Kenji Arai / mbed-os_TYBLE16

Dependents:   TYBLE16_simple_data_logger TYBLE16_MP3_Air

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers lwip_nd6.c Source File

lwip_nd6.c

Go to the documentation of this file.
00001 /**
00002  * @file
00003  *
00004  * Neighbor discovery and stateless address autoconfiguration for IPv6.
00005  * Aims to be compliant with RFC 4861 (Neighbor discovery) and RFC 4862
00006  * (Address autoconfiguration).
00007  */
00008 
00009 /*
00010  * Copyright (c) 2010 Inico Technologies Ltd.
00011  * All rights reserved.
00012  *
00013  * Redistribution and use in source and binary forms, with or without modification,
00014  * are permitted provided that the following conditions are met:
00015  *
00016  * 1. Redistributions of source code must retain the above copyright notice,
00017  *    this list of conditions and the following disclaimer.
00018  * 2. Redistributions in binary form must reproduce the above copyright notice,
00019  *    this list of conditions and the following disclaimer in the documentation
00020  *    and/or other materials provided with the distribution.
00021  * 3. The name of the author may not be used to endorse or promote products
00022  *    derived from this software without specific prior written permission.
00023  *
00024  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
00025  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
00026  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
00027  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00028  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
00029  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
00030  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
00031  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
00032  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
00033  * OF SUCH DAMAGE.
00034  *
00035  * This file is part of the lwIP TCP/IP stack.
00036  *
00037  * Author: Ivan Delamer <delamer@inicotech.com>
00038  *
00039  *
00040  * Please coordinate changes and requests with Ivan Delamer
00041  * <delamer@inicotech.com>
00042  */
00043 
00044 #include "lwip/opt.h"
00045 
00046 #if LWIP_IPV6  /* don't build if not configured for use in lwipopts.h */
00047 
00048 #include "lwip/nd6.h"
00049 #include "lwip/priv/nd6_priv.h"
00050 #include "lwip/prot/nd6.h"
00051 #include "lwip/prot/icmp6.h"
00052 #include "lwip/pbuf.h"
00053 #include "lwip/mem.h"
00054 #include "lwip/memp.h"
00055 #include "lwip/ip6.h"
00056 #include "lwip/ip6_addr.h"
00057 #include "lwip/inet_chksum.h"
00058 #include "lwip/netif.h"
00059 #include "lwip/icmp6.h"
00060 #include "lwip/mld6.h"
00061 #include "lwip/dhcp6.h"
00062 #include "lwip/ip.h"
00063 #include "lwip/stats.h"
00064 #include "lwip/dns.h"
00065 
00066 #include <string.h>
00067 
00068 #ifdef LWIP_HOOK_FILENAME
00069 #include LWIP_HOOK_FILENAME
00070 #endif
00071 
00072 #if LWIP_IPV6_DUP_DETECT_ATTEMPTS > IP6_ADDR_TENTATIVE_COUNT_MASK
00073 #error LWIP_IPV6_DUP_DETECT_ATTEMPTS > IP6_ADDR_TENTATIVE_COUNT_MASK
00074 #endif
00075 
00076 /* Router tables. */
00077 struct nd6_neighbor_cache_entry neighbor_cache[LWIP_ND6_NUM_NEIGHBORS];
00078 struct nd6_destination_cache_entry destination_cache[LWIP_ND6_NUM_DESTINATIONS];
00079 struct nd6_prefix_list_entry prefix_list[LWIP_ND6_NUM_PREFIXES];
00080 struct nd6_router_list_entry default_router_list[LWIP_ND6_NUM_ROUTERS];
00081 
00082 /* Default values, can be updated by a RA message. */
00083 u32_t reachable_time = LWIP_ND6_REACHABLE_TIME;
00084 u32_t retrans_timer = LWIP_ND6_RETRANS_TIMER; /* @todo implement this value in timer */
00085 
00086 /* Index for cache entries. */
00087 static u8_t nd6_cached_neighbor_index;
00088 static netif_addr_idx_t nd6_cached_destination_index;
00089 
00090 /* Multicast address holder. */
00091 static ip6_addr_t multicast_address;
00092 
00093 static u8_t nd6_tmr_rs_reduction;
00094 
00095 /* Static buffer to parse RA packet options */
00096 union ra_options {
00097   struct lladdr_option  lladdr;
00098   struct mtu_option     mtu;
00099   struct prefix_option  prefix;
00100 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
00101   struct rdnss_option   rdnss;
00102 #endif
00103 };
00104 static union ra_options nd6_ra_buffer;
00105 
00106 /* Forward declarations. */
00107 static s8_t nd6_find_neighbor_cache_entry(const ip6_addr_t *ip6addr);
00108 static s8_t nd6_new_neighbor_cache_entry(void);
00109 static void nd6_free_neighbor_cache_entry(s8_t i);
00110 static s16_t nd6_find_destination_cache_entry(const ip6_addr_t *ip6addr);
00111 static s16_t nd6_new_destination_cache_entry(void);
00112 static int nd6_is_prefix_in_netif(const ip6_addr_t *ip6addr, struct netif *netif);
00113 static s8_t nd6_select_router(const ip6_addr_t *ip6addr, struct netif *netif);
00114 static s8_t nd6_get_router(const ip6_addr_t *router_addr, struct netif *netif);
00115 static s8_t nd6_new_router(const ip6_addr_t *router_addr, struct netif *netif);
00116 static s8_t nd6_get_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif);
00117 static s8_t nd6_new_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif);
00118 static s8_t nd6_get_next_hop_entry(const ip6_addr_t *ip6addr, struct netif *netif);
00119 static err_t nd6_queue_packet(s8_t neighbor_index, struct pbuf *q);
00120 
00121 #define ND6_SEND_FLAG_MULTICAST_DEST 0x01
