gy[] = {
kevman 0:38ceb79fef03 272 BYTES_TO_T_UINT_8( 0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88 ),
kevman 0:38ceb79fef03 273 BYTES_TO_T_UINT_8( 0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35 ),
kevman 0:38ceb79fef03 274 BYTES_TO_T_UINT_8( 0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5 ),
kevman 0:38ceb79fef03 275 BYTES_TO_T_UINT_8( 0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97 ),
kevman 0:38ceb79fef03 276 BYTES_TO_T_UINT_8( 0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17 ),
kevman 0:38ceb79fef03 277 BYTES_TO_T_UINT_8( 0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98 ),
kevman 0:38ceb79fef03 278 BYTES_TO_T_UINT_8( 0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C ),
kevman 0:38ceb79fef03 279 BYTES_TO_T_UINT_8( 0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39 ),
kevman 0:38ceb79fef03 280 BYTES_TO_T_UINT_2( 0x18, 0x01 ),
kevman 0:38ceb79fef03 281 };
kevman 0:38ceb79fef03 282 static const mbedtls_mpi_uint secp521r1_n[] = {
kevman 0:38ceb79fef03 283 BYTES_TO_T_UINT_8( 0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB ),
kevman 0:38ceb79fef03 284 BYTES_TO_T_UINT_8( 0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B ),
kevman 0:38ceb79fef03 285 BYTES_TO_T_UINT_8( 0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F ),
kevman 0:38ceb79fef03 286 BYTES_TO_T_UINT_8( 0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51 ),
kevman 0:38ceb79fef03 287 BYTES_TO_T_UINT_8( 0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 288 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 289 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 290 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 291 BYTES_TO_T_UINT_2( 0xFF, 0x01 ),
kevman 0:38ceb79fef03 292 };
kevman 0:38ceb79fef03 293 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
kevman 0:38ceb79fef03 294
kevman 0:38ceb79fef03 295 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
kevman 0:38ceb79fef03 296 static const mbedtls_mpi_uint secp192k1_p[] = {
kevman 0:38ceb79fef03 297 BYTES_TO_T_UINT_8( 0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 298 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 299 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 300 };
kevman 0:38ceb79fef03 301 static const mbedtls_mpi_uint secp192k1_a[] = {
kevman 0:38ceb79fef03 302 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
kevman 0:38ceb79fef03 303 };
kevman 0:38ceb79fef03 304 static const mbedtls_mpi_uint secp192k1_b[] = {
kevman 0:38ceb79fef03 305 BYTES_TO_T_UINT_2( 0x03, 0x00 ),
kevman 0:38ceb79fef03 306 };
kevman 0:38ceb79fef03 307 static const mbedtls_mpi_uint secp192k1_gx[] = {
kevman 0:38ceb79fef03 308 BYTES_TO_T_UINT_8( 0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D ),
kevman 0:38ceb79fef03 309 BYTES_TO_T_UINT_8( 0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26 ),
kevman 0:38ceb79fef03 310 BYTES_TO_T_UINT_8( 0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB ),
kevman 0:38ceb79fef03 311 };
kevman 0:38ceb79fef03 312 static const mbedtls_mpi_uint secp192k1_gy[] = {
kevman 0:38ceb79fef03 313 BYTES_TO_T_UINT_8( 0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40 ),
kevman 0:38ceb79fef03 314 BYTES_TO_T_UINT_8( 0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84 ),
kevman 0:38ceb79fef03 315 BYTES_TO_T_UINT_8( 0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B ),
kevman 0:38ceb79fef03 316 };
kevman 0:38ceb79fef03 317 static const mbedtls_mpi_uint secp192k1_n[] = {
kevman 0:38ceb79fef03 318 BYTES_TO_T_UINT_8( 0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F ),
kevman 0:38ceb79fef03 319 BYTES_TO_T_UINT_8( 0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 320 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 321 };
kevman 0:38ceb79fef03 322 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
kevman 0:38ceb79fef03 323
kevman 0:38ceb79fef03 324 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
kevman 0:38ceb79fef03 325 static const mbedtls_mpi_uint secp224k1_p[] = {
kevman 0:38ceb79fef03 326 BYTES_TO_T_UINT_8( 0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 327 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 328 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 329 BYTES_TO_T_UINT_4( 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 330 };
kevman 0:38ceb79fef03 331 static const mbedtls_mpi_uint secp224k1_a[] = {
kevman 0:38ceb79fef03 332 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
kevman 0:38ceb79fef03 333 };
kevman 0:38ceb79fef03 334 static const mbedtls_mpi_uint secp224k1_b[] = {
kevman 0:38ceb79fef03 335 BYTES_TO_T_UINT_2( 0x05, 0x00 ),
kevman 0:38ceb79fef03 336 };
kevman 0:38ceb79fef03 337 static const mbedtls_mpi_uint secp224k1_gx[] = {
kevman 0:38ceb79fef03 338 BYTES_TO_T_UINT_8( 0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F ),
kevman 0:38ceb79fef03 339 BYTES_TO_T_UINT_8( 0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69 ),
kevman 0:38ceb79fef03 340 BYTES_TO_T_UINT_8( 0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D ),
kevman 0:38ceb79fef03 341 BYTES_TO_T_UINT_4( 0x33, 0x5B, 0x45, 0xA1 ),
kevman 0:38ceb79fef03 342 };
kevman 0:38ceb79fef03 343 static const mbedtls_mpi_uint secp224k1_gy[] = {
kevman 0:38ceb79fef03 344 BYTES_TO_T_UINT_8( 0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2 ),
kevman 0:38ceb79fef03 345 BYTES_TO_T_UINT_8( 0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7 ),
kevman 0:38ceb79fef03 346 BYTES_TO_T_UINT_8( 0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F ),
kevman 0:38ceb79fef03 347 BYTES_TO_T_UINT_4( 0xED, 0x9F, 0x08, 0x7E ),
kevman 0:38ceb79fef03 348 };
kevman 0:38ceb79fef03 349 static const mbedtls_mpi_uint secp224k1_n[] = {
kevman 0:38ceb79fef03 350 BYTES_TO_T_UINT_8( 0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA ),
kevman 0:38ceb79fef03 351 BYTES_TO_T_UINT_8( 0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00 ),
kevman 0:38ceb79fef03 352 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 ),
kevman 0:38ceb79fef03 353 BYTES_TO_T_UINT_8( 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ),
kevman 0:38ceb79fef03 354 };
kevman 0:38ceb79fef03 355 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
kevman 0:38ceb79fef03 356
kevman 0:38ceb79fef03 357 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
kevman 0:38ceb79fef03 358 static const mbedtls_mpi_uint secp256k1_p[] = {
kevman 0:38ceb79fef03 359 BYTES_TO_T_UINT_8( 0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 360 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 361 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 362 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 363 };
kevman 0:38ceb79fef03 364 static const mbedtls_mpi_uint secp256k1_a[] = {
kevman 0:38ceb79fef03 365 BYTES_TO_T_UINT_2( 0x00, 0x00 ),
kevman 0:38ceb79fef03 366 };
kevman 0:38ceb79fef03 367 static const mbedtls_mpi_uint secp256k1_b[] = {
kevman 0:38ceb79fef03 368 BYTES_TO_T_UINT_2( 0x07, 0x00 ),
kevman 0:38ceb79fef03 369 };
kevman 0:38ceb79fef03 370 static const mbedtls_mpi_uint secp256k1_gx[] = {
kevman 0:38ceb79fef03 371 BYTES_TO_T_UINT_8( 0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59 ),
kevman 0:38ceb79fef03 372 BYTES_TO_T_UINT_8( 0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02 ),
kevman 0:38ceb79fef03 373 BYTES_TO_T_UINT_8( 0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55 ),
kevman 0:38ceb79fef03 374 BYTES_TO_T_UINT_8( 0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79 ),
kevman 0:38ceb79fef03 375 };
kevman 0:38ceb79fef03 376 static const mbedtls_mpi_uint secp256k1_gy[] = {
kevman 0:38ceb79fef03 377 BYTES_TO_T_UINT_8( 0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C ),
kevman 0:38ceb79fef03 378 BYTES_TO_T_UINT_8( 0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD ),
kevman 0:38ceb79fef03 379 BYTES_TO_T_UINT_8( 0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D ),
kevman 0:38ceb79fef03 380 BYTES_TO_T_UINT_8( 0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48 ),
kevman 0:38ceb79fef03 381 };
kevman 0:38ceb79fef03 382 static const mbedtls_mpi_uint secp256k1_n[] = {
kevman 0:38ceb79fef03 383 BYTES_TO_T_UINT_8( 0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF ),
kevman 0:38ceb79fef03 384 BYTES_TO_T_UINT_8( 0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA ),
kevman 0:38ceb79fef03 385 BYTES_TO_T_UINT_8( 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 386 BYTES_TO_T_UINT_8( 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF ),
kevman 0:38ceb79fef03 387 };
kevman 0:38ceb79fef03 388 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
kevman 0:38ceb79fef03 389
kevman 0:38ceb79fef03 390 /*
kevman 0:38ceb79fef03 391 * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
kevman 0:38ceb79fef03 392 */
kevman 0:38ceb79fef03 393 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
kevman 0:38ceb79fef03 394 static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
kevman 0:38ceb79fef03 395 BYTES_TO_T_UINT_8( 0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20 ),
kevman 0:38ceb79fef03 396 BYTES_TO_T_UINT_8( 0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E ),
kevman 0:38ceb79fef03 397 BYTES_TO_T_UINT_8( 0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
kevman 0:38ceb79fef03 398 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
kevman 0:38ceb79fef03 399 };
kevman 0:38ceb79fef03 400 static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
kevman 0:38ceb79fef03 401 BYTES_TO_T_UINT_8( 0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9 ),
kevman 0:38ceb79fef03 402 BYTES_TO_T_UINT_8( 0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB ),
kevman 0:38ceb79fef03 403 BYTES_TO_T_UINT_8( 0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE ),
kevman 0:38ceb79fef03 404 BYTES_TO_T_UINT_8( 0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D ),
kevman 0:38ceb79fef03 405 };
kevman 0:38ceb79fef03 406 static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
kevman 0:38ceb79fef03 407 BYTES_TO_T_UINT_8( 0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B ),
kevman 0:38ceb79fef03 408 BYTES_TO_T_UINT_8( 0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95 ),
kevman 0:38ceb79fef03 409 BYTES_TO_T_UINT_8( 0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3 ),
kevman 0:38ceb79fef03 410 BYTES_TO_T_UINT_8( 0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26 ),
kevman 0:38ceb79fef03 411 };
kevman 0:38ceb79fef03 412 static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
kevman 0:38ceb79fef03 413 BYTES_TO_T_UINT_8( 0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A ),
