Kenji Arai / mbed-os_TYBLE16

Dependents:   TYBLE16_simple_data_logger TYBLE16_MP3_Air

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers mppe.c Source File

mppe.c

00001 /*
00002  * mppe.c - interface MPPE to the PPP code.
00003  *
00004  * By Frank Cusack <fcusack@fcusack.com>.
00005  * Copyright (c) 2002,2003,2004 Google, Inc.
00006  * All rights reserved.
00007  *
00008  * License:
00009  * Permission to use, copy, modify, and distribute this software and its
00010  * documentation is hereby granted, provided that the above copyright
00011  * notice appears in all copies.  This software is provided without any
00012  * warranty, express or implied.
00013  *
00014  * Changelog:
00015  *      08/12/05 - Matt Domsch <Matt_Domsch@dell.com>
00016  *                 Only need extra skb padding on transmit, not receive.
00017  *      06/18/04 - Matt Domsch <Matt_Domsch@dell.com>, Oleg Makarenko <mole@quadra.ru>
00018  *                 Use Linux kernel 2.6 arc4 and sha1 routines rather than
00019  *                 providing our own.
00020  *      2/15/04 - TS: added #include <version.h> and testing for Kernel
00021  *                    version before using
00022  *                    MOD_DEC_USAGE_COUNT/MOD_INC_USAGE_COUNT which are
00023  *                    deprecated in 2.6
00024  */
00025 
00026 #include "ppp_opts.h"
00027 #if PPP_SUPPORT && MPPE_SUPPORT  /* don't build if not configured for use in ppp_opts.h */
00028 
00029 #include <string.h>
00030 
00031 #include "ppp_impl.h"
00032 #include "ccp.h"
00033 #include "mppe.h"
00034 #include "pppdebug.h"
00035 #include "pppcrypt.h"
00036 
00037 #define SHA1_SIGNATURE_SIZE 20
00038 
00039 /* ppp_mppe_state.bits definitions */
00040 #define MPPE_BIT_A  0x80    /* Encryption table were (re)inititalized */
00041 #define MPPE_BIT_B  0x40    /* MPPC only (not implemented) */
00042 #define MPPE_BIT_C  0x20    /* MPPC only (not implemented) */
00043 #define MPPE_BIT_D  0x10    /* This is an encrypted frame */
00044 
00045 #define MPPE_BIT_FLUSHED    MPPE_BIT_A
00046 #define MPPE_BIT_ENCRYPTED  MPPE_BIT_D
00047 
00048 #define MPPE_BITS(p) ((p)[0] & 0xf0)
00049 #define MPPE_CCOUNT(p) ((((p)[0] & 0x0f) << 8) + (p)[1])
00050 #define MPPE_CCOUNT_SPACE 0x1000    /* The size of the ccount space */
00051 
00052 #define MPPE_OVHD   2   /* MPPE overhead/packet */
00053 #define SANITY_MAX  1600    /* Max bogon factor we will tolerate */
00054 
00055 /*
00056  * Perform the MPPE rekey algorithm, from RFC 3078, sec. 7.3.
00057  * Well, not what's written there, but rather what they meant.
00058  */
00059 static void mppe_rekey(ppp_mppe_state * state, int initial_key)
00060 {
00061     ppp_sha1_context sha1_ctx;
00062     u8_t sha1_digest[SHA1_SIGNATURE_SIZE];
00063 
00064     /*
00065      * Key Derivation, from RFC 3078, RFC 3079.
00066      * Equivalent to Get_Key() for MS-CHAP as described in RFC 3079.
00067      */
00068     ppp_sha1_init(&sha1_ctx);
00069     ppp_sha1_starts(&sha1_ctx);
00070     ppp_sha1_update(&sha1_ctx, state->master_key, state->keylen);
00071     ppp_sha1_update(&sha1_ctx, mppe_sha1_pad1, SHA1_PAD_SIZE);
00072     ppp_sha1_update(&sha1_ctx, state->session_key, state->keylen);
00073     ppp_sha1_update(&sha1_ctx, mppe_sha1_pad2, SHA1_PAD_SIZE);
00074     ppp_sha1_finish(&sha1_ctx, sha1_digest);
00075     ppp_sha1_free(&sha1_ctx);
00076     MEMCPY(state->session_key, sha1_digest, state->keylen);
00077 
00078     if (!initial_key) {
00079         ARC4_init(&state->arc4);
00080         ARC4_setup(&state->arc4, sha1_digest, state->keylen);
00081         ARC4_crypt(&state->arc4, state->session_key, state->keylen);
00082         ARC4_free(&state->arc4);
00083     }
00084     if (state->keylen == 8) {
00085         /* See RFC 3078 */
00086         state->session_key[0] = 0xd1;
00087         state->session_key[1] = 0x26;
00088         state->session_key[2] = 0x9e;
00089     }
00090     ARC4_init(&state->arc4);
00091     ARC4_setup(&state->arc4, state->session_key, state->keylen);
00092 }
00093 
00094 /*
00095  * Set key, used by MSCHAP before mppe_init() is actually called by CCP so we
00096  * don't have to keep multiple copies of keys.
