Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: TYBLE16_simple_data_logger TYBLE16_MP3_Air
ns_list.h
00001 /* 00002 * Copyright (c) 2014-2015 ARM Limited. All rights reserved. 00003 * SPDX-License-Identifier: Apache-2.0 00004 * Licensed under the Apache License, Version 2.0 (the License); you may 00005 * not use this file except in compliance with the License. 00006 * You may obtain a copy of the License at 00007 * 00008 * http://www.apache.org/licenses/LICENSE-2.0 00009 * 00010 * Unless required by applicable law or agreed to in writing, software 00011 * distributed under the License is distributed on an AS IS BASIS, WITHOUT 00012 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00013 * See the License for the specific language governing permissions and 00014 * limitations under the License. 00015 */ 00016 00017 #ifndef NS_LIST_H_ 00018 #define NS_LIST_H_ 00019 00020 #include "ns_types.h" 00021 00022 #ifdef __cplusplus 00023 extern "C" { 00024 #endif 00025 00026 /** \file 00027 * \brief Linked list support library 00028 * 00029 * The ns_list.h file provides a doubly-linked list/queue, providing O(1) 00030 * performance for all insertion/removal operations, and access to either 00031 * end of the list. 00032 * 00033 * Memory footprint is two pointers for the list head, and two pointers in each 00034 * list entry. It is similar in concept to BSD's TAILQ. 00035 * 00036 * Although the API is symmetrical and O(1) in both directions, due to internal 00037 * pointer design, it is *slightly* more efficient to insert at the end when 00038 * used as a queue, and to iterate forwards rather than backwards. 00039 * 00040 * Example of an entry type that can be stored to this list. 00041 * ~~~ 00042 * typedef struct example_entry 00043 * { 00044 * uint8_t *data; 00045 * uint32_t data_count; 00046 * ns_list_link_t link; 00047 * } 00048 * example_entry_t; 00049 * 00050 * static NS_LIST_HEAD(example_entry_t, link) my_list; 00051 * ns_list_init(&my_list); 00052 * ~~~ 00053 * OR 00054 * ~~~ 00055 * NS_LIST_HEAD(example_entry_t, link) my_list = NS_LIST_INIT(my_list); 00056 * ~~~ 00057 * OR 00058 * ~~~ 00059 * static NS_LIST_DEFINE(my_list, example_entry_t, link); 00060 * ~~~ 00061 * OR 00062 * ~~~ 00063 * typedef NS_LIST_HEAD(example_entry_t, link) example_list_t; 00064 * example_list_t NS_LIST_NAME_INIT(my_list); 00065 * ~~~ 00066 * NOTE: the link field SHALL NOT be accessed by the user. 00067 * 00068 * An entry can exist on multiple lists by having multiple link fields. 00069 * 00070 * All the list operations are implemented as macros, most of which are backed 00071 * by optionally-inline functions. The macros do not evaluate any arguments more 00072 * than once, unless documented. 00073 * 00074 * In macro documentation, `list_t` refers to a list type defined using 00075 * NS_LIST_HEAD(), and `entry_t` to the entry type that was passed to it. 00076 */ 00077 00078 /** \brief Underlying generic linked list head. 00079 * 00080 * Users should not use this type directly, but use the NS_LIST_HEAD() macro. 00081 */ 00082 typedef struct ns_list { 00083 void *first_entry; ///< Pointer to first entry, or NULL if list is empty 00084 void **last_nextptr; ///< Pointer to last entry's `next` pointer, or 00085 ///< to head's `first_entry` pointer if list is empty 00086 } ns_list_t; 00087 00088 /** \brief Declare a list head type 00089 * 00090 * This union stores the real list head, and also encodes as compile-time type 00091 * information the offset of the link pointer, and the type of the entry. 00092 * 00093 * Note that type information is compiler-dependent; this means 00094 * ns_list_get_first() could return either `void *`, or a pointer to the actual 00095 * entry type. So `ns_list_get_first()->data` is not a portable construct - 00096 * always assign returned entry pointers to a properly typed pointer variable. 