kevman 0:38ceb79fef03 414 BYTES_TO_T_UINT_8( 0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9 ),
kevman 0:38ceb79fef03 415 BYTES_TO_T_UINT_8( 0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C ),
kevman 0:38ceb79fef03 416 BYTES_TO_T_UINT_8( 0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B ),
kevman 0:38ceb79fef03 417 };
kevman 0:38ceb79fef03 418 static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
kevman 0:38ceb79fef03 419 BYTES_TO_T_UINT_8( 0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C ),
kevman 0:38ceb79fef03 420 BYTES_TO_T_UINT_8( 0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2 ),
kevman 0:38ceb79fef03 421 BYTES_TO_T_UINT_8( 0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97 ),
kevman 0:38ceb79fef03 422 BYTES_TO_T_UINT_8( 0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54 ),
kevman 0:38ceb79fef03 423 };
kevman 0:38ceb79fef03 424 static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
kevman 0:38ceb79fef03 425 BYTES_TO_T_UINT_8( 0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90 ),
kevman 0:38ceb79fef03 426 BYTES_TO_T_UINT_8( 0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C ),
kevman 0:38ceb79fef03 427 BYTES_TO_T_UINT_8( 0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E ),
kevman 0:38ceb79fef03 428 BYTES_TO_T_UINT_8( 0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9 ),
kevman 0:38ceb79fef03 429 };
kevman 0:38ceb79fef03 430 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
kevman 0:38ceb79fef03 431
kevman 0:38ceb79fef03 432 /*
kevman 0:38ceb79fef03 433 * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
kevman 0:38ceb79fef03 434 */
kevman 0:38ceb79fef03 435 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
kevman 0:38ceb79fef03 436 static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
kevman 0:38ceb79fef03 437 BYTES_TO_T_UINT_8( 0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87 ),
kevman 0:38ceb79fef03 438 BYTES_TO_T_UINT_8( 0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC ),
kevman 0:38ceb79fef03 439 BYTES_TO_T_UINT_8( 0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12 ),
kevman 0:38ceb79fef03 440 BYTES_TO_T_UINT_8( 0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
kevman 0:38ceb79fef03 441 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
kevman 0:38ceb79fef03 442 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
kevman 0:38ceb79fef03 443 };
kevman 0:38ceb79fef03 444 static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
kevman 0:38ceb79fef03 445 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
kevman 0:38ceb79fef03 446 BYTES_TO_T_UINT_8( 0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A ),
kevman 0:38ceb79fef03 447 BYTES_TO_T_UINT_8( 0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13 ),
kevman 0:38ceb79fef03 448 BYTES_TO_T_UINT_8( 0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2 ),
kevman 0:38ceb79fef03 449 BYTES_TO_T_UINT_8( 0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C ),
kevman 0:38ceb79fef03 450 BYTES_TO_T_UINT_8( 0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B ),
kevman 0:38ceb79fef03 451 };
kevman 0:38ceb79fef03 452 static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
kevman 0:38ceb79fef03 453 BYTES_TO_T_UINT_8( 0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A ),
kevman 0:38ceb79fef03 454 BYTES_TO_T_UINT_8( 0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C ),
kevman 0:38ceb79fef03 455 BYTES_TO_T_UINT_8( 0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E ),
kevman 0:38ceb79fef03 456 BYTES_TO_T_UINT_8( 0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F ),
kevman 0:38ceb79fef03 457 BYTES_TO_T_UINT_8( 0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B ),
kevman 0:38ceb79fef03 458 BYTES_TO_T_UINT_8( 0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04 ),
kevman 0:38ceb79fef03 459 };
kevman 0:38ceb79fef03 460 static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
kevman 0:38ceb79fef03 461 BYTES_TO_T_UINT_8( 0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF ),
kevman 0:38ceb79fef03 462 BYTES_TO_T_UINT_8( 0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8 ),
kevman 0:38ceb79fef03 463 BYTES_TO_T_UINT_8( 0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB ),
kevman 0:38ceb79fef03 464 BYTES_TO_T_UINT_8( 0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88 ),
kevman 0:38ceb79fef03 465 BYTES_TO_T_UINT_8( 0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2 ),
kevman 0:38ceb79fef03 466 BYTES_TO_T_UINT_8( 0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D ),
kevman 0:38ceb79fef03 467 };
kevman 0:38ceb79fef03 468 static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
kevman 0:38ceb79fef03 469 BYTES_TO_T_UINT_8( 0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42 ),
kevman 0:38ceb79fef03 470 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E ),
kevman 0:38ceb79fef03 471 BYTES_TO_T_UINT_8( 0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1 ),
kevman 0:38ceb79fef03 472 BYTES_TO_T_UINT_8( 0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62 ),
kevman 0:38ceb79fef03 473 BYTES_TO_T_UINT_8( 0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C ),
kevman 0:38ceb79fef03 474 BYTES_TO_T_UINT_8( 0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A ),
kevman 0:38ceb79fef03 475 };
kevman 0:38ceb79fef03 476 static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
kevman 0:38ceb79fef03 477 BYTES_TO_T_UINT_8( 0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B ),
kevman 0:38ceb79fef03 478 BYTES_TO_T_UINT_8( 0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF ),
kevman 0:38ceb79fef03 479 BYTES_TO_T_UINT_8( 0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F ),
kevman 0:38ceb79fef03 480 BYTES_TO_T_UINT_8( 0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15 ),
kevman 0:38ceb79fef03 481 BYTES_TO_T_UINT_8( 0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F ),
kevman 0:38ceb79fef03 482 BYTES_TO_T_UINT_8( 0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C ),
kevman 0:38ceb79fef03 483 };
kevman 0:38ceb79fef03 484 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
kevman 0:38ceb79fef03 485
kevman 0:38ceb79fef03 486 /*
kevman 0:38ceb79fef03 487 * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
kevman 0:38ceb79fef03 488 */
kevman 0:38ceb79fef03 489 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
kevman 0:38ceb79fef03 490 static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
kevman 0:38ceb79fef03 491 BYTES_TO_T_UINT_8( 0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28 ),
kevman 0:38ceb79fef03 492 BYTES_TO_T_UINT_8( 0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28 ),
kevman 0:38ceb79fef03 493 BYTES_TO_T_UINT_8( 0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE ),
kevman 0:38ceb79fef03 494 BYTES_TO_T_UINT_8( 0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D ),
kevman 0:38ceb79fef03 495 BYTES_TO_T_UINT_8( 0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
kevman 0:38ceb79fef03 496 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
kevman 0:38ceb79fef03 497 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
kevman 0:38ceb79fef03 498 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
kevman 0:38ceb79fef03 499 };
kevman 0:38ceb79fef03 500 static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
kevman 0:38ceb79fef03 501 BYTES_TO_T_UINT_8( 0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7 ),
kevman 0:38ceb79fef03 502 BYTES_TO_T_UINT_8( 0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F ),
kevman 0:38ceb79fef03 503 BYTES_TO_T_UINT_8( 0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A ),
kevman 0:38ceb79fef03 504 BYTES_TO_T_UINT_8( 0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D ),
kevman 0:38ceb79fef03 505 BYTES_TO_T_UINT_8( 0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8 ),
kevman 0:38ceb79fef03 506 BYTES_TO_T_UINT_8( 0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94 ),
kevman 0:38ceb79fef03 507 BYTES_TO_T_UINT_8( 0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2 ),
kevman 0:38ceb79fef03 508 BYTES_TO_T_UINT_8( 0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78 ),
kevman 0:38ceb79fef03 509 };
kevman 0:38ceb79fef03 510 static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
kevman 0:38ceb79fef03 511 BYTES_TO_T_UINT_8( 0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28 ),
kevman 0:38ceb79fef03 512 BYTES_TO_T_UINT_8( 0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98 ),
kevman 0:38ceb79fef03 513 BYTES_TO_T_UINT_8( 0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77 ),
kevman 0:38ceb79fef03 514 BYTES_TO_T_UINT_8( 0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B ),
kevman 0:38ceb79fef03 515 BYTES_TO_T_UINT_8( 0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B ),
kevman 0:38ceb79fef03 516 BYTES_TO_T_UINT_8( 0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8 ),
kevman 0:38ceb79fef03 517 BYTES_TO_T_UINT_8( 0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA ),
kevman 0:38ceb79fef03 518 BYTES_TO_T_UINT_8( 0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D ),
kevman 0:38ceb79fef03 519 };
kevman 0:38ceb79fef03 520 static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
kevman 0:38ceb79fef03 521 BYTES_TO_T_UINT_8( 0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B ),
kevman 0:38ceb79fef03 522 BYTES_TO_T_UINT_8( 0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C ),
kevman 0:38ceb79fef03 523 BYTES_TO_T_UINT_8( 0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50 ),
kevman 0:38ceb79fef03 524 BYTES_TO_T_UINT_8( 0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF ),
kevman 0:38ceb79fef03 525 BYTES_TO_T_UINT_8( 0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4 ),
kevman 0:38ceb79fef03 526 BYTES_TO_T_UINT_8( 0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85 ),
kevman 0:38ceb79fef03 527 BYTES_TO_T_UINT_8( 0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A ),
kevman 0:38ceb79fef03 528 BYTES_TO_T_UINT_8( 0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81 ),
kevman 0:38ceb79fef03 529 };
kevman 0:38ceb79fef03 530 static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
kevman 0:38ceb79fef03 531 BYTES_TO_T_UINT_8( 0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78 ),
kevman 0:38ceb79fef03 532 BYTES_TO_T_UINT_8( 0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1 ),
kevman 0:38ceb79fef03 533 BYTES_TO_T_UINT_8( 0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B ),
kevman 0:38ceb79fef03 534 BYTES_TO_T_UINT_8( 0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2 ),
kevman 0:38ceb79fef03 535 BYTES_TO_T_UINT_8( 0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0 ),