00097  */
00098 void mppe_set_key(ppp_pcb *pcb, ppp_mppe_state *state, u8_t *key) {
00099     PPP_UNUSED_ARG(pcb);
00100     MEMCPY(state->master_key, key, MPPE_MAX_KEY_LEN);
00101 }
00102 
00103 /*
00104  * Initialize (de)compressor state.
00105  */
00106 void
00107 mppe_init(ppp_pcb *pcb, ppp_mppe_state *state, u8_t options)
00108 {
00109 #if PPP_DEBUG
00110     const u8_t *debugstr = (const u8_t*)"mppe_comp_init";
00111     if (&pcb->mppe_decomp == state) {
00112         debugstr = (const u8_t*)"mppe_decomp_init";
00113     }
00114 #endif /* PPP_DEBUG */
00115 
00116     /* Save keys. */
00117     MEMCPY(state->session_key, state->master_key, sizeof(state->master_key));
00118 
00119     if (options & MPPE_OPT_128)
00120         state->keylen = 16;
00121     else if (options & MPPE_OPT_40)
00122         state->keylen = 8;
00123     else {
00124         PPPDEBUG(LOG_DEBUG, ("%s[%d]: unknown key length\n", debugstr,
00125             pcb->netif->num));
00126         lcp_close(pcb, "MPPE required but peer negotiation failed");
00127         return;
00128     }
00129     if (options & MPPE_OPT_STATEFUL)
00130         state->stateful = 1;
00131 
00132     /* Generate the initial session key. */
00133     mppe_rekey(state, 1);
00134 
00135 #if PPP_DEBUG
00136     {
00137         int i;
00138         char mkey[sizeof(state->master_key) * 2 + 1];
00139         char skey[sizeof(state->session_key) * 2 + 1];
00140 
00141         PPPDEBUG(LOG_DEBUG, ("%s[%d]: initialized with %d-bit %s mode\n",
00142                debugstr, pcb->netif->num, (state->keylen == 16) ? 128 : 40,
00143                (state->stateful) ? "stateful" : "stateless"));
00144 
00145         for (i = 0; i < (int)sizeof(state->master_key); i++)
00146             sprintf(mkey + i * 2, "%02x", state->master_key[i]);
00147         for (i = 0; i < (int)sizeof(state->session_key); i++)
00148             sprintf(skey + i * 2, "%02x", state->session_key[i]);
00149         PPPDEBUG(LOG_DEBUG,
00150                ("%s[%d]: keys: master: %s initial session: %s\n",
00151                debugstr, pcb->netif->num, mkey, skey));
00152     }
00153 #endif /* PPP_DEBUG */
00154 
00155     /*
00156      * Initialize the coherency count.  The initial value is not specified
00157      * in RFC 3078, but we can make a reasonable assumption that it will
00158      * start at 0.  Setting it to the max here makes the comp/decomp code
00159      * do the right thing (determined through experiment).
00160      */
00161     state->ccount = MPPE_CCOUNT_SPACE - 1;
00162 
00163     /*
00164      * Note that even though we have initialized the key table, we don't
00165      * set the FLUSHED bit.  This is contrary to RFC 3078, sec. 3.1.
00166      */
00167     state->bits = MPPE_BIT_ENCRYPTED;
00168 }
00169 
00170 /*
00171  * We received a CCP Reset-Request (actually, we are sending a Reset-Ack),
00172  * tell the compressor to rekey.  Note that we MUST NOT rekey for
00173  * every CCP Reset-Request; we only rekey on the next xmit packet.
00174  * We might get multiple CCP Reset-Requests if our CCP Reset-Ack is lost.
00175  * So, rekeying for every CCP Reset-Request is broken as the peer will not
00176  * know how many times we've rekeyed.  (If we rekey and THEN get another
00177  * CCP Reset-Request, we must rekey again.)
00178  */
00179 void mppe_comp_reset(ppp_pcb *pcb, ppp_mppe_state *state)
00180 {
00181     PPP_UNUSED_ARG(pcb);
00182     state->bits |= MPPE_BIT_FLUSHED;
00183 }
00184 
00185 /*
00186  * Compress (encrypt) a packet.