00097 * This assignment will be then type-checked where the compiler supports it, and 00098 * will dereference correctly on compilers that don't support this extension. 00099 * 00100 * If you need to support C++03 compilers that cannot return properly-typed 00101 * pointers, such as IAR 7, you need to use NS_LIST_TYPECOERCE to force the type. 00102 * ~~~ 00103 * NS_LIST_HEAD(example_entry_t, link) my_list; 00104 * 00105 * example_entry_t *entry = ns_list_get_first(&my_list); 00106 * do_something(entry->data); 00107 * ~~~ 00108 * Each use of this macro generates a new anonymous union, so these two lists 00109 * have different types: 00110 * ~~~ 00111 * NS_LIST_HEAD(example_entry_t, link) my_list1; 00112 * NS_LIST_HEAD(example_entry_t, link) my_list2; 00113 * ~~~ 00114 * If you need to use a list type in multiple places, eg as a function 00115 * parameter, use typedef: 00116 * ~~~ 00117 * typedef NS_LIST_HEAD(example_entry_t, link) example_list_t; 00118 * 00119 * void example_function(example_list_t *); 00120 * ~~~ 00121 */ 00122 #define NS_LIST_HEAD(entry_type, field) \ 00123 NS_LIST_HEAD_BY_OFFSET_(entry_type, offsetof(entry_type, field)) 00124 00125 /** \brief Declare a list head type for an incomplete entry type. 00126 * 00127 * This declares a list head, similarly to NS_LIST_HEAD(), but unlike that 00128 * this can be used in contexts where the entry type may be incomplete. 00129 * 00130 * To use this, the link pointer must be the first member in the 00131 * actual complete structure. This is NOT checked - the definition of the 00132 * element should probably test NS_STATIC_ASSERT(offsetof(type, link) == 0) 00133 * if outside users are known to be using NS_LIST_HEAD_INCOMPLETE(). 00134 * ~~~ 00135 * struct opaque; 00136 * NS_LIST_HEAD_INCOMPLETE(struct opaque) opaque_list; 00137 * ~~~ 00138 */ 00139 #define NS_LIST_HEAD_INCOMPLETE(entry_type) \ 00140 NS_LIST_HEAD_BY_OFFSET_(entry_type, 0) 00141 00142 /// \privatesection 00143 /** \brief Internal macro defining a list head, given the offset to the link pointer 00144 * The +1 allows for link_offset being 0 - we can't declare a 0-size array 00145 */ 00146 #define NS_LIST_HEAD_BY_OFFSET_(entry_type, link_offset) \ 00147 union \ 00148 { \ 00149 ns_list_t slist; \ 00150 NS_FUNNY_COMPARE_OK \ 00151 NS_STATIC_ASSERT(link_offset <= (ns_list_offset_t) -1, "link offset too large") \ 00152 NS_FUNNY_COMPARE_RESTORE \ 00153 char (*offset)[link_offset + 1]; \ 00154 entry_type *type; \ 00155 } 00156 00157 /** \brief Get offset of link field in entry. 00158 * \return `(ns_list_offset_t)` The offset of the link field for entries on the specified list 00159 */ 00160 #define NS_LIST_OFFSET_(list) ((ns_list_offset_t) (sizeof *(list)->offset - 1)) 00161 00162 /** \brief Get the entry pointer type. 00163 * \def NS_LIST_PTR_TYPE_ 00164 * 00165 * \return An unqualified pointer type to an entry on the specified list. 00166 * 00167 * Only available if the compiler provides a "typeof" operator. 00168 */ 00169 #if defined __cplusplus && __cplusplus >= 201103L 00170 #define NS_LIST_PTR_TYPE_(list) decltype((list)->type) 00171 #elif defined __GNUC__ 00172 #define NS_LIST_PTR_TYPE_(list) __typeof__((list)->type) 00173 #endif 00174 00175 /** \brief Check for compatible pointer types 00176 * 00177 * This test will produce a diagnostic about a pointer mismatch on 00178 * the == inside the sizeof operator. For example ARM/Norcroft C gives the error: 00179 * 00180 * operand types are incompatible ("entry_t *" and "other_t *") 00181 */ 00182 #ifdef CPPCHECK 00183 #define NS_PTR_MATCH_(a, b, str) ((void) 0) 00184 #else 00185 #define NS_PTR_MATCH_(a, b, str) ((void) sizeof ((a) == (b))) 00186 #endif 00187 00188 /** \brief Internal macro to cast returned entry pointers to correct type. 00189 * 00190 * Not portable in C, alas. With GCC or C++11, the "get entry" macros return 00191 * correctly-typed pointers. Otherwise, the macros return `void *`. 