kevman 0:38ceb79fef03 536 BYTES_TO_T_UINT_8( 0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2 ),
kevman 0:38ceb79fef03 537 BYTES_TO_T_UINT_8( 0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0 ),
kevman 0:38ceb79fef03 538 BYTES_TO_T_UINT_8( 0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D ),
kevman 0:38ceb79fef03 539 };
kevman 0:38ceb79fef03 540 static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
kevman 0:38ceb79fef03 541 BYTES_TO_T_UINT_8( 0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5 ),
kevman 0:38ceb79fef03 542 BYTES_TO_T_UINT_8( 0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D ),
kevman 0:38ceb79fef03 543 BYTES_TO_T_UINT_8( 0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41 ),
kevman 0:38ceb79fef03 544 BYTES_TO_T_UINT_8( 0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55 ),
kevman 0:38ceb79fef03 545 BYTES_TO_T_UINT_8( 0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6 ),
kevman 0:38ceb79fef03 546 BYTES_TO_T_UINT_8( 0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB ),
kevman 0:38ceb79fef03 547 BYTES_TO_T_UINT_8( 0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F ),
kevman 0:38ceb79fef03 548 BYTES_TO_T_UINT_8( 0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA ),
kevman 0:38ceb79fef03 549 };
kevman 0:38ceb79fef03 550 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
kevman 0:38ceb79fef03 551
kevman 0:38ceb79fef03 552 /*
kevman 0:38ceb79fef03 553 * Create an MPI from embedded constants
kevman 0:38ceb79fef03 554 * (assumes len is an exact multiple of sizeof mbedtls_mpi_uint)
kevman 0:38ceb79fef03 555 */
kevman 0:38ceb79fef03 556 static inline void ecp_mpi_load( mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len )
kevman 0:38ceb79fef03 557 {
kevman 0:38ceb79fef03 558 X->s = 1;
kevman 0:38ceb79fef03 559 X->n = len / sizeof( mbedtls_mpi_uint );
kevman 0:38ceb79fef03 560 X->p = (mbedtls_mpi_uint *) p;
kevman 0:38ceb79fef03 561 }
kevman 0:38ceb79fef03 562
kevman 0:38ceb79fef03 563 /*
kevman 0:38ceb79fef03 564 * Set an MPI to static value 1
kevman 0:38ceb79fef03 565 */
kevman 0:38ceb79fef03 566 static inline void ecp_mpi_set1( mbedtls_mpi *X )
kevman 0:38ceb79fef03 567 {
kevman 0:38ceb79fef03 568 static mbedtls_mpi_uint one[] = { 1 };
kevman 0:38ceb79fef03 569 X->s = 1;
kevman 0:38ceb79fef03 570 X->n = 1;
kevman 0:38ceb79fef03 571 X->p = one;
kevman 0:38ceb79fef03 572 }
kevman 0:38ceb79fef03 573
kevman 0:38ceb79fef03 574 /*
kevman 0:38ceb79fef03 575 * Make group available from embedded constants
kevman 0:38ceb79fef03 576 */
kevman 0:38ceb79fef03 577 static int ecp_group_load( mbedtls_ecp_group *grp,
kevman 0:38ceb79fef03 578 const mbedtls_mpi_uint *p, size_t plen,
kevman 0:38ceb79fef03 579 const mbedtls_mpi_uint *a, size_t alen,
kevman 0:38ceb79fef03 580 const mbedtls_mpi_uint *b, size_t blen,
kevman 0:38ceb79fef03 581 const mbedtls_mpi_uint *gx, size_t gxlen,
kevman 0:38ceb79fef03 582 const mbedtls_mpi_uint *gy, size_t gylen,
kevman 0:38ceb79fef03 583 const mbedtls_mpi_uint *n, size_t nlen)
kevman 0:38ceb79fef03 584 {
kevman 0:38ceb79fef03 585 ecp_mpi_load( &grp->P, p, plen );
kevman 0:38ceb79fef03 586 if( a != NULL )
kevman 0:38ceb79fef03 587 ecp_mpi_load( &grp->A, a, alen );
kevman 0:38ceb79fef03 588 ecp_mpi_load( &grp->B, b, blen );
kevman 0:38ceb79fef03 589 ecp_mpi_load( &grp->N, n, nlen );
kevman 0:38ceb79fef03 590
kevman 0:38ceb79fef03 591 ecp_mpi_load( &grp->G.X, gx, gxlen );
kevman 0:38ceb79fef03 592 ecp_mpi_load( &grp->G.Y, gy, gylen );
kevman 0:38ceb79fef03 593 ecp_mpi_set1( &grp->G.Z );
kevman 0:38ceb79fef03 594
kevman 0:38ceb79fef03 595 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
kevman 0:38ceb79fef03 596 grp->nbits = mbedtls_mpi_bitlen( &grp->N );
kevman 0:38ceb79fef03 597
kevman 0:38ceb79fef03 598 grp->h = 1;
kevman 0:38ceb79fef03 599
kevman 0:38ceb79fef03 600 return( 0 );
kevman 0:38ceb79fef03 601 }
kevman 0:38ceb79fef03 602
kevman 0:38ceb79fef03 603 #if defined(MBEDTLS_ECP_NIST_OPTIM)
kevman 0:38ceb79fef03 604 /* Forward declarations */
kevman 0:38ceb79fef03 605 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
kevman 0:38ceb79fef03 606 static int ecp_mod_p192( mbedtls_mpi * );
kevman 0:38ceb79fef03 607 #endif
kevman 0:38ceb79fef03 608 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
kevman 0:38ceb79fef03 609 static int ecp_mod_p224( mbedtls_mpi * );
kevman 0:38ceb79fef03 610 #endif
kevman 0:38ceb79fef03 611 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
kevman 0:38ceb79fef03 612 static int ecp_mod_p256( mbedtls_mpi * );
kevman 0:38ceb79fef03 613 #endif
kevman 0:38ceb79fef03 614 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
kevman 0:38ceb79fef03 615 static int ecp_mod_p384( mbedtls_mpi * );
kevman 0:38ceb79fef03 616 #endif
kevman 0:38ceb79fef03 617 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
kevman 0:38ceb79fef03 618 static int ecp_mod_p521( mbedtls_mpi * );
kevman 0:38ceb79fef03 619 #endif
kevman 0:38ceb79fef03 620
kevman 0:38ceb79fef03 621 #define NIST_MODP( P ) grp->modp = ecp_mod_ ## P;
kevman 0:38ceb79fef03 622 #else
kevman 0:38ceb79fef03 623 #define NIST_MODP( P )
kevman 0:38ceb79fef03 624 #endif /* MBEDTLS_ECP_NIST_OPTIM */
kevman 0:38ceb79fef03 625
kevman 0:38ceb79fef03 626 /* Additional forward declarations */
kevman 0:38ceb79fef03 627 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
kevman 0:38ceb79fef03 628 static int ecp_mod_p255( mbedtls_mpi * );
kevman 0:38ceb79fef03 629 #endif
kevman 0:38ceb79fef03 630 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
kevman 0:38ceb79fef03 631 static int ecp_mod_p448( mbedtls_mpi * );
kevman 0:38ceb79fef03 632 #endif
kevman 0:38ceb79fef03 633 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
kevman 0:38ceb79fef03 634 static int ecp_mod_p192k1( mbedtls_mpi * );
kevman 0:38ceb79fef03 635 #endif
kevman 0:38ceb79fef03 636 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
kevman 0:38ceb79fef03 637 static int ecp_mod_p224k1( mbedtls_mpi * );
kevman 0:38ceb79fef03 638 #endif
kevman 0:38ceb79fef03 639 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
kevman 0:38ceb79fef03 640 static int ecp_mod_p256k1( mbedtls_mpi * );
kevman 0:38ceb79fef03 641 #endif
kevman 0:38ceb79fef03 642
kevman 0:38ceb79fef03 643 #define LOAD_GROUP_A( G ) ecp_group_load( grp, \
kevman 0:38ceb79fef03 644 G ## _p, sizeof( G ## _p ), \
kevman 0:38ceb79fef03 645 G ## _a, sizeof( G ## _a ), \
kevman 0:38ceb79fef03 646 G ## _b, sizeof( G ## _b ), \
kevman 0:38ceb79fef03 647 G ## _gx, sizeof( G ## _gx ), \
kevman 0:38ceb79fef03 648 G ## _gy, sizeof( G ## _gy ), \
kevman 0:38ceb79fef03 649 G ## _n, sizeof( G ## _n ) )
kevman 0:38ceb79fef03 650
kevman 0:38ceb79fef03 651 #define LOAD_GROUP( G ) ecp_group_load( grp, \
kevman 0:38ceb79fef03 652 G ## _p, sizeof( G ## _p ), \
kevman 0:38ceb79fef03 653 NULL, 0, \
kevman 0:38ceb79fef03 654 G ## _b, sizeof( G ## _b ), \
kevman 0:38ceb79fef03 655 G ## _gx, sizeof( G ## _gx ), \
kevman 0:38ceb79fef03 656 G ## _gy, sizeof( G ## _gy ), \
kevman 0:38ceb79fef03 657 G ## _n, sizeof( G ## _n ) )
kevman 0:38ceb79fef03 658
kevman 0:38ceb79fef03 659 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
kevman 0:38ceb79fef03 660 /*
kevman 0:38ceb79fef03 661 * Specialized function for creating the Curve25519 group
kevman 0:38ceb79fef03 662 */
kevman 0:38ceb79fef03 663 static int ecp_use_curve25519( mbedtls_ecp_group *grp )
kevman 0:38ceb79fef03 664 {
kevman 0:38ceb79fef03 665 int ret;
kevman 0:38ceb79fef03 666
kevman 0:38ceb79fef03 667 /* Actually ( A + 2 ) / 4 */
kevman 0:38ceb79fef03 668 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "01DB42" ) );
kevman 0:38ceb79fef03 669
kevman 0:38ceb79fef03 670 /* P = 2^255 - 19 */
kevman 0:38ceb79fef03 671 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
kevman 0:38ceb79fef03 672 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 255 ) );
kevman 0:38ceb79fef03 673 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 19 ) );
kevman 0:38ceb79fef03 674 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
kevman 0:38ceb79fef03 675
kevman 0:38ceb79fef03 676 /* N = 2^252 + 27742317777372353535851937790883648493 */
kevman 0:38ceb79fef03 677 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->N, 16,
kevman 0:38ceb79fef03 678 "14DEF9DEA2F79CD65812631A5CF5D3ED" ) );
kevman 0:38ceb79fef03 679 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 252, 1 ) );
kevman 0:38ceb79fef03 680
kevman 0:38ceb79fef03 681 /* Y intentionally not set, since we use x/z coordinates.
kevman 0:38ceb79fef03 682 * This is used as a marker to identify Montgomery curves! */
kevman 0:38ceb79fef03 683 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 9 ) );
kevman 0:38ceb79fef03 684 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
kevman 0:38ceb79fef03 685 mbedtls_mpi_free( &grp->G.Y );
kevman 0:38ceb79fef03 686
kevman 0:38ceb79fef03 687 /* Actually, the required msb for private keys */
kevman 0:38ceb79fef03 688 grp->nbits = 254;
kevman 0:38ceb79fef03 689
kevman 0:38ceb79fef03 690 cleanup:
kevman 0:38ceb79fef03 691 if( ret != 0 )
kevman 0:38ceb79fef03 692 mbedtls_ecp_group_free( grp );
kevman 0:38ceb79fef03 693
kevman 0:38ceb79fef03 694 return( ret );
kevman 0:38ceb79fef03 695 }
kevman 0:38ceb79fef03 696 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
kevman 0:38ceb79fef03 697
kevman 0:38ceb79fef03 698 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
kevman 0:38ceb79fef03 699 /*
kevman 0:38ceb79fef03 700 * Specialized function for creating the Curve448 group
kevman 0:38ceb79fef03 701 */
kevman 0:38ceb79fef03 702 static int ecp_use_curve448( mbedtls_ecp_group *grp )
kevman 0:38ceb79fef03 703 {
kevman 0:38ceb79fef03 704 mbedtls_mpi Ns;
kevman 0:38ceb79fef03 705 int ret;
kevman 0:38ceb79fef03 706
kevman 0:38ceb79fef03 707 mbedtls_mpi_init( &Ns );
kevman 0:38ceb79fef03 708
kevman 0:38ceb79fef03 709 /* Actually ( A + 2 ) / 4 */
kevman 0:38ceb79fef03 710 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &grp->A, 16, "98AA" ) );
kevman 0:38ceb79fef03 711
kevman 0:38ceb79fef03 712 /* P = 2^448 - 2^224 - 1 */
kevman 0:38ceb79fef03 713 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) );
kevman 0:38ceb79fef03 714 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
kevman 0:38ceb79fef03 715 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
kevman 0:38ceb79fef03 716 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &grp->P, 224 ) );
kevman 0:38ceb79fef03 717 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &grp->P, &grp->P, 1 ) );
kevman 0:38ceb79fef03 718 grp->pbits = mbedtls_mpi_bitlen( &grp->P );
kevman 0:38ceb79fef03 719
kevman 0:38ceb79fef03 720 /* Y intentionally not set, since we use x/z coordinates.
