Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: TYBLE16_simple_data_logger TYBLE16_MP3_Air
mbed_os_timer.cpp
00001 /* 00002 * Copyright (c) 2006-2019, ARM Limited, All Rights Reserved 00003 * SPDX-License-Identifier: Apache-2.0 00004 * 00005 * Licensed under the Apache License, Version 2.0 (the "License"); you may 00006 * not use this file except in compliance with the License. 00007 * You may obtain a copy of the License at 00008 * 00009 * http://www.apache.org/licenses/LICENSE-2.0 00010 * 00011 * Unless required by applicable law or agreed to in writing, software 00012 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 00013 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00014 * See the License for the specific language governing permissions and 00015 * limitations under the License. 00016 */ 00017 00018 #include "platform/mbed_power_mgmt.h" 00019 #include "platform/source/mbed_os_timer.h" 00020 #include "platform/CriticalSectionLock.h" 00021 #include "platform/source/SysTimer.h" 00022 #include "us_ticker_api.h" 00023 #include "lp_ticker_api.h" 00024 #include "mbed_critical.h" 00025 #include "mbed_assert.h" 00026 #include <new> 00027 00028 /* This provides the marshalling point for a system global SysTimer, which 00029 * is used to provide: 00030 * - timed sleeps (for default idle hook in RTOS tickless mode, or non-RTOS sleeps) 00031 * - regular ticks for RTOS 00032 * - absolute system timing (directly for non-RTOS, or indirectly via RTOS tick count) 00033 */ 00034 00035 namespace mbed { 00036 namespace internal { 00037 00038 OsTimer *os_timer; 00039 00040 namespace { 00041 uint64_t os_timer_data[(sizeof(OsTimer) + 7) / 8]; 00042 } 00043 00044 OsTimer *init_os_timer() 00045 { 00046 // Do not use SingletonPtr since this relies on the RTOS. 00047 // Locking not required as it will be first called during 00048 // OS init, or else we're a non-RTOS single-threaded setup. 00049 if (!os_timer) { 00050 #if MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_USTICKER 00051 os_timer = new (os_timer_data) OsTimer(get_us_ticker_data()); 00052 #elif !MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_LPTICKER 00053 os_timer = new (os_timer_data) OsTimer(get_lp_ticker_data()); 00054 #else 00055 MBED_ASSERT("OS timer not available - check MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER" && false); 00056 return NULL; 00057 #endif 00058 //os_timer->setup_irq(); 00059 } 00060 00061 return os_timer; 00062 } 00063 00064 /* These traits classes are designed to permit chunks of code to be 00065 * omitted - in particular eliminating timers. However, we don't want 00066 * to cause template bloat, so don't have too many traits variants. 00067 */ 00068 00069 /* Optionally timed operation, with optional predicate */ 00070 struct timed_predicate_op { 00071 timed_predicate_op(uint64_t t) : wake_time(t), orig_predicate(NULL), orig_handle(NULL) 00072 { 00073 init_os_timer(); 00074 } 00075 00076 timed_predicate_op(uint64_t t, bool (*wake_predicate)(void *), void *wake_predicate_handle) : wake_time(t), orig_predicate(wake_predicate), orig_handle(wake_predicate_handle) 00077 { 00078 init_os_timer(); 00079 } 00080 00081 ~timed_predicate_op() 00082 { 00083 // Make sure wake timer is cancelled. (It may or may not be, depending on 00084 // why we woke). 00085 os_timer->cancel_wake(); 00086 } 00087 00088 bool wake_condition() const 00089 { 00090 return (orig_predicate && orig_predicate(orig_handle)) || os_timer->wake_time_passed(); 00091 } 00092 00093 void sleep_prepare() 00094 { 00095 if (wake_time != (uint64_t) -1) { 00096 os_timer->set_wake_time(wake_time); 00097 } 00098 } 00099 00100 bool sleep_prepared() 00101 { 00102 return wake_time == (uint64_t) -1 || os_timer->wake_time_set(); 00103 } 00104 00105 private: 00106 uint64_t wake_time; 00107 bool (*orig_predicate)(void *); 00108 void *orig_handle; 00109 }; 00110 00111 /* Untimed operation with predicate */ 00112 struct untimed_op { 00113 untimed_op(bool (*wake_predicate)(void *), void *wake_predicate_handle) : orig_predicate(wake_predicate), orig_handle(wake_predicate_handle) 00114 { 00115 } 00116 00117 bool wake_condition() const 00118 { 00119 return orig_predicate(orig_handle); 00120 } 00121 00122 void sleep_prepare() 00123 { 00124 } 00125 00126 bool sleep_prepared() 00127 { 00128 return true; 00129 } 00130 00131 private: 00132 bool (*orig_predicate)(void *); 00133 void *orig_handle; 00134 }; 00135 00136 /* We require that this is called from thread context, outside a critical section, 00137 * and the kernel already suspended if an RTOS, meaning we don't have to worry 00138 * about any potential threading issues. 