00192 * 00193 * The attempt at a portable version would work if the C `?:` operator wasn't 00194 * broken - `x ? (t *) : (void *)` should really have type `(t *)` in C, but 00195 * it has type `(void *)`, which only makes sense for C++. The `?:` is left in, 00196 * in case some day it works. Some compilers may still warn if this is 00197 * assigned to a different type. 00198 */ 00199 #ifdef NS_LIST_PTR_TYPE_ 00200 #define NS_LIST_TYPECAST_(list, val) ((NS_LIST_PTR_TYPE_(list)) (val)) 00201 #else 00202 #define NS_LIST_TYPECAST_(list, val) (0 ? (list)->type : (val)) 00203 #endif 00204 00205 /** \brief Macro to force correct type if necessary. 00206 * 00207 * In C, doesn't matter if NS_LIST_TYPECAST_ works or not, as it's legal 00208 * to assign void * to a pointer. In C++, we can't do that, so need 00209 * a back-up plan for C++03. This forces the type, so breaks type-safety - 00210 * only activate when needed, meaning we still get typechecks on other 00211 * toolchains. 00212 * 00213 * If a straight assignment of a ns_list function to a pointer fails 00214 * on a C++03 compiler, use the following construct. This will not be 00215 * required with C++11 compilers. 00216 * ~~~ 00217 * type *elem = NS_LIST_TYPECOERCE(type *, ns_list_get_first(list)); 00218 * ~~~ 00219 */ 00220 #if defined(NS_LIST_PTR_TYPE_) || !defined(__cplusplus) 00221 #define NS_LIST_TYPECOERCE(type, val) (val) 00222 #else 00223 #define NS_LIST_TYPECOERCE(type, val) (type) (val) 00224 #endif 00225 00226 /** \brief Internal macro to check types of input entry pointer. */ 00227 #define NS_LIST_TYPECHECK_(list, entry) \ 00228 (NS_PTR_MATCH_((list)->type, (entry), "incorrect entry type for list"), (entry)) 00229 00230 /** \brief Type used to pass link offset to underlying functions 00231 * 00232 * We could use size_t, but it would be unnecessarily large on 8-bit systems, 00233 * where we can be (pretty) confident we won't have next pointers more than 00234 * 256 bytes into a structure. 00235 */ 00236 typedef uint_fast8_t ns_list_offset_t; 00237 00238 /// \publicsection 00239 /** \brief The type for the link member in the user's entry structure. 00240 * 00241 * Users should not access this member directly - just pass its name to the 00242 * list head macros. The funny prev pointer simplifies common operations 00243 * (eg insertion, removal), at the expense of complicating rare reverse iteration. 00244 * 00245 * NB - the list implementation relies on next being the first member. 00246 */ 00247 typedef struct ns_list_link { 00248 void *next; ///< Pointer to next entry, or NULL if none 00249 void **prev; ///< Pointer to previous entry's (or head's) next pointer 00250 } ns_list_link_t; 00251 00252 /** \brief "Poison" value placed in unattached entries' link pointers. 00253 * \internal What are good values for this? Platform dependent, maybe just NULL 00254 */ 00255 #define NS_LIST_POISON ((void *) 0xDEADBEEF) 00256 00257 /** \brief Initialiser for an entry's link member 00258 * 00259 * This initialiser is not required by the library, but a user may want an 00260 * initialiser to include in their own entry initialiser. See 00261 * ns_list_link_init() for more discussion. 00262 */ 00263 #define NS_LIST_LINK_INIT(name) \ 00264 NS_FUNNY_INTPTR_OK \ 00265 { NS_LIST_POISON, NS_LIST_POISON } \ 00266 NS_FUNNY_INTPTR_RESTORE 00267 00268 /** \hideinitializer \brief Initialise an entry's list link 00269 * 00270 * This "initialises" an unattached entry's link by filling the fields with 00271 * poison. This is optional, as unattached entries field pointers are not 00272 * meaningful, and it is not valid to call ns_list_get_next or similar on 00273 * an unattached entry. 