kevman 0:38ceb79fef03 721 * This is used as a marker to identify Montgomery curves! */
kevman 0:38ceb79fef03 722 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.X, 5 ) );
kevman 0:38ceb79fef03 723 MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->G.Z, 1 ) );
kevman 0:38ceb79fef03 724 mbedtls_mpi_free( &grp->G.Y );
kevman 0:38ceb79fef03 725
kevman 0:38ceb79fef03 726 /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
kevman 0:38ceb79fef03 727 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( &grp->N, 446, 1 ) );
kevman 0:38ceb79fef03 728 MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &Ns, 16,
kevman 0:38ceb79fef03 729 "8335DC163BB124B65129C96FDE933D8D723A70AADC873D6D54A7BB0D" ) );
kevman 0:38ceb79fef03 730 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &grp->N, &grp->N, &Ns ) );
kevman 0:38ceb79fef03 731
kevman 0:38ceb79fef03 732 /* Actually, the required msb for private keys */
kevman 0:38ceb79fef03 733 grp->nbits = 447;
kevman 0:38ceb79fef03 734
kevman 0:38ceb79fef03 735 cleanup:
kevman 0:38ceb79fef03 736 mbedtls_mpi_free( &Ns );
kevman 0:38ceb79fef03 737 if( ret != 0 )
kevman 0:38ceb79fef03 738 mbedtls_ecp_group_free( grp );
kevman 0:38ceb79fef03 739
kevman 0:38ceb79fef03 740 return( ret );
kevman 0:38ceb79fef03 741 }
kevman 0:38ceb79fef03 742 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
kevman 0:38ceb79fef03 743
kevman 0:38ceb79fef03 744 /*
kevman 0:38ceb79fef03 745 * Set a group using well-known domain parameters
kevman 0:38ceb79fef03 746 */
kevman 0:38ceb79fef03 747 int mbedtls_ecp_group_load( mbedtls_ecp_group *grp, mbedtls_ecp_group_id id )
kevman 0:38ceb79fef03 748 {
kevman 0:38ceb79fef03 749 mbedtls_ecp_group_free( grp );
kevman 0:38ceb79fef03 750
kevman 0:38ceb79fef03 751 grp->id = id;
kevman 0:38ceb79fef03 752
kevman 0:38ceb79fef03 753 switch( id )
kevman 0:38ceb79fef03 754 {
kevman 0:38ceb79fef03 755 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
kevman 0:38ceb79fef03 756 case MBEDTLS_ECP_DP_SECP192R1:
kevman 0:38ceb79fef03 757 NIST_MODP( p192 );
kevman 0:38ceb79fef03 758 return( LOAD_GROUP( secp192r1 ) );
kevman 0:38ceb79fef03 759 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
kevman 0:38ceb79fef03 760
kevman 0:38ceb79fef03 761 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
kevman 0:38ceb79fef03 762 case MBEDTLS_ECP_DP_SECP224R1:
kevman 0:38ceb79fef03 763 NIST_MODP( p224 );
kevman 0:38ceb79fef03 764 return( LOAD_GROUP( secp224r1 ) );
kevman 0:38ceb79fef03 765 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
kevman 0:38ceb79fef03 766
kevman 0:38ceb79fef03 767 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
kevman 0:38ceb79fef03 768 case MBEDTLS_ECP_DP_SECP256R1:
kevman 0:38ceb79fef03 769 NIST_MODP( p256 );
kevman 0:38ceb79fef03 770 return( LOAD_GROUP( secp256r1 ) );
kevman 0:38ceb79fef03 771 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
kevman 0:38ceb79fef03 772
kevman 0:38ceb79fef03 773 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
kevman 0:38ceb79fef03 774 case MBEDTLS_ECP_DP_SECP384R1:
kevman 0:38ceb79fef03 775 NIST_MODP( p384 );
kevman 0:38ceb79fef03 776 return( LOAD_GROUP( secp384r1 ) );
kevman 0:38ceb79fef03 777 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
kevman 0:38ceb79fef03 778
kevman 0:38ceb79fef03 779 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
kevman 0:38ceb79fef03 780 case MBEDTLS_ECP_DP_SECP521R1:
kevman 0:38ceb79fef03 781 NIST_MODP( p521 );
kevman 0:38ceb79fef03 782 return( LOAD_GROUP( secp521r1 ) );
kevman 0:38ceb79fef03 783 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
kevman 0:38ceb79fef03 784
kevman 0:38ceb79fef03 785 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
kevman 0:38ceb79fef03 786 case MBEDTLS_ECP_DP_SECP192K1:
kevman 0:38ceb79fef03 787 grp->modp = ecp_mod_p192k1;
kevman 0:38ceb79fef03 788 return( LOAD_GROUP_A( secp192k1 ) );
kevman 0:38ceb79fef03 789 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
kevman 0:38ceb79fef03 790
kevman 0:38ceb79fef03 791 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
kevman 0:38ceb79fef03 792 case MBEDTLS_ECP_DP_SECP224K1:
kevman 0:38ceb79fef03 793 grp->modp = ecp_mod_p224k1;
kevman 0:38ceb79fef03 794 return( LOAD_GROUP_A( secp224k1 ) );
kevman 0:38ceb79fef03 795 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
kevman 0:38ceb79fef03 796
kevman 0:38ceb79fef03 797 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
kevman 0:38ceb79fef03 798 case MBEDTLS_ECP_DP_SECP256K1:
kevman 0:38ceb79fef03 799 grp->modp = ecp_mod_p256k1;
kevman 0:38ceb79fef03 800 return( LOAD_GROUP_A( secp256k1 ) );
kevman 0:38ceb79fef03 801 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
kevman 0:38ceb79fef03 802
kevman 0:38ceb79fef03 803 #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
kevman 0:38ceb79fef03 804 case MBEDTLS_ECP_DP_BP256R1:
kevman 0:38ceb79fef03 805 return( LOAD_GROUP_A( brainpoolP256r1 ) );
kevman 0:38ceb79fef03 806 #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
kevman 0:38ceb79fef03 807
kevman 0:38ceb79fef03 808 #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
kevman 0:38ceb79fef03 809 case MBEDTLS_ECP_DP_BP384R1:
kevman 0:38ceb79fef03 810 return( LOAD_GROUP_A( brainpoolP384r1 ) );
kevman 0:38ceb79fef03 811 #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
kevman 0:38ceb79fef03 812
kevman 0:38ceb79fef03 813 #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
kevman 0:38ceb79fef03 814 case MBEDTLS_ECP_DP_BP512R1:
kevman 0:38ceb79fef03 815 return( LOAD_GROUP_A( brainpoolP512r1 ) );
kevman 0:38ceb79fef03 816 #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
kevman 0:38ceb79fef03 817
kevman 0:38ceb79fef03 818 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
kevman 0:38ceb79fef03 819 case MBEDTLS_ECP_DP_CURVE25519:
kevman 0:38ceb79fef03 820 grp->modp = ecp_mod_p255;
kevman 0:38ceb79fef03 821 return( ecp_use_curve25519( grp ) );
kevman 0:38ceb79fef03 822 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
kevman 0:38ceb79fef03 823
kevman 0:38ceb79fef03 824 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
kevman 0:38ceb79fef03 825 case MBEDTLS_ECP_DP_CURVE448:
kevman 0:38ceb79fef03 826 grp->modp = ecp_mod_p448;
kevman 0:38ceb79fef03 827 return( ecp_use_curve448( grp ) );
kevman 0:38ceb79fef03 828 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
kevman 0:38ceb79fef03 829
kevman 0:38ceb79fef03 830 default:
kevman 0:38ceb79fef03 831 mbedtls_ecp_group_free( grp );
kevman 0:38ceb79fef03 832 return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
kevman 0:38ceb79fef03 833 }
kevman 0:38ceb79fef03 834 }
kevman 0:38ceb79fef03 835
kevman 0:38ceb79fef03 836 #if defined(MBEDTLS_ECP_NIST_OPTIM)
kevman 0:38ceb79fef03 837 /*
kevman 0:38ceb79fef03 838 * Fast reduction modulo the primes used by the NIST curves.
kevman 0:38ceb79fef03 839 *
kevman 0:38ceb79fef03 840 * These functions are critical for speed, but not needed for correct
kevman 0:38ceb79fef03 841 * operations. So, we make the choice to heavily rely on the internals of our
kevman 0:38ceb79fef03 842 * bignum library, which creates a tight coupling between these functions and
kevman 0:38ceb79fef03 843 * our MPI implementation. However, the coupling between the ECP module and
kevman 0:38ceb79fef03 844 * MPI remains loose, since these functions can be deactivated at will.
kevman 0:38ceb79fef03 845 */
kevman 0:38ceb79fef03 846
kevman 0:38ceb79fef03 847 #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
kevman 0:38ceb79fef03 848 /*
kevman 0:38ceb79fef03 849 * Compared to the way things are presented in FIPS 186-3 D.2,
kevman 0:38ceb79fef03 850 * we proceed in columns, from right (least significant chunk) to left,
kevman 0:38ceb79fef03 851 * adding chunks to N in place, and keeping a carry for the next chunk.
kevman 0:38ceb79fef03 852 * This avoids moving things around in memory, and uselessly adding zeros,
kevman 0:38ceb79fef03 853 * compared to the more straightforward, line-oriented approach.
kevman 0:38ceb79fef03 854 *
kevman 0:38ceb79fef03 855 * For this prime we need to handle data in chunks of 64 bits.