00122 #define ND6_SEND_FLAG_ALLNODES_DEST 0x02
00123 #define ND6_SEND_FLAG_ANY_SRC 0x04
00124 static void nd6_send_ns(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags);
00125 static void nd6_send_na(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags);
00126 static void nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry *entry, u8_t flags);
00127 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
00128 static err_t nd6_send_rs(struct netif *netif);
00129 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
00130 
00131 #if LWIP_ND6_QUEUEING
00132 static void nd6_free_q(struct nd6_q_entry *q);
00133 #else /* LWIP_ND6_QUEUEING */
00134 #define nd6_free_q(q) pbuf_free(q)
00135 #endif /* LWIP_ND6_QUEUEING */
00136 static void nd6_send_q(s8_t i);
00137 
00138 
00139 /**
00140  * A local address has been determined to be a duplicate. Take the appropriate
00141  * action(s) on the address and the interface as a whole.
00142  *
00143  * @param netif the netif that owns the address
00144  * @param addr_idx the index of the address detected to be a duplicate
00145  */
00146 static void
00147 nd6_duplicate_addr_detected(struct netif *netif, s8_t addr_idx)
00148 {
00149 
00150   /* Mark the address as duplicate, but leave its lifetimes alone. If this was
00151    * a manually assigned address, it will remain in existence as duplicate, and
00152    * as such be unusable for any practical purposes until manual intervention.
00153    * If this was an autogenerated address, the address will follow normal
00154    * expiration rules, and thus disappear once its valid lifetime expires. */
00155   netif_ip6_addr_set_state(netif, addr_idx, IP6_ADDR_DUPLICATED);
00156 
00157 #if LWIP_IPV6_AUTOCONFIG
00158   /* If the affected address was the link-local address that we use to generate
00159    * all other addresses, then we should not continue to use those derived
00160    * addresses either, so mark them as duplicate as well. For autoconfig-only
00161    * setups, this will make the interface effectively unusable, approaching the
00162    * intention of RFC 4862 Sec. 5.4.5. @todo implement the full requirements */
00163   if (addr_idx == 0) {
00164     s8_t i;
00165     for (i = 1; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
00166       if (!ip6_addr_isinvalid(netif_ip6_addr_state(netif, i)) &&
00167           !netif_ip6_addr_isstatic(netif, i)) {
00168         netif_ip6_addr_set_state(netif, i, IP6_ADDR_DUPLICATED);
00169       }
00170     }
00171   }
00172 #endif /* LWIP_IPV6_AUTOCONFIG */
00173 }
00174 
00175 #if LWIP_IPV6_AUTOCONFIG
00176 /**
00177  * We received a router advertisement that contains a prefix with the
00178  * autoconfiguration flag set. Add or update an associated autogenerated
00179  * address.
00180  *
00181  * @param netif the netif on which the router advertisement arrived
00182  * @param prefix_opt a pointer to the prefix option data
00183  * @param prefix_addr an aligned copy of the prefix address
00184  */
00185 static void
00186 nd6_process_autoconfig_prefix(struct netif *netif,
00187   struct prefix_option *prefix_opt, const ip6_addr_t *prefix_addr)
00188 {
00189   ip6_addr_t ip6addr;
00190   u32_t valid_life, pref_life;
00191   u8_t addr_state;
00192   s8_t i, free_idx;
00193 
00194   /* The caller already checks RFC 4862 Sec. 5.5.3 points (a) and (b). We do
00195    * the rest, starting with checks for (c) and (d) here. */
00196   valid_life = lwip_htonl(prefix_opt->valid_lifetime);
00197   pref_life = lwip_htonl(prefix_opt->preferred_lifetime);
00198   if (pref_life > valid_life || prefix_opt->prefix_length != 64) {
00199     return; /* silently ignore this prefix for autoconfiguration purposes */
00200   }
00201 
00202   /* If an autogenerated address already exists for this prefix, update its
00203    * lifetimes. An address is considered autogenerated if 1) it is not static
00204    * (i.e., manually assigned), and 2) there is an advertised autoconfiguration
00205    * prefix for it (the one we are processing here). This does not necessarily
00206    * exclude the possibility that the address was actually assigned by, say,
00207    * DHCPv6. If that distinction becomes important in the future, more state
00208    * must be kept. As explained elsewhere we also update lifetimes of tentative
00209    * and duplicate addresses. Skip address slot 0 (the link-local address). */
00210   for (i = 1; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
00211     addr_state = netif_ip6_addr_state(netif, i);
00212     if (!ip6_addr_isinvalid(addr_state) && !netif_ip6_addr_isstatic(netif, i) &&
00213         ip6_addr_netcmp(prefix_addr, netif_ip6_addr(netif, i))) {
00214       /* Update the valid lifetime, as per RFC 4862 Sec. 5.5.3 point (e).
00215        * The valid lifetime will never drop to zero as a result of this. */
00216       u32_t remaining_life = netif_ip6_addr_valid_life(netif, i);
00217       if (valid_life > ND6_2HRS || valid_life > remaining_life) {
00218         netif_ip6_addr_set_valid_life(netif, i, valid_life);
00219       } else if (remaining_life > ND6_2HRS) {
00220         netif_ip6_addr_set_valid_life(netif, i, ND6_2HRS);
00221       }
00222       LWIP_ASSERT("bad valid lifetime", !netif_ip6_addr_isstatic(netif, i));
00223       /* Update the preferred lifetime