00187  * It's strange to call this a compressor, since the output is always
00188  * MPPE_OVHD + 2 bytes larger than the input.
00189  */
00190 err_t
00191 mppe_compress(ppp_pcb *pcb, ppp_mppe_state *state, struct pbuf **pb, u16_t protocol)
00192 {
00193     struct pbuf *n, *np;
00194     u8_t *pl;
00195     err_t err;
00196 
00197     PPP_UNUSED_ARG(pcb);
00198 
00199     /* TCP stack requires that we don't change the packet payload, therefore we copy
00200      * the whole packet before encryption.
00201      */
00202     np = ppp_memory_buffer_allocate(pcb->netif->memory_manager, MPPE_OVHD + sizeof(protocol) + (*pb)->tot_len, PPP_BUF_HEAP);
00203     if (!np) {
00204         return ERR_MEM;
00205     }
00206 
00207     /* Hide MPPE header + protocol */
00208     pbuf_remove_header(np, MPPE_OVHD + sizeof(protocol));
00209 
00210     if ((err = pbuf_copy(np, *pb)) != ERR_OK) {
00211         ppp_memory_buffer_free(np);
00212         return err;
00213     }
00214 
00215     /* Reveal MPPE header + protocol */
00216     pbuf_add_header(np, MPPE_OVHD + sizeof(protocol));
00217 
00218     *pb = np;
00219     pl = (u8_t*)np->payload;
00220 
00221     state->ccount = (state->ccount + 1) % MPPE_CCOUNT_SPACE;
00222     PPPDEBUG(LOG_DEBUG, ("mppe_compress[%d]: ccount %d\n", pcb->netif->num, state->ccount));
00223     /* FIXME: use PUT* macros */
00224     pl[0] = state->ccount>>8;
00225     pl[1] = state->ccount;
00226 
00227     if (!state->stateful || /* stateless mode     */
00228         ((state->ccount & 0xff) == 0xff) || /* "flag" packet      */
00229         (state->bits & MPPE_BIT_FLUSHED)) { /* CCP Reset-Request  */
00230         /* We must rekey */
00231         if (state->stateful) {
00232             PPPDEBUG(LOG_DEBUG, ("mppe_compress[%d]: rekeying\n", pcb->netif->num));
00233         }
00234         mppe_rekey(state, 0);
00235         state->bits |= MPPE_BIT_FLUSHED;
00236     }
00237     pl[0] |= state->bits;
00238     state->bits &= ~MPPE_BIT_FLUSHED;   /* reset for next xmit */
00239     pl += MPPE_OVHD;
00240 
00241     /* Add protocol */
00242     /* FIXME: add PFC support */
00243     pl[0] = protocol >> 8;
00244     pl[1] = protocol;
00245 
00246     /* Hide MPPE header */
00247     pbuf_remove_header(np, MPPE_OVHD);
00248 
00249     /* Encrypt packet */
00250     for (n = np; n != NULL; n = n->next) {
00251         ARC4_crypt(&state->arc4, (u8_t*)n->payload, n->len);
00252         if (n->tot_len == n->len) {
00253             break;
00254         }
00255     }
00256 
00257     /* Reveal MPPE header */
00258     pbuf_add_header(np, MPPE_OVHD);
00259 
00260     return ERR_OK;
00261 }
00262 
00263 /*
00264  * We received a CCP Reset-Ack.  Just ignore it.
00265  */
00266 void mppe_decomp_reset(ppp_pcb *pcb, ppp_mppe_state *state)
00267 {
00268     PPP_UNUSED_ARG(pcb);
00269     PPP_UNUSED_ARG(state);
00270     return;
00271 }
00272 
00273 /*
00274  * Decompress (decrypt) an MPPE packet.