kevman 0:38ceb79fef03 856 * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
kevman 0:38ceb79fef03 857 * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
kevman 0:38ceb79fef03 858 */
kevman 0:38ceb79fef03 859
kevman 0:38ceb79fef03 860 /* Add 64-bit chunks (dst += src) and update carry */
kevman 0:38ceb79fef03 861 static inline void add64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry )
kevman 0:38ceb79fef03 862 {
kevman 0:38ceb79fef03 863 unsigned char i;
kevman 0:38ceb79fef03 864 mbedtls_mpi_uint c = 0;
kevman 0:38ceb79fef03 865 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++, src++ )
kevman 0:38ceb79fef03 866 {
kevman 0:38ceb79fef03 867 *dst += c; c = ( *dst < c );
kevman 0:38ceb79fef03 868 *dst += *src; c += ( *dst < *src );
kevman 0:38ceb79fef03 869 }
kevman 0:38ceb79fef03 870 *carry += c;
kevman 0:38ceb79fef03 871 }
kevman 0:38ceb79fef03 872
kevman 0:38ceb79fef03 873 /* Add carry to a 64-bit chunk and update carry */
kevman 0:38ceb79fef03 874 static inline void carry64( mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry )
kevman 0:38ceb79fef03 875 {
kevman 0:38ceb79fef03 876 unsigned char i;
kevman 0:38ceb79fef03 877 for( i = 0; i < 8 / sizeof( mbedtls_mpi_uint ); i++, dst++ )
kevman 0:38ceb79fef03 878 {
kevman 0:38ceb79fef03 879 *dst += *carry;
kevman 0:38ceb79fef03 880 *carry = ( *dst < *carry );
kevman 0:38ceb79fef03 881 }
kevman 0:38ceb79fef03 882 }
kevman 0:38ceb79fef03 883
kevman 0:38ceb79fef03 884 #define WIDTH 8 / sizeof( mbedtls_mpi_uint )
kevman 0:38ceb79fef03 885 #define A( i ) N->p + i * WIDTH
kevman 0:38ceb79fef03 886 #define ADD( i ) add64( p, A( i ), &c )
kevman 0:38ceb79fef03 887 #define NEXT p += WIDTH; carry64( p, &c )
kevman 0:38ceb79fef03 888 #define LAST p += WIDTH; *p = c; while( ++p < end ) *p = 0
kevman 0:38ceb79fef03 889
kevman 0:38ceb79fef03 890 /*
kevman 0:38ceb79fef03 891 * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
kevman 0:38ceb79fef03 892 */
kevman 0:38ceb79fef03 893 static int ecp_mod_p192( mbedtls_mpi *N )
kevman 0:38ceb79fef03 894 {
kevman 0:38ceb79fef03 895 int ret;
kevman 0:38ceb79fef03 896 mbedtls_mpi_uint c = 0;
kevman 0:38ceb79fef03 897 mbedtls_mpi_uint *p, *end;
kevman 0:38ceb79fef03 898
kevman 0:38ceb79fef03 899 /* Make sure we have enough blocks so that A(5) is legal */
kevman 0:38ceb79fef03 900 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, 6 * WIDTH ) );
kevman 0:38ceb79fef03 901
kevman 0:38ceb79fef03 902 p = N->p;
kevman 0:38ceb79fef03 903 end = p + N->n;
kevman 0:38ceb79fef03 904
kevman 0:38ceb79fef03 905 ADD( 3 ); ADD( 5 ); NEXT; // A0 += A3 + A5
kevman 0:38ceb79fef03 906 ADD( 3 ); ADD( 4 ); ADD( 5 ); NEXT; // A1 += A3 + A4 + A5
kevman 0:38ceb79fef03 907 ADD( 4 ); ADD( 5 ); LAST; // A2 += A4 + A5
kevman 0:38ceb79fef03 908
kevman 0:38ceb79fef03 909 cleanup:
kevman 0:38ceb79fef03 910 return( ret );
kevman 0:38ceb79fef03 911 }
kevman 0:38ceb79fef03 912
kevman 0:38ceb79fef03 913 #undef WIDTH
kevman 0:38ceb79fef03 914 #undef A
kevman 0:38ceb79fef03 915 #undef ADD
kevman 0:38ceb79fef03 916 #undef NEXT
kevman 0:38ceb79fef03 917 #undef LAST
kevman 0:38ceb79fef03 918 #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
kevman 0:38ceb79fef03 919
kevman 0:38ceb79fef03 920 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
kevman 0:38ceb79fef03 921 defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
kevman 0:38ceb79fef03 922 defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
kevman 0:38ceb79fef03 923 /*
kevman 0:38ceb79fef03 924 * The reader is advised to first understand ecp_mod_p192() since the same
kevman 0:38ceb79fef03 925 * general structure is used here, but with additional complications:
kevman 0:38ceb79fef03 926 * (1) chunks of 32 bits, and (2) subtractions.
kevman 0:38ceb79fef03 927 */
kevman 0:38ceb79fef03 928
kevman 0:38ceb79fef03 929 /*
kevman 0:38ceb79fef03 930 * For these primes, we need to handle data in chunks of 32 bits.
kevman 0:38ceb79fef03 931 * This makes it more complicated if we use 64 bits limbs in MPI,
kevman 0:38ceb79fef03 932 * which prevents us from using a uniform access method as for p192.
kevman 0:38ceb79fef03 933 *
kevman 0:38ceb79fef03 934 * So, we define a mini abstraction layer to access 32 bit chunks,
kevman 0:38ceb79fef03 935 * load them in 'cur' for work, and store them back from 'cur' when done.
kevman 0:38ceb79fef03 936 *
kevman 0:38ceb79fef03 937 * While at it, also define the size of N in terms of 32-bit chunks.
kevman 0:38ceb79fef03 938 */
kevman 0:38ceb79fef03 939 #define LOAD32 cur = A( i );
kevman 0:38ceb79fef03 940
kevman 0:38ceb79fef03 941 #if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
kevman 0:38ceb79fef03 942
kevman 0:38ceb79fef03 943 #define MAX32 N->n
kevman 0:38ceb79fef03 944 #define A( j ) N->p[j]
kevman 0:38ceb79fef03 945 #define STORE32 N->p[i] = cur;
kevman 0:38ceb79fef03 946
kevman 0:38ceb79fef03 947 #else /* 64-bit */
kevman 0:38ceb79fef03 948
kevman 0:38ceb79fef03 949 #define MAX32 N->n * 2
kevman 0:38ceb79fef03 950 #define A( j ) j % 2 ? (uint32_t)( N->p[j/2] >> 32 ) : (uint32_t)( N->p[j/2] )
kevman 0:38ceb79fef03 951 #define STORE32 \
kevman 0:38ceb79fef03 952 if( i % 2 ) { \
kevman 0:38ceb79fef03 953 N->p[i/2] &= 0x00000000FFFFFFFF; \
kevman 0:38ceb79fef03 954 N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
kevman 0:38ceb79fef03 955 } else { \
kevman 0:38ceb79fef03 956 N->p[i/2] &= 0xFFFFFFFF00000000; \
kevman 0:38ceb79fef03 957 N->p[i/2] |= (mbedtls_mpi_uint) cur; \
kevman 0:38ceb79fef03 958 }
kevman 0:38ceb79fef03 959
kevman 0:38ceb79fef03 960 #endif /* sizeof( mbedtls_mpi_uint ) */
kevman 0:38ceb79fef03 961
kevman 0:38ceb79fef03 962 /*
kevman 0:38ceb79fef03 963 * Helpers for addition and subtraction of chunks, with signed carry.
kevman 0:38ceb79fef03 964 */
kevman 0:38ceb79fef03 965 static inline void add32( uint32_t *dst, uint32_t src, signed char *carry )
kevman 0:38ceb79fef03 966 {
kevman 0:38ceb79fef03 967 *dst += src;
kevman 0:38ceb79fef03 968 *carry += ( *dst < src );
kevman 0:38ceb79fef03 969 }
kevman 0:38ceb79fef03 970
kevman 0:38ceb79fef03 971 static inline void sub32( uint32_t *dst, uint32_t src, signed char *carry )
kevman 0:38ceb79fef03 972 {
kevman 0:38ceb79fef03 973 *carry -= ( *dst < src );
kevman 0:38ceb79fef03 974 *dst -= src;
kevman 0:38ceb79fef03 975 }
kevman 0:38ceb79fef03 976
kevman 0:38ceb79fef03 977 #define ADD( j ) add32( &cur, A( j ), &c );
kevman 0:38ceb79fef03 978 #define SUB( j ) sub32( &cur, A( j ), &c );
kevman 0:38ceb79fef03 979
kevman 0:38ceb79fef03 980 /*
kevman 0:38ceb79fef03 981 * Helpers for the main 'loop'
kevman 0:38ceb79fef03 982 * (see fix_negative for the motivation of C)
kevman 0:38ceb79fef03 983 */
kevman 0:38ceb79fef03 984 #define INIT( b ) \
kevman 0:38ceb79fef03 985 int ret; \
kevman 0:38ceb79fef03 986 signed char c = 0, cc; \
kevman 0:38ceb79fef03 987 uint32_t cur; \
kevman 0:38ceb79fef03 988 size_t i = 0, bits = b; \
kevman 0:38ceb79fef03 989 mbedtls_mpi C; \
kevman 0:38ceb79fef03 990 mbedtls_mpi_uint Cp[ b / 8 / sizeof( mbedtls_mpi_uint) + 1 ]; \
kevman 0:38ceb79fef03 991 \
kevman 0:38ceb79fef03 992 C.s = 1; \
kevman 0:38ceb79fef03 993 C.n = b / 8 / sizeof( mbedtls_mpi_uint) + 1; \
kevman 0:38ceb79fef03 994 C.p = Cp; \
kevman 0:38ceb79fef03 995 memset( Cp, 0, C.n * sizeof( mbedtls_mpi_uint ) ); \
kevman 0:38ceb79fef03 996 \
kevman 0:38ceb79fef03 997 MBEDTLS_MPI_CHK( mbedtls_mpi_grow( N, b * 2 / 8 / sizeof( mbedtls_mpi_uint ) ) ); \
kevman 0:38ceb79fef03 998 LOAD32;
kevman 0:38ceb79fef03 999
kevman 0:38ceb79fef03 1000 #define NEXT \
kevman 0:38ceb79fef03 1001 STORE32; i++; LOAD32; \
kevman 0:38ceb79fef03 1002 cc = c; c = 0; \
kevman 0:38ceb79fef03 1003 if( cc < 0 ) \
kevman 0:38ceb79fef03 1004 sub32( &cur, -cc, &c ); \
kevman 0:38ceb79fef03 1005 else \
kevman 0:38ceb79fef03 1006 add32( &cur, cc, &c ); \
kevman 0:38ceb79fef03 1007
kevman 0:38ceb79fef03 1008 #define LAST \
kevman 0:38ceb79fef03 1009 STORE32; i++; \