00274 * 00275 * \param entry Pointer to an entry 00276 * \param field The name of the link member to initialise 00277 */ 00278 #define ns_list_link_init(entry, field) ns_list_link_init_(&(entry)->field) 00279 00280 /** \hideinitializer \brief Initialise a list 00281 * 00282 * Initialise a list head before use. A list head must be initialised using this 00283 * function or one of the NS_LIST_INIT()-type macros before use. A zero-initialised 00284 * list head is *not* valid. 00285 * 00286 * If used on a list containing existing entries, those entries will 00287 * become detached. (They are not modified, but their links are now effectively 00288 * undefined). 00289 * 00290 * \param list Pointer to a NS_LIST_HEAD() structure. 00291 */ 00292 #define ns_list_init(list) ns_list_init_(&(list)->slist) 00293 00294 /** \brief Initialiser for an empty list 00295 * 00296 * Usage in an enclosing initialiser: 00297 * ~~~ 00298 * static my_type_including_list_t x = { 00299 * "Something", 00300 * 23, 00301 * NS_LIST_INIT(x), 00302 * }; 00303 * ~~~ 00304 * NS_LIST_DEFINE() or NS_LIST_NAME_INIT() may provide a shorter alternative 00305 * in simpler cases. 00306 */ 00307 #define NS_LIST_INIT(name) { { NULL, &(name).slist.first_entry } } 00308 00309 /** \brief Name and initialiser for an empty list 00310 * 00311 * Usage: 00312 * ~~~ 00313 * list_t NS_LIST_NAME_INIT(foo); 00314 * ~~~ 00315 * acts as 00316 * ~~~ 00317 * list_t foo = { empty list }; 00318 * ~~~ 00319 * Also useful with designated initialisers: 00320 * ~~~ 00321 * .NS_LIST_NAME_INIT(foo), 00322 * ~~~ 00323 * acts as 00324 * ~~~ 00325 * .foo = { empty list }, 00326 * ~~~ 00327 */ 00328 #define NS_LIST_NAME_INIT(name) name = NS_LIST_INIT(name) 00329 00330 /** \brief Define a list, and initialise to empty. 00331 * 00332 * Usage: 00333 * ~~~ 00334 * static NS_LIST_DEFINE(my_list, entry_t, link); 00335 * ~~~ 00336 * acts as 00337 * ~~~ 00338 * static list_type my_list = { empty list }; 00339 * ~~~ 00340 */ 00341 #define NS_LIST_DEFINE(name, type, field) \ 00342 NS_LIST_HEAD(type, field) NS_LIST_NAME_INIT(name) 00343 00344 /** \hideinitializer \brief Add an entry to the start of the linked list. 00345 * 00346 * ns_list_add_to_end() is *slightly* more efficient than ns_list_add_to_start(). 00347 * 00348 * \param list `(list_t *)` Pointer to list. 00349 * \param entry `(entry_t * restrict)` Pointer to new entry to add. 00350 */ 00351 #define ns_list_add_to_start(list, entry) \ 00352 ns_list_add_to_start_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, entry)) 00353 00354 /** \hideinitializer \brief Add an entry to the end of the linked list. 00355 * 00356 * \param list `(list_t *)` Pointer to list. 00357 * \param entry `(entry_t * restrict)` Pointer to new entry to add. 00358 */ 00359 #define ns_list_add_to_end(list, entry) \ 00360 ns_list_add_to_end_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, entry)) 00361 00362 /** \hideinitializer \brief Add an entry before a specified entry. 00363 * 00364 * \param list `(list_t *)` Pointer to list. 00365 * \param before `(entry_t *)` Existing entry before which to place the new entry. 00366 * \param entry `(entry_t * restrict)` Pointer to new entry to add. 00367 */ 00368 #define ns_list_add_before(list, before, entry) \ 00369 ns_list_add_before_(NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, before), NS_LIST_TYPECHECK_(list, entry)) 00370 00371 /** \hideinitializer \brief Add an entry after a specified entry. 00372 * 00373 * ns_list_add_before() is *slightly* more efficient than ns_list_add_after(). 00374 * 00375 * \param list `(list_t *)` Pointer to list. 00376 * \param after `(entry_t *)` Existing entry after which to place the new entry. 