00139 * 00140 * The wake predicate will be called from both outside and inside a critical 00141 * section, so appropriate atomic care must be taken. 00142 */ 00143 template <class OpT> 00144 void do_sleep_operation(OpT &op) 00145 { 00146 // We assume the ticker is not already in use - without RTOS, it 00147 // is never used, with RTOS, it will have been disabled with OS_Tick_Disable 00148 while (!op.wake_condition()) { 00149 // Set (or re-set) the wake time - outside a critical section, as 00150 // it could take long enough to cause UART data loss on some platforms. 00151 op.sleep_prepare(); 00152 00153 // If no target sleep function, nothing else to do - just keep 00154 // rechecking the wake condition. 00155 #if DEVICE_SLEEP 00156 // Now we need to enter the critical section for the race-free sleep 00157 { 00158 CriticalSectionLock lock; 00159 00160 // Recheck wake conditions before starting sleep, avoiding race 00161 if (op.wake_condition()) { 00162 break; 00163 } 00164 00165 // It's possible that an intermediate wake interrupt occurred 00166 // between "set_wake_time" and the critical lock - only sleep 00167 // if we see that the timer is armed or we don't need it. Otherwise, 00168 // we go round to set the timer again. 00169 if (op.sleep_prepared()) { 00170 // Enter HAL sleep (normal or deep) 00171 sleep(); 00172 } 00173 } 00174 00175 // Ensure interrupts get a chance to fire, which allows new result from 00176 // wake_predicate() and wake_time_passed() 00177 __ISB(); 00178 #endif 00179 } 00180 } 00181 00182 /* We require that this is called from thread context, outside a critical section, 00183 * and the kernel already suspended if an RTOS, meaning we don't have to worry 00184 * about any potential threading issues. 00185 * 00186 * The wake predicate will be called from both outside and inside a critical 00187 * section, so appropriate atomic care must be taken. 00188 */ 00189 uint64_t do_timed_sleep_absolute(uint64_t wake_time, bool (*wake_predicate)(void *), void *wake_predicate_handle) 00190 { 00191 { 00192 timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle); 00193 do_sleep_operation(op); 00194 } 00195 00196 return os_timer->update_and_get_tick(); 00197 } 00198 00199 00200 #if MBED_CONF_RTOS_PRESENT 00201 /* The 32-bit limit is part of the API - we will always wake within 2^32 ticks */ 00202 /* This version is tuned for RTOS use, where the RTOS needs to know the time spent sleeping */ 00203 uint32_t do_timed_sleep_relative(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle) 00204 { 00205 uint64_t sleep_start = init_os_timer()->get_tick(); 00206 // When running with RTOS, the requested delay will be based on the kernel's tick count. 00207 // If it missed a tick as entering idle, we should reflect that by moving the 00208 // start time back to reflect its current idea of time. 00209 // Example: OS tick count = 100, our tick count = 101, requested delay = 50 00210 // We need to schedule wake for tick 150, report 50 ticks back to our caller, and 00211 // clear the unacknowledged tick count. 00212 sleep_start -= os_timer->unacknowledged_ticks(); 00213 00214 uint64_t sleep_finish = do_timed_sleep_absolute(sleep_start + wake_delay, wake_predicate, wake_predicate_handle); 00215 00216 return static_cast<uint32_t>(sleep_finish - sleep_start); 00217 } 00218 00219 #else 00220 00221 void do_untimed_sleep(bool (*wake_predicate)(void *), void *wake_predicate_handle) 00222 { 00223 untimed_op op(wake_predicate, wake_predicate_handle); 00224 00225 do_sleep_operation(op); 00226 } 00227 00228 /* (uint32_t)-1 delay is treated as "wait forever" */ 00229 /* This version is tuned for non-RTOS use, where we don't need to return sleep time, and waiting forever is possible */ 00230 void do_timed_sleep_relative_or_forever(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle) 00231 { 00232 // Special-case 0 delay, to save multiple callers having to do it. Just call the predicate once. 00233 if (wake_delay == 0) { 00234 wake_predicate(wake_predicate_handle); 00235 return; 00236 } 00237 00238 uint64_t wake_time; 00239 if (wake_delay == (uint32_t) -1) { 00240 wake_time = (uint64_t) -1; 00241 } else { 00242 wake_time = init_os_timer()->update_and_get_tick() + wake_delay; 00243 } 00244 /* Always use timed_predicate_op here to save pulling in two templates */ 00245 timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle); 00246 do_sleep_operation(op); 00247 } 00248 00249 #endif 00250 00251 } // namespace internal 00252 } // namespace mbed
Generated on Tue Jul 12 2022 13:54:33 by