kevman 0:38ceb79fef03 1010 cur = c > 0 ? c : 0; STORE32; \
kevman 0:38ceb79fef03 1011 cur = 0; while( ++i < MAX32 ) { STORE32; } \
kevman 0:38ceb79fef03 1012 if( c < 0 ) fix_negative( N, c, &C, bits );
kevman 0:38ceb79fef03 1013
kevman 0:38ceb79fef03 1014 /*
kevman 0:38ceb79fef03 1015 * If the result is negative, we get it in the form
kevman 0:38ceb79fef03 1016 * c * 2^(bits + 32) + N, with c negative and N positive shorter than 'bits'
kevman 0:38ceb79fef03 1017 */
kevman 0:38ceb79fef03 1018 static inline int fix_negative( mbedtls_mpi *N, signed char c, mbedtls_mpi *C, size_t bits )
kevman 0:38ceb79fef03 1019 {
kevman 0:38ceb79fef03 1020 int ret;
kevman 0:38ceb79fef03 1021
kevman 0:38ceb79fef03 1022 /* C = - c * 2^(bits + 32) */
kevman 0:38ceb79fef03 1023 #if !defined(MBEDTLS_HAVE_INT64)
kevman 0:38ceb79fef03 1024 ((void) bits);
kevman 0:38ceb79fef03 1025 #else
kevman 0:38ceb79fef03 1026 if( bits == 224 )
kevman 0:38ceb79fef03 1027 C->p[ C->n - 1 ] = ((mbedtls_mpi_uint) -c) << 32;
kevman 0:38ceb79fef03 1028 else
kevman 0:38ceb79fef03 1029 #endif
kevman 0:38ceb79fef03 1030 C->p[ C->n - 1 ] = (mbedtls_mpi_uint) -c;
kevman 0:38ceb79fef03 1031
kevman 0:38ceb79fef03 1032 /* N = - ( C - N ) */
kevman 0:38ceb79fef03 1033 MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, C, N ) );
kevman 0:38ceb79fef03 1034 N->s = -1;
kevman 0:38ceb79fef03 1035
kevman 0:38ceb79fef03 1036 cleanup:
kevman 0:38ceb79fef03 1037
kevman 0:38ceb79fef03 1038 return( ret );
kevman 0:38ceb79fef03 1039 }
kevman 0:38ceb79fef03 1040
kevman 0:38ceb79fef03 1041 #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
kevman 0:38ceb79fef03 1042 /*
kevman 0:38ceb79fef03 1043 * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
kevman 0:38ceb79fef03 1044 */
kevman 0:38ceb79fef03 1045 static int ecp_mod_p224( mbedtls_mpi *N )
kevman 0:38ceb79fef03 1046 {
kevman 0:38ceb79fef03 1047 INIT( 224 );
kevman 0:38ceb79fef03 1048
kevman 0:38ceb79fef03 1049 SUB( 7 ); SUB( 11 ); NEXT; // A0 += -A7 - A11
kevman 0:38ceb79fef03 1050 SUB( 8 ); SUB( 12 ); NEXT; // A1 += -A8 - A12
kevman 0:38ceb79fef03 1051 SUB( 9 ); SUB( 13 ); NEXT; // A2 += -A9 - A13
kevman 0:38ceb79fef03 1052 SUB( 10 ); ADD( 7 ); ADD( 11 ); NEXT; // A3 += -A10 + A7 + A11
kevman 0:38ceb79fef03 1053 SUB( 11 ); ADD( 8 ); ADD( 12 ); NEXT; // A4 += -A11 + A8 + A12
kevman 0:38ceb79fef03 1054 SUB( 12 ); ADD( 9 ); ADD( 13 ); NEXT; // A5 += -A12 + A9 + A13
kevman 0:38ceb79fef03 1055 SUB( 13 ); ADD( 10 ); LAST; // A6 += -A13 + A10
kevman 0:38ceb79fef03 1056
kevman 0:38ceb79fef03 1057 cleanup:
kevman 0:38ceb79fef03 1058 return( ret );
kevman 0:38ceb79fef03 1059 }
kevman 0:38ceb79fef03 1060 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
kevman 0:38ceb79fef03 1061
kevman 0:38ceb79fef03 1062 #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
kevman 0:38ceb79fef03 1063 /*
kevman 0:38ceb79fef03 1064 * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
kevman 0:38ceb79fef03 1065 */
kevman 0:38ceb79fef03 1066 static int ecp_mod_p256( mbedtls_mpi *N )
kevman 0:38ceb79fef03 1067 {
kevman 0:38ceb79fef03 1068 INIT( 256 );
kevman 0:38ceb79fef03 1069
kevman 0:38ceb79fef03 1070 ADD( 8 ); ADD( 9 );
kevman 0:38ceb79fef03 1071 SUB( 11 ); SUB( 12 ); SUB( 13 ); SUB( 14 ); NEXT; // A0
kevman 0:38ceb79fef03 1072
kevman 0:38ceb79fef03 1073 ADD( 9 ); ADD( 10 );
kevman 0:38ceb79fef03 1074 SUB( 12 ); SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A1
kevman 0:38ceb79fef03 1075
kevman 0:38ceb79fef03 1076 ADD( 10 ); ADD( 11 );
kevman 0:38ceb79fef03 1077 SUB( 13 ); SUB( 14 ); SUB( 15 ); NEXT; // A2
kevman 0:38ceb79fef03 1078
kevman 0:38ceb79fef03 1079 ADD( 11 ); ADD( 11 ); ADD( 12 ); ADD( 12 ); ADD( 13 );
kevman 0:38ceb79fef03 1080 SUB( 15 ); SUB( 8 ); SUB( 9 ); NEXT; // A3
kevman 0:38ceb79fef03 1081
kevman 0:38ceb79fef03 1082 ADD( 12 ); ADD( 12 ); ADD( 13 ); ADD( 13 ); ADD( 14 );
kevman 0:38ceb79fef03 1083 SUB( 9 ); SUB( 10 ); NEXT; // A4
kevman 0:38ceb79fef03 1084
kevman 0:38ceb79fef03 1085 ADD( 13 ); ADD( 13 ); ADD( 14 ); ADD( 14 ); ADD( 15 );
kevman 0:38ceb79fef03 1086 SUB( 10 ); SUB( 11 ); NEXT; // A5
kevman 0:38ceb79fef03 1087
kevman 0:38ceb79fef03 1088 ADD( 14 ); ADD( 14 ); ADD( 15 ); ADD( 15 ); ADD( 14 ); ADD( 13 );
kevman 0:38ceb79fef03 1089 SUB( 8 ); SUB( 9 ); NEXT; // A6
kevman 0:38ceb79fef03 1090
kevman 0:38ceb79fef03 1091 ADD( 15 ); ADD( 15 ); ADD( 15 ); ADD( 8 );
kevman 0:38ceb79fef03 1092 SUB( 10 ); SUB( 11 ); SUB( 12 ); SUB( 13 ); LAST; // A7
kevman 0:38ceb79fef03 1093
kevman 0:38ceb79fef03 1094 cleanup:
kevman 0:38ceb79fef03 1095 return( ret );
kevman 0:38ceb79fef03 1096 }
kevman 0:38ceb79fef03 1097 #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
kevman 0:38ceb79fef03 1098
kevman 0:38ceb79fef03 1099 #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
kevman 0:38ceb79fef03 1100 /*
kevman 0:38ceb79fef03 1101 * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
kevman 0:38ceb79fef03 1102 */
kevman 0:38ceb79fef03 1103 static int ecp_mod_p384( mbedtls_mpi *N )
kevman 0:38ceb79fef03 1104 {
kevman 0:38ceb79fef03 1105 INIT( 384 );
kevman 0:38ceb79fef03 1106
kevman 0:38ceb79fef03 1107 ADD( 12 ); ADD( 21 ); ADD( 20 );
kevman 0:38ceb79fef03 1108 SUB( 23 ); NEXT; // A0
kevman 0:38ceb79fef03 1109
kevman 0:38ceb79fef03 1110 ADD( 13 ); ADD( 22 ); ADD( 23 );
kevman 0:38ceb79fef03 1111 SUB( 12 ); SUB( 20 ); NEXT; // A2
kevman 0:38ceb79fef03 1112
kevman 0:38ceb79fef03 1113 ADD( 14 ); ADD( 23 );
kevman 0:38ceb79fef03 1114 SUB( 13 ); SUB( 21 ); NEXT; // A2
kevman 0:38ceb79fef03 1115
kevman 0:38ceb79fef03 1116 ADD( 15 ); ADD( 12 ); ADD( 20 ); ADD( 21 );
kevman 0:38ceb79fef03 1117 SUB( 14 ); SUB( 22 ); SUB( 23 ); NEXT; // A3
kevman 0:38ceb79fef03 1118
kevman 0:38ceb79fef03 1119 ADD( 21 ); ADD( 21 ); ADD( 16 ); ADD( 13 ); ADD( 12 ); ADD( 20 ); ADD( 22 );
kevman 0:38ceb79fef03 1120 SUB( 15 ); SUB( 23 ); SUB( 23 ); NEXT; // A4
kevman 0:38ceb79fef03 1121
kevman 0:38ceb79fef03 1122 ADD( 22 ); ADD( 22 ); ADD( 17 ); ADD( 14 ); ADD( 13 ); ADD( 21 ); ADD( 23 );
kevman 0:38ceb79fef03 1123 SUB( 16 ); NEXT; // A5
kevman 0:38ceb79fef03 1124
kevman 0:38ceb79fef03 1125 ADD( 23 ); ADD( 23 ); ADD( 18 ); ADD( 15 ); ADD( 14 ); ADD( 22 );
kevman 0:38ceb79fef03 1126 SUB( 17 ); NEXT; // A6
kevman 0:38ceb79fef03 1127
kevman 0:38ceb79fef03 1128 ADD( 19 ); ADD( 16 ); ADD( 15 ); ADD( 23 );
kevman 0:38ceb79fef03 1129 SUB( 18 ); NEXT; // A7
kevman 0:38ceb79fef03 1130
kevman 0:38ceb79fef03 1131 ADD( 20 ); ADD( 17 ); ADD( 16 );
kevman 0:38ceb79fef03 1132 SUB( 19 ); NEXT; // A8
kevman 0:38ceb79fef03 1133
kevman 0:38ceb79fef03 1134 ADD( 21 ); ADD( 18 ); ADD( 17 );
kevman 0:38ceb79fef03 1135 SUB( 20 ); NEXT; // A9
kevman 0:38ceb79fef03 1136
kevman 0:38ceb79fef03 1137 ADD( 22 ); ADD( 19 ); ADD( 18 );
kevman 0:38ceb79fef03 1138 SUB( 21 ); NEXT; // A10
kevman 0:38ceb79fef03 1139
kevman 0:38ceb79fef03 1140 ADD( 23 ); ADD( 20 ); ADD( 19 );
kevman 0:38ceb79fef03 1141 SUB( 22 ); LAST; // A11
kevman 0:38ceb79fef03 1142
kevman 0:38ceb79fef03 1143 cleanup:
kevman 0:38ceb79fef03 1144 return( ret );
kevman 0:38ceb79fef03 1145 }
kevman 0:38ceb79fef03 1146 #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
kevman 0:38ceb79fef03 1147
kevman 0:38ceb79fef03 1148 #undef A
kevman 0:38ceb79fef03 1149 #undef LOAD32
kevman 0:38ceb79fef03 1150 #undef STORE32
kevman 0:38ceb79fef03 1151 #undef MAX32
kevman 0:38ceb79fef03 1152 #undef INIT
kevman 0:38ceb79fef03 1153 #undef NEXT
kevman 0:38ceb79fef03 1154 #undef LAST
kevman 0:38ceb79fef03 1155
kevman 0:38ceb79fef03 1156 #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
kevman 0:38ceb79fef03 1157 MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
kevman 0:38ceb79fef03 1158 MBEDTLS_ECP_DP_SECP384R1_ENABLED */
kevman 0:38ceb79fef03 1159
kevman 0:38ceb79fef03 1160 #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
kevman 0:38ceb79fef03 1161 /*
kevman 0:38ceb79fef03 1162 * Here we have an actual Mersenne prime, so things are more straightforward.