00377 * \param entry `(entry_t * restrict)` Pointer to new entry to add. 00378 */ 00379 #define ns_list_add_after(list, after, entry) \ 00380 ns_list_add_after_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, after), NS_LIST_TYPECHECK_(list, entry)) 00381 00382 /** \brief Check if a list is empty. 00383 * 00384 * \param list `(const list_t *)` Pointer to list. 00385 * 00386 * \return `(bool)` true if the list is empty. 00387 */ 00388 #define ns_list_is_empty(list) ((bool) ((list)->slist.first_entry == NULL)) 00389 00390 /** \brief Get the first entry. 00391 * 00392 * \param list `(const list_t *)` Pointer to list. 00393 * 00394 * \return `(entry_t *)` Pointer to first entry. 00395 * \return NULL if list is empty. 00396 */ 00397 #define ns_list_get_first(list) NS_LIST_TYPECAST_(list, (list)->slist.first_entry) 00398 00399 /** \hideinitializer \brief Get the previous entry. 00400 * 00401 * \param list `(const list_t *)` Pointer to list. 00402 * \param current `(const entry_t *)` Pointer to current entry. 00403 * 00404 * \return `(entry_t *)` Pointer to previous entry. 00405 * \return NULL if current entry is first. 00406 */ 00407 #define ns_list_get_previous(list, current) \ 00408 NS_LIST_TYPECAST_(list, ns_list_get_previous_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, current))) 00409 00410 /** \hideinitializer \brief Get the next entry. 00411 * 00412 * \param list `(const list_t *)` Pointer to list. 00413 * \param current `(const entry_t *)` Pointer to current entry. 00414 * 00415 * \return `(entry_t *)` Pointer to next entry. 00416 * \return NULL if current entry is last. 00417 */ 00418 #define ns_list_get_next(list, current) \ 00419 NS_LIST_TYPECAST_(list, ns_list_get_next_(NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, current))) 00420 00421 /** \hideinitializer \brief Get the last entry. 00422 * 00423 * \param list `(const list_t *)` Pointer to list. 00424 * 00425 * \return `(entry_t *)` Pointer to last entry. 00426 * \return NULL if list is empty. 00427 */ 00428 #define ns_list_get_last(list) \ 00429 NS_LIST_TYPECAST_(list, ns_list_get_last_(&(list)->slist, NS_LIST_OFFSET_(list))) 00430 00431 /** \hideinitializer \brief Remove an entry. 00432 * 00433 * \param list `(list_t *)` Pointer to list. 00434 * \param entry `(entry_t *)` Entry on list to be removed. 00435 */ 00436 #define ns_list_remove(list, entry) \ 00437 ns_list_remove_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, entry)) 00438 00439 /** \hideinitializer \brief Replace an entry. 00440 * 00441 * \param list `(list_t *)` Pointer to list. 00442 * \param current `(entry_t *)` Existing entry on list to be replaced. 00443 * \param replacement `(entry_t * restrict)` New entry to be the replacement. 00444 */ 00445 #define ns_list_replace(list, current, replacement) \ 00446 ns_list_replace_(&(list)->slist, NS_LIST_OFFSET_(list), NS_LIST_TYPECHECK_(list, current), NS_LIST_TYPECHECK_(list, replacement)) 00447 00448 /** \hideinitializer \brief Concatenate two lists. 00449 * 00450 * Attach the entries on the source list to the end of the destination 00451 * list, leaving the source list empty. 00452 * 00453 * \param dst `(list_t *)` Pointer to destination list. 00454 * \param src `(list_t *)` Pointer to source list. 00455 * 00456 */ 00457 #define ns_list_concatenate(dst, src) \ 00458 (NS_PTR_MATCH_(dst, src, "concatenating different list types"), \ 00459 ns_list_concatenate_(&(dst)->slist, &(src)->slist, NS_LIST_OFFSET_(src))) 00460 00461 /** \brief Iterate forwards over a list. 00462 * 00463 * Example: 00464 * ~~~ 00465 * ns_list_foreach(const my_entry_t, cur, &my_list) 00466 * { 00467 * printf("%s\n", cur->name); 00468 * } 00469 * ~~~ 00470 * Deletion of the current entry is not permitted as its next is checked after 00471 * running user code. 00472 * 00473 * The iteration