00275  */
00276 err_t
00277 mppe_decompress(ppp_pcb *pcb, ppp_mppe_state *state, struct pbuf **pb)
00278 {
00279     struct pbuf *n0 = *pb, *n;
00280     u8_t *pl;
00281     u16_t ccount;
00282     u8_t flushed;
00283 
00284     /* MPPE Header */
00285     if (n0->len < MPPE_OVHD) {
00286         PPPDEBUG(LOG_DEBUG,
00287                ("mppe_decompress[%d]: short pkt (%d)\n",
00288                pcb->netif->num, n0->len));
00289         state->sanity_errors += 100;
00290         goto sanity_error;
00291     }
00292 
00293     pl = (u8_t*)n0->payload;
00294     flushed = MPPE_BITS(pl) & MPPE_BIT_FLUSHED;
00295     ccount = MPPE_CCOUNT(pl);
00296     PPPDEBUG(LOG_DEBUG, ("mppe_decompress[%d]: ccount %d\n",
00297            pcb->netif->num, ccount));
00298 
00299     /* sanity checks -- terminate with extreme prejudice */
00300     if (!(MPPE_BITS(pl) & MPPE_BIT_ENCRYPTED)) {
00301         PPPDEBUG(LOG_DEBUG,
00302                ("mppe_decompress[%d]: ENCRYPTED bit not set!\n",
00303                pcb->netif->num));
00304         state->sanity_errors += 100;
00305         goto sanity_error;
00306     }
00307     if (!state->stateful && !flushed) {
00308         PPPDEBUG(LOG_DEBUG, ("mppe_decompress[%d]: FLUSHED bit not set in "
00309                "stateless mode!\n", pcb->netif->num));
00310         state->sanity_errors += 100;
00311         goto sanity_error;
00312     }
00313     if (state->stateful && ((ccount & 0xff) == 0xff) && !flushed) {
00314         PPPDEBUG(LOG_DEBUG, ("mppe_decompress[%d]: FLUSHED bit not set on "
00315                "flag packet!\n", pcb->netif->num));
00316         state->sanity_errors += 100;
00317         goto sanity_error;
00318     }
00319 
00320     /*
00321      * Check the coherency count.
00322      */
00323 
00324     if (!state->stateful) {
00325         /* Discard late packet */
00326         if ((ccount - state->ccount) % MPPE_CCOUNT_SPACE > MPPE_CCOUNT_SPACE / 2) {
00327             state->sanity_errors++;
00328             goto sanity_error;
00329         }
00330 
00331         /* RFC 3078, sec 8.1.  Rekey for every packet. */
00332         while (state->ccount != ccount) {
00333             mppe_rekey(state, 0);
00334             state->ccount = (state->ccount + 1) % MPPE_CCOUNT_SPACE;
00335         }
00336     } else {
00337         /* RFC 3078, sec 8.2. */
00338         if (!state->discard) {
00339             /* normal state */
00340             state->ccount = (state->ccount + 1) % MPPE_CCOUNT_SPACE;
00341             if (ccount != state->ccount) {
00342                 /*
00343                  * (ccount > state->ccount)
00344                  * Packet loss detected, enter the discard state.
00345                  * Signal the peer to rekey (by sending a CCP Reset-Request).
00346                  */
00347                 state->discard = 1;
00348                 ccp_resetrequest(pcb);
00349                 return ERR_BUF;
00350             }
00351         } else {
00352             /* discard state */
00353             if (!flushed) {
00354                 /* ccp.c will be silent (no additional CCP Reset-Requests). */
00355                 return ERR_BUF;
00356             } else {
00357                 /* Rekey for every missed "flag" packet. */
00358                 while ((ccount & ~0xff) !=
00359                        (state->ccount & ~0xff)) {
00360                     mppe_rekey(state, 0);
00361                     state->ccount =
00362                         (state->ccount +
00363                          256) % MPPE_CCOUNT_SPACE;
00364                 }
00365 
00366                 /* reset */
00367                 state->discard = 0;
00368                 state->ccount = ccount;
00369                 /*
00370                  * Another problem with RFC 3078 here.  It implies that the
00371                  * peer need not send a Reset-Ack packet.  But RFC 1962
00372                  * requires it.  Hopefully, M$ does send a Reset-Ack; even
00373                  * though it isn't required for MPPE synchronization, it is
00374                  * required to reset CCP state.
00375                  */
00376             }
00377         }
00378         if (flushed)
00379             mppe_rekey(state, 0);
00380     }
00381 
00382     /* Hide MPPE header */
00383     pbuf_remove_header(n0, MPPE_OVHD);
00384 
00385     /* Decrypt the packet. */
00386     for (n = n0; n != NULL; n = n->next) {
00387         ARC4_crypt(&state->arc4, (u8_t*)n->payload, n->len);
00388         if (n->tot_len == n->len) {
00389             break;
00390         }
00391     }
00392 
00393     /* good packet credit */
00394     state->sanity_errors >>= 1;
00395 
00396     return ERR_OK;
00397 
00398 sanity_error:
00399     if (state->sanity_errors >= SANITY_MAX) {
00400         /*
00401          * Take LCP down if the peer is sending too many bogons.
00402          * We don't want to do this for a single or just a few
00403          * instances since it could just be due to packet corruption.
00404          */
00405         lcp_close(pcb, "Too many MPPE errors");
00406     }
00407     return ERR_BUF;
00408 }
00409 
00410 #endif /* PPP_SUPPORT && MPPE_SUPPORT */