kevman 0:38ceb79fef03 1163 * However, chunks are aligned on a 'weird' boundary (521 bits).
kevman 0:38ceb79fef03 1164 */
kevman 0:38ceb79fef03 1165
kevman 0:38ceb79fef03 1166 /* Size of p521 in terms of mbedtls_mpi_uint */
kevman 0:38ceb79fef03 1167 #define P521_WIDTH ( 521 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
kevman 0:38ceb79fef03 1168
kevman 0:38ceb79fef03 1169 /* Bits to keep in the most significant mbedtls_mpi_uint */
kevman 0:38ceb79fef03 1170 #define P521_MASK 0x01FF
kevman 0:38ceb79fef03 1171
kevman 0:38ceb79fef03 1172 /*
kevman 0:38ceb79fef03 1173 * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
kevman 0:38ceb79fef03 1174 * Write N as A1 + 2^521 A0, return A0 + A1
kevman 0:38ceb79fef03 1175 */
kevman 0:38ceb79fef03 1176 static int ecp_mod_p521( mbedtls_mpi *N )
kevman 0:38ceb79fef03 1177 {
kevman 0:38ceb79fef03 1178 int ret;
kevman 0:38ceb79fef03 1179 size_t i;
kevman 0:38ceb79fef03 1180 mbedtls_mpi M;
kevman 0:38ceb79fef03 1181 mbedtls_mpi_uint Mp[P521_WIDTH + 1];
kevman 0:38ceb79fef03 1182 /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
kevman 0:38ceb79fef03 1183 * we need to hold bits 513 to 1056, which is 34 limbs, that is
kevman 0:38ceb79fef03 1184 * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
kevman 0:38ceb79fef03 1185
kevman 0:38ceb79fef03 1186 if( N->n < P521_WIDTH )
kevman 0:38ceb79fef03 1187 return( 0 );
kevman 0:38ceb79fef03 1188
kevman 0:38ceb79fef03 1189 /* M = A1 */
kevman 0:38ceb79fef03 1190 M.s = 1;
kevman 0:38ceb79fef03 1191 M.n = N->n - ( P521_WIDTH - 1 );
kevman 0:38ceb79fef03 1192 if( M.n > P521_WIDTH + 1 )
kevman 0:38ceb79fef03 1193 M.n = P521_WIDTH + 1;
kevman 0:38ceb79fef03 1194 M.p = Mp;
kevman 0:38ceb79fef03 1195 memcpy( Mp, N->p + P521_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
kevman 0:38ceb79fef03 1196 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 521 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
kevman 0:38ceb79fef03 1197
kevman 0:38ceb79fef03 1198 /* N = A0 */
kevman 0:38ceb79fef03 1199 N->p[P521_WIDTH - 1] &= P521_MASK;
kevman 0:38ceb79fef03 1200 for( i = P521_WIDTH; i < N->n; i++ )
kevman 0:38ceb79fef03 1201 N->p[i] = 0;
kevman 0:38ceb79fef03 1202
kevman 0:38ceb79fef03 1203 /* N = A0 + A1 */
kevman 0:38ceb79fef03 1204 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
kevman 0:38ceb79fef03 1205
kevman 0:38ceb79fef03 1206 cleanup:
kevman 0:38ceb79fef03 1207 return( ret );
kevman 0:38ceb79fef03 1208 }
kevman 0:38ceb79fef03 1209
kevman 0:38ceb79fef03 1210 #undef P521_WIDTH
kevman 0:38ceb79fef03 1211 #undef P521_MASK
kevman 0:38ceb79fef03 1212 #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
kevman 0:38ceb79fef03 1213
kevman 0:38ceb79fef03 1214 #endif /* MBEDTLS_ECP_NIST_OPTIM */
kevman 0:38ceb79fef03 1215
kevman 0:38ceb79fef03 1216 #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
kevman 0:38ceb79fef03 1217
kevman 0:38ceb79fef03 1218 /* Size of p255 in terms of mbedtls_mpi_uint */
kevman 0:38ceb79fef03 1219 #define P255_WIDTH ( 255 / 8 / sizeof( mbedtls_mpi_uint ) + 1 )
kevman 0:38ceb79fef03 1220
kevman 0:38ceb79fef03 1221 /*
kevman 0:38ceb79fef03 1222 * Fast quasi-reduction modulo p255 = 2^255 - 19
kevman 0:38ceb79fef03 1223 * Write N as A0 + 2^255 A1, return A0 + 19 * A1
kevman 0:38ceb79fef03 1224 */
kevman 0:38ceb79fef03 1225 static int ecp_mod_p255( mbedtls_mpi *N )
kevman 0:38ceb79fef03 1226 {
kevman 0:38ceb79fef03 1227 int ret;
kevman 0:38ceb79fef03 1228 size_t i;
kevman 0:38ceb79fef03 1229 mbedtls_mpi M;
kevman 0:38ceb79fef03 1230 mbedtls_mpi_uint Mp[P255_WIDTH + 2];
kevman 0:38ceb79fef03 1231
kevman 0:38ceb79fef03 1232 if( N->n < P255_WIDTH )
kevman 0:38ceb79fef03 1233 return( 0 );
kevman 0:38ceb79fef03 1234
kevman 0:38ceb79fef03 1235 /* M = A1 */
kevman 0:38ceb79fef03 1236 M.s = 1;
kevman 0:38ceb79fef03 1237 M.n = N->n - ( P255_WIDTH - 1 );
kevman 0:38ceb79fef03 1238 if( M.n > P255_WIDTH + 1 )
kevman 0:38ceb79fef03 1239 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
kevman 0:38ceb79fef03 1240 M.p = Mp;
kevman 0:38ceb79fef03 1241 memset( Mp, 0, sizeof Mp );
kevman 0:38ceb79fef03 1242 memcpy( Mp, N->p + P255_WIDTH - 1, M.n * sizeof( mbedtls_mpi_uint ) );
kevman 0:38ceb79fef03 1243 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, 255 % ( 8 * sizeof( mbedtls_mpi_uint ) ) ) );
kevman 0:38ceb79fef03 1244 M.n++; /* Make room for multiplication by 19 */
kevman 0:38ceb79fef03 1245
kevman 0:38ceb79fef03 1246 /* N = A0 */
kevman 0:38ceb79fef03 1247 MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( N, 255, 0 ) );
kevman 0:38ceb79fef03 1248 for( i = P255_WIDTH; i < N->n; i++ )
kevman 0:38ceb79fef03 1249 N->p[i] = 0;
kevman 0:38ceb79fef03 1250
kevman 0:38ceb79fef03 1251 /* N = A0 + 19 * A1 */
kevman 0:38ceb79fef03 1252 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &M, 19 ) );
kevman 0:38ceb79fef03 1253 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
kevman 0:38ceb79fef03 1254
kevman 0:38ceb79fef03 1255 cleanup:
kevman 0:38ceb79fef03 1256 return( ret );
kevman 0:38ceb79fef03 1257 }
kevman 0:38ceb79fef03 1258 #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
kevman 0:38ceb79fef03 1259
kevman 0:38ceb79fef03 1260 #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
kevman 0:38ceb79fef03 1261
kevman 0:38ceb79fef03 1262 /* Size of p448 in terms of mbedtls_mpi_uint */
kevman 0:38ceb79fef03 1263 #define P448_WIDTH ( 448 / 8 / sizeof( mbedtls_mpi_uint ) )
kevman 0:38ceb79fef03 1264
kevman 0:38ceb79fef03 1265 /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
kevman 0:38ceb79fef03 1266 #define DIV_ROUND_UP( X, Y ) ( ( ( X ) + ( Y ) - 1 ) / ( Y ) )
kevman 0:38ceb79fef03 1267 #define P224_WIDTH_MIN ( 28 / sizeof( mbedtls_mpi_uint ) )
kevman 0:38ceb79fef03 1268 #define P224_WIDTH_MAX DIV_ROUND_UP( 28, sizeof( mbedtls_mpi_uint ) )
kevman 0:38ceb79fef03 1269 #define P224_UNUSED_BITS ( ( P224_WIDTH_MAX * sizeof( mbedtls_mpi_uint ) * 8 ) - 224 )
kevman 0:38ceb79fef03 1270
kevman 0:38ceb79fef03 1271 /*
kevman 0:38ceb79fef03 1272 * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
kevman 0:38ceb79fef03 1273 * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
kevman 0:38ceb79fef03 1274 * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference
kevman 0:38ceb79fef03 1275 * implementation of Curve448, which uses its own special 56-bit limbs rather
kevman 0:38ceb79fef03 1276 * than a generic bignum library. We could squeeze some extra speed out on
kevman 0:38ceb79fef03 1277 * 32-bit machines by splitting N up into 32-bit limbs and doing the
kevman 0:38ceb79fef03 1278 * arithmetic using the limbs directly as we do for the NIST primes above,
kevman 0:38ceb79fef03 1279 * but for 64-bit targets it should use half the number of operations if we do
kevman 0:38ceb79fef03 1280 * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
kevman 0:38ceb79fef03 1281 */
kevman 0:38ceb79fef03 1282 static int ecp_mod_p448( mbedtls_mpi *N )
kevman 0:38ceb79fef03 1283 {
kevman 0:38ceb79fef03 1284 int ret;
kevman 0:38ceb79fef03 1285 size_t i;
kevman 0:38ceb79fef03 1286 mbedtls_mpi M, Q;
kevman 0:38ceb79fef03 1287 mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
kevman 0:38ceb79fef03 1288
kevman 0:38ceb79fef03 1289 if( N->n <= P448_WIDTH )
kevman 0:38ceb79fef03 1290 return( 0 );
kevman 0:38ceb79fef03 1291
kevman 0:38ceb79fef03 1292 /* M = A1 */
kevman 0:38ceb79fef03 1293 M.s = 1;
kevman 0:38ceb79fef03 1294 M.n = N->n - ( P448_WIDTH );
kevman 0:38ceb79fef03 1295 if( M.n > P448_WIDTH )
kevman 0:38ceb79fef03 1296 /* Shouldn't be called with N larger than 2^896! */
kevman 0:38ceb79fef03 1297 return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
kevman 0:38ceb79fef03 1298 M.p = Mp;
kevman 0:38ceb79fef03 1299 memset( Mp, 0, sizeof( Mp ) );
kevman 0:38ceb79fef03 1300 memcpy( Mp, N->p + P448_WIDTH, M.n * sizeof( mbedtls_mpi_uint ) );
kevman 0:38ceb79fef03 1301
kevman 0:38ceb79fef03 1302 /* N = A0 */
kevman 0:38ceb79fef03 1303 for( i = P448_WIDTH; i < N->n; i++ )
kevman 0:38ceb79fef03 1304 N->p[i] = 0;
kevman 0:38ceb79fef03 1305
kevman 0:38ceb79fef03 1306 /* N += A1 */
kevman 0:38ceb79fef03 1307 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
kevman 0:38ceb79fef03 1308
kevman 0:38ceb79fef03 1309 /* Q = B1, N += B1 */
kevman 0:38ceb79fef03 1310 Q = M;
kevman 0:38ceb79fef03 1311 Q.p = Qp;
kevman 0:38ceb79fef03 1312 memcpy( Qp, Mp, sizeof( Qp ) );
kevman 0:38ceb79fef03 1313 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Q, 224 ) );
kevman 0:38ceb79fef03 1314 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &Q ) );
kevman 0:38ceb79fef03 1315
kevman 0:38ceb79fef03 1316 /* M = (B0 + B1) * 2^224, N += M */
kevman 0:38ceb79fef03 1317 if( sizeof( mbedtls_mpi_uint ) > 4 )
kevman 0:38ceb79fef03 1318 Mp[P224_WIDTH_MIN] &= ( (mbedtls_mpi_uint)-1 ) >> ( P224_UNUSED_BITS );
kevman 0:38ceb79fef03 1319 for( i = P224_WIDTH_MAX; i < M.n; ++i )
kevman 0:38ceb79fef03 1320 Mp[i] = 0;
kevman 0:38ceb79fef03 1321 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &Q ) );
kevman 0:38ceb79fef03 1322 M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
kevman 0:38ceb79fef03 1323 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &M, 224 ) );
kevman 0:38ceb79fef03 1324 MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &M ) );
kevman 0:38ceb79fef03 1325
kevman 0:38ceb79fef03 1326 cleanup:
kevman 0:38ceb79fef03 1327 return( ret );
kevman 0:38ceb79fef03 1328 }
kevman 0:38ceb79fef03 1329 #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
kevman 0:38ceb79fef03 1330
kevman 0:38ceb79fef03 1331 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
kevman 0:38ceb79fef03 1332 defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
kevman 0:38ceb79fef03 1333 defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
kevman 0:38ceb79fef03 1334 /*
kevman 0:38ceb79fef03 1335 * Fast quasi-reduction modulo P = 2^s - R,
kevman 0:38ceb79fef03 1336 * with R about 33 bits, used by the Koblitz curves.