pointer is declared inside the loop, using C99/C++, so it 00474 * is not accessible after the loop. This encourages good code style, and 00475 * matches the semantics of C++11's "ranged for", which only provides the 00476 * declaration form: 00477 * ~~~ 00478 * for (const my_entry_t cur : my_list) 00479 * ~~~ 00480 * If you need to see the value of the iteration pointer after a `break`, 00481 * you will need to assign it to a variable declared outside the loop before 00482 * breaking: 00483 * ~~~ 00484 * my_entry_t *match = NULL; 00485 * ns_list_foreach(my_entry_t, cur, &my_list) 00486 * { 00487 * if (cur->id == id) 00488 * { 00489 * match = cur; 00490 * break; 00491 * } 00492 * } 00493 * ~~~ 00494 * 00495 * The user has to specify the entry type for the pointer definition, as type 00496 * extraction from the list argument isn't portable. On the other hand, this 00497 * also permits const qualifiers, as in the example above, and serves as 00498 * documentation. The entry type will be checked against the list type where the 00499 * compiler supports it. 00500 * 00501 * \param type Entry type `([const] entry_t)`. 00502 * \param e Name for iteration pointer to be defined 00503 * inside the loop. 00504 * \param list `(const list_t *)` Pointer to list - evaluated multiple times. 00505 */ 00506 #define ns_list_foreach(type, e, list) \ 00507 for (type *e = NS_LIST_TYPECOERCE(type *, ns_list_get_first(list)); \ 00508 e; e = NS_LIST_TYPECOERCE(type *, ns_list_get_next(list, e))) 00509 00510 /** \brief Iterate forwards over a list, where user may delete. 00511 * 00512 * As ns_list_foreach(), but deletion of current entry is permitted as its 00513 * next pointer is recorded before running user code. 00514 * 00515 * Example: 00516 * ~~~ 00517 * ns_list_foreach_safe(my_entry_t, cur, &my_list) 00518 * { 00519 * ns_list_remove(cur); 00520 * } 00521 * ~~~ 00522 * \param type Entry type `(entry_t)`. 00523 * \param e Name for iteration pointer to be defined 00524 * inside the loop. 00525 * \param list `(list_t *)` Pointer to list - evaluated multiple times. 00526 */ 00527 #define ns_list_foreach_safe(type, e, list) \ 00528 for (type *e = NS_LIST_TYPECOERCE(type *, ns_list_get_first(list)), *_next##e; \ 00529 e && (_next##e = NS_LIST_TYPECOERCE(type *, ns_list_get_next(list, e)), true); e = _next##e) 00530 00531 /** \brief Iterate backwards over a list. 00532 * 00533 * As ns_list_foreach(), but going backwards - see its documentation. 00534 * Iterating forwards is *slightly* more efficient. 00535 */ 00536 #define ns_list_foreach_reverse(type, e, list) \ 00537 for (type *e = NS_LIST_TYPECOERCE(type *, ns_list_get_last(list)); \ 00538 e; e = NS_LIST_TYPECOERCE(type *, ns_list_get_previous(list, e))) 00539 00540 /** \brief Iterate backwards over a list, where user may delete. 00541 * 00542 * As ns_list_foreach_safe(), but going backwards - see its documentation. 00543 * Iterating forwards is *slightly* more efficient. 00544 */ 00545 #define ns_list_foreach_reverse_safe(type, e, list) \ 00546 for (type *e = NS_LIST_TYPECOERCE(type *, ns_list_get_last(list)), *_next##e; \ 00547 e && (_next##e = NS_LIST_TYPECOERCE(type *, ns_list_get_previous(list, e)), true); e = _next##e) 00548 00549 /** \hideinitializer \brief Count entries on a list 00550 * 00551 * Unlike other operations, this is O(n). Note: if list might contain over 00552 * 65535 entries, this function **must not** be used to get the entry count. 00553 * 00554 * \param list `(const list_t *)` Pointer to list. 00555 00556 * \return `(uint_fast16_t)` Number of entries that are stored in list. 00557 */ 00558 #define ns_list_count(list) ns_list_count_(&(list)->slist, NS_LIST_OFFSET_(list)) 00559 00560 /** \privatesection 00561 * Internal functions - designed to be accessed using corresponding macros above 00562 */ 00563 NS_INLINE void ns_list_init_(ns_list_t *list); 00564 NS_INLINE void ns_list_link_init_(ns_list_link_t *link); 00565 NS_INLINE void ns_list_add_to_start_(ns_list_t *list, ns_list_offset_t link_offset, void *restrict entry); 00566 NS_INLINE void ns_list_add_to_end_(ns_list_t *list, ns_list_offset_t link_offset, void *restrict entry); 00567 NS_INLINE void ns_list_add_before_(ns_list_offset_t link_offset, void *before, void *restrict entry); 00568 NS_INLINE void ns_list_add_after_(ns_list_t *list, ns_list_offset_t link_offset, void *after, void *restrict entry); 00569 NS_INLINE void *ns_list_get_next_(ns_list_offset_t link_offset, const void *current); 00570 NS_INLINE void *ns_list_get_previous_(const ns_list_t *list, ns_list_offset_t link_offset, const void *current); 00571 NS_INLINE void *ns_list_get_last_(const ns_list_t *list, ns_list_offset_t offset); 00572 NS_INLINE void ns_list_remove_(ns_list_t *list, ns_list_offset_t link_offset, void *entry); 00573 NS_INLINE void ns_list_replace_(ns_list_t *list, ns_list_offset_t link_offset, void *current, void *restrict replacement); 00574 NS_INLINE void ns_list_concatenate_(ns_list_t *dst, ns_list_t *src, ns_list_offset_t offset); 00575 NS_INLINE uint_fast16_t ns_list_count_(const ns_list_t *list, ns_list_offset_t link_offset); 00576 00577 /* Provide definitions, either for inlining, or for ns_list.c */ 00578 #if defined NS_ALLOW_INLINING || defined NS_LIST_FN 00579 #ifndef NS_LIST_FN 00580 #define NS_LIST_FN NS_INLINE 00581 #endif 00582 00583 /* Pointer to the link member in entry e */ 00584 #define NS_LIST_LINK_(e, offset) ((ns_list_link_t *)((char *)(e) + offset)) 00585 00586 /* Lvalue of the next link pointer in entry e */ 00587 #define NS_LIST_NEXT_(e, offset) (NS_LIST_LINK_(e, offset)->next) 00588 00589 /* Lvalue of the prev link pointer in entry e */ 00590 #define NS_LIST_PREV_(e, offset) (NS_LIST_LINK_(e, offset)->prev) 00591 00592 /* Convert a pointer to a link member back to the entry; 00593 * works for linkptr either being a ns_list_link_t pointer, or its next pointer, 00594 * as the next pointer is first in the ns_list_link_t */ 00595 #define NS_LIST_ENTRY_(linkptr, offset) ((void *)((char *)(linkptr) - offset)) 00596 00597 NS_LIST_FN void ns_list_init_(ns_list_t *list) 00598 { 00599 list->first_entry = NULL; 00600 list->last_nextptr = &list->first_entry; 00601 } 00602 00603 NS_LIST_FN void ns_list_link_init_(ns_list_link_t *link) 00604 { 00605 NS_FUNNY_INTPTR_OK 00606 link->next = NS_LIST_POISON; 00607 link->prev = NS_LIST_POISON; 00608 NS_FUNNY_INTPTR_RESTORE 00609 } 00610 00611 NS_LIST_FN void ns_list_add_to_start_(ns_list_t *list, ns_list_offset_t offset, void *restrict entry) 00612 { 00613 void *next; 00614 00615 NS_LIST_PREV_(entry, offset) = &list->first_entry; 00616 NS_LIST_NEXT_(entry, offset) = next = list->first_entry; 00617 00618 if (next) { 00619 NS_LIST_PREV_(next, offset) = &NS_LIST_NEXT_(entry, offset); 00620 } else { 00621 list->last_nextptr = &NS_LIST_NEXT_(entry, offset); 00622 } 00623 00624 list->first_entry = entry; 00625 } 00626 00627 NS_LIST_FN void ns_list_add_after_(ns_list_t *list, ns_list_offset_t offset, void *current, void *restrict entry) 00628 { 00629 void *next; 00630 00631 NS_LIST_PREV_(entry, offset) = &NS_LIST_NEXT_(current, offset); 00632 NS_LIST_NEXT_(entry, offset) = next = NS_LIST_NEXT_(current, offset); 00633 00634 if (next) { 00635 NS_LIST_PREV_(next, offset) = &NS_LIST_NEXT_(entry, offset); 00636 } else { 00637 list->last_nextptr = &NS_LIST_NEXT_(entry, offset); 00638 } 00639 00640 NS_LIST_NEXT_(current, offset) = entry; 00641 } 00642 00643 NS_LIST_FN void ns_list_add_before_(ns_list_offset_t offset, void *current, void *restrict entry) 00644 { 00645 void **prev_nextptr; 00646 00647 NS_LIST_NEXT_(entry, offset) = current; 