kevman 0:38ceb79fef03 1337 *
kevman 0:38ceb79fef03 1338 * Write N as A0 + 2^224 A1, return A0 + R * A1.
kevman 0:38ceb79fef03 1339 * Actually do two passes, since R is big.
kevman 0:38ceb79fef03 1340 */
kevman 0:38ceb79fef03 1341 #define P_KOBLITZ_MAX ( 256 / 8 / sizeof( mbedtls_mpi_uint ) ) // Max limbs in P
kevman 0:38ceb79fef03 1342 #define P_KOBLITZ_R ( 8 / sizeof( mbedtls_mpi_uint ) ) // Limbs in R
kevman 0:38ceb79fef03 1343 static inline int ecp_mod_koblitz( mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs,
kevman 0:38ceb79fef03 1344 size_t adjust, size_t shift, mbedtls_mpi_uint mask )
kevman 0:38ceb79fef03 1345 {
kevman 0:38ceb79fef03 1346 int ret;
kevman 0:38ceb79fef03 1347 size_t i;
kevman 0:38ceb79fef03 1348 mbedtls_mpi M, R;
kevman 0:38ceb79fef03 1349 mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
kevman 0:38ceb79fef03 1350
kevman 0:38ceb79fef03 1351 if( N->n < p_limbs )
kevman 0:38ceb79fef03 1352 return( 0 );
kevman 0:38ceb79fef03 1353
kevman 0:38ceb79fef03 1354 /* Init R */
kevman 0:38ceb79fef03 1355 R.s = 1;
kevman 0:38ceb79fef03 1356 R.p = Rp;
kevman 0:38ceb79fef03 1357 R.n = P_KOBLITZ_R;
kevman 0:38ceb79fef03 1358
kevman 0:38ceb79fef03 1359 /* Common setup for M */
kevman 0:38ceb79fef03 1360 M.s = 1;
kevman 0:38ceb79fef03 1361 M.p = Mp;
kevman 0:38ceb79fef03 1362
kevman 0:38ceb79fef03 1363 /* M = A1 */
kevman 0:38ceb79fef03 1364 M.n = N->n - ( p_limbs - adjust );
kevman 0:38ceb79fef03 1365 if( M.n > p_limbs + adjust )
kevman 0:38ceb79fef03 1366 M.n = p_limbs + adjust;
kevman 0:38ceb79fef03 1367 memset( Mp, 0, sizeof Mp );
kevman 0:38ceb79fef03 1368 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
kevman 0:38ceb79fef03 1369 if( shift != 0 )
kevman 0:38ceb79fef03 1370 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
kevman 0:38ceb79fef03 1371 M.n += R.n; /* Make room for multiplication by R */
kevman 0:38ceb79fef03 1372
kevman 0:38ceb79fef03 1373 /* N = A0 */
kevman 0:38ceb79fef03 1374 if( mask != 0 )
kevman 0:38ceb79fef03 1375 N->p[p_limbs - 1] &= mask;
kevman 0:38ceb79fef03 1376 for( i = p_limbs; i < N->n; i++ )
kevman 0:38ceb79fef03 1377 N->p[i] = 0;
kevman 0:38ceb79fef03 1378
kevman 0:38ceb79fef03 1379 /* N = A0 + R * A1 */
kevman 0:38ceb79fef03 1380 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
kevman 0:38ceb79fef03 1381 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
kevman 0:38ceb79fef03 1382
kevman 0:38ceb79fef03 1383 /* Second pass */
kevman 0:38ceb79fef03 1384
kevman 0:38ceb79fef03 1385 /* M = A1 */
kevman 0:38ceb79fef03 1386 M.n = N->n - ( p_limbs - adjust );
kevman 0:38ceb79fef03 1387 if( M.n > p_limbs + adjust )
kevman 0:38ceb79fef03 1388 M.n = p_limbs + adjust;
kevman 0:38ceb79fef03 1389 memset( Mp, 0, sizeof Mp );
kevman 0:38ceb79fef03 1390 memcpy( Mp, N->p + p_limbs - adjust, M.n * sizeof( mbedtls_mpi_uint ) );
kevman 0:38ceb79fef03 1391 if( shift != 0 )
kevman 0:38ceb79fef03 1392 MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &M, shift ) );
kevman 0:38ceb79fef03 1393 M.n += R.n; /* Make room for multiplication by R */
kevman 0:38ceb79fef03 1394
kevman 0:38ceb79fef03 1395 /* N = A0 */
kevman 0:38ceb79fef03 1396 if( mask != 0 )
kevman 0:38ceb79fef03 1397 N->p[p_limbs - 1] &= mask;
kevman 0:38ceb79fef03 1398 for( i = p_limbs; i < N->n; i++ )
kevman 0:38ceb79fef03 1399 N->p[i] = 0;
kevman 0:38ceb79fef03 1400
kevman 0:38ceb79fef03 1401 /* N = A0 + R * A1 */
kevman 0:38ceb79fef03 1402 MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &M, &M, &R ) );
kevman 0:38ceb79fef03 1403 MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( N, N, &M ) );
kevman 0:38ceb79fef03 1404
kevman 0:38ceb79fef03 1405 cleanup:
kevman 0:38ceb79fef03 1406 return( ret );
kevman 0:38ceb79fef03 1407 }
kevman 0:38ceb79fef03 1408 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
kevman 0:38ceb79fef03 1409 MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
kevman 0:38ceb79fef03 1410 MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
kevman 0:38ceb79fef03 1411
kevman 0:38ceb79fef03 1412 #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
kevman 0:38ceb79fef03 1413 /*
kevman 0:38ceb79fef03 1414 * Fast quasi-reduction modulo p192k1 = 2^192 - R,
kevman 0:38ceb79fef03 1415 * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119
kevman 0:38ceb79fef03 1416 */
kevman 0:38ceb79fef03 1417 static int ecp_mod_p192k1( mbedtls_mpi *N )
kevman 0:38ceb79fef03 1418 {
kevman 0:38ceb79fef03 1419 static mbedtls_mpi_uint Rp[] = {
kevman 0:38ceb79fef03 1420 BYTES_TO_T_UINT_8( 0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
kevman 0:38ceb79fef03 1421
kevman 0:38ceb79fef03 1422 return( ecp_mod_koblitz( N, Rp, 192 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
kevman 0:38ceb79fef03 1423 }
kevman 0:38ceb79fef03 1424 #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
kevman 0:38ceb79fef03 1425
kevman 0:38ceb79fef03 1426 #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
kevman 0:38ceb79fef03 1427 /*
kevman 0:38ceb79fef03 1428 * Fast quasi-reduction modulo p224k1 = 2^224 - R,
kevman 0:38ceb79fef03 1429 * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
kevman 0:38ceb79fef03 1430 */
kevman 0:38ceb79fef03 1431 static int ecp_mod_p224k1( mbedtls_mpi *N )
kevman 0:38ceb79fef03 1432 {
kevman 0:38ceb79fef03 1433 static mbedtls_mpi_uint Rp[] = {
kevman 0:38ceb79fef03 1434 BYTES_TO_T_UINT_8( 0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
kevman 0:38ceb79fef03 1435
kevman 0:38ceb79fef03 1436 #if defined(MBEDTLS_HAVE_INT64)
kevman 0:38ceb79fef03 1437 return( ecp_mod_koblitz( N, Rp, 4, 1, 32, 0xFFFFFFFF ) );
kevman 0:38ceb79fef03 1438 #else
kevman 0:38ceb79fef03 1439 return( ecp_mod_koblitz( N, Rp, 224 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
kevman 0:38ceb79fef03 1440 #endif
kevman 0:38ceb79fef03 1441 }
kevman 0:38ceb79fef03 1442
kevman 0:38ceb79fef03 1443 #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
kevman 0:38ceb79fef03 1444
kevman 0:38ceb79fef03 1445 #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
kevman 0:38ceb79fef03 1446 /*
kevman 0:38ceb79fef03 1447 * Fast quasi-reduction modulo p256k1 = 2^256 - R,
kevman 0:38ceb79fef03 1448 * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
kevman 0:38ceb79fef03 1449 */
kevman 0:38ceb79fef03 1450 static int ecp_mod_p256k1( mbedtls_mpi *N )
kevman 0:38ceb79fef03 1451 {
kevman 0:38ceb79fef03 1452 static mbedtls_mpi_uint Rp[] = {
kevman 0:38ceb79fef03 1453 BYTES_TO_T_UINT_8( 0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00 ) };
kevman 0:38ceb79fef03 1454 return( ecp_mod_koblitz( N, Rp, 256 / 8 / sizeof( mbedtls_mpi_uint ), 0, 0, 0 ) );
kevman 0:38ceb79fef03 1455 }
kevman 0:38ceb79fef03 1456 #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
kevman 0:38ceb79fef03 1457
kevman 0:38ceb79fef03 1458 #endif /* !MBEDTLS_ECP_ALT */
kevman 0:38ceb79fef03 1459
kevman 0:38ceb79fef03 1460 #endif /* MBEDTLS_ECP_C */