00648 NS_LIST_PREV_(entry, offset) = prev_nextptr = NS_LIST_PREV_(current, offset); 00649 *prev_nextptr = entry; 00650 NS_LIST_PREV_(current, offset) = &NS_LIST_NEXT_(entry, offset); 00651 } 00652 00653 NS_LIST_FN void ns_list_add_to_end_(ns_list_t *list, ns_list_offset_t offset, void *restrict entry) 00654 { 00655 void **prev_nextptr; 00656 00657 NS_LIST_NEXT_(entry, offset) = NULL; 00658 NS_LIST_PREV_(entry, offset) = prev_nextptr = list->last_nextptr; 00659 *prev_nextptr = entry; 00660 list->last_nextptr = &NS_LIST_NEXT_(entry, offset); 00661 } 00662 00663 NS_LIST_FN void *ns_list_get_next_(ns_list_offset_t offset, const void *current) 00664 { 00665 return NS_LIST_NEXT_(current, offset); 00666 } 00667 00668 NS_LIST_FN void *ns_list_get_previous_(const ns_list_t *list, ns_list_offset_t offset, const void *current) 00669 { 00670 if (current == list->first_entry) { 00671 return NULL; 00672 } 00673 00674 // Tricky. We don't have a direct previous pointer, but a pointer to the 00675 // pointer that points to us - ie &head->first_entry OR &{prev}->next. 00676 // This makes life easier on insertion and removal, but this is where we 00677 // pay the price. 00678 00679 // We have to check manually for being the first entry above, so we know it's 00680 // a real link's next pointer. Then next is the first field of 00681 // ns_list_link_t, so we can use the normal offset value. 00682 00683 return NS_LIST_ENTRY_(NS_LIST_PREV_(current, offset), offset); 00684 } 00685 00686 NS_LIST_FN void *ns_list_get_last_(const ns_list_t *list, ns_list_offset_t offset) 00687 { 00688 if (!list->first_entry) { 00689 return NULL; 00690 } 00691 00692 // See comments in ns_list_get_previous_() 00693 return NS_LIST_ENTRY_(list->last_nextptr, offset); 00694 } 00695 00696 NS_LIST_FN void ns_list_remove_(ns_list_t *list, ns_list_offset_t offset, void *removed) 00697 { 00698 void *next; 00699 void **prev_nextptr; 00700 00701 next = NS_LIST_NEXT_(removed, offset); 00702 prev_nextptr = NS_LIST_PREV_(removed, offset); 00703 if (next) { 00704 NS_LIST_PREV_(next, offset) = prev_nextptr; 00705 } else { 00706 list->last_nextptr = prev_nextptr; 00707 } 00708 *prev_nextptr = next; 00709 00710 ns_list_link_init_(NS_LIST_LINK_(removed, offset)); 00711 } 00712 00713 NS_LIST_FN void ns_list_replace_(ns_list_t *list, ns_list_offset_t offset, void *current, void *restrict replacement) 00714 { 00715 void *next; 00716 void **prev_nextptr; 00717 00718 NS_LIST_PREV_(replacement, offset) = prev_nextptr = NS_LIST_PREV_(current, offset); 00719 NS_LIST_NEXT_(replacement, offset) = next = NS_LIST_NEXT_(current, offset); 00720 00721 if (next) { 00722 NS_LIST_PREV_(next, offset) = &NS_LIST_NEXT_(replacement, offset); 00723 } else { 00724 list->last_nextptr = &NS_LIST_NEXT_(replacement, offset); 00725 } 00726 *prev_nextptr = replacement; 00727 00728 ns_list_link_init_(NS_LIST_LINK_(current, offset)); 00729 } 00730 00731 NS_LIST_FN void ns_list_concatenate_(ns_list_t *dst, ns_list_t *src, ns_list_offset_t offset) 00732 { 00733 ns_list_link_t *src_first; 00734 00735 src_first = src->first_entry; 00736 if (!src_first) { 00737 return; 00738 } 00739 00740 *dst->last_nextptr = src_first; 00741 NS_LIST_PREV_(src_first, offset) = dst->last_nextptr; 00742 dst->last_nextptr = src->last_nextptr; 00743 00744 ns_list_init_(src); 00745 } 00746 00747 NS_LIST_FN uint_fast16_t ns_list_count_(const ns_list_t *list, ns_list_offset_t offset) 00748 { 00749 uint_fast16_t count = 0; 00750 00751 for (void *p = list->first_entry; p; p = NS_LIST_NEXT_(p, offset)) { 00752 count++; 00753 } 00754 00755 return count; 00756 } 00757 #endif /* defined NS_ALLOW_INLINING || defined NS_LIST_FN */ 00758 00759 #ifdef __cplusplus 00760 } 00761 #endif 00762 00763 #endif /* NS_LIST_H_ */ 00764
Generated on Tue Jul 12 2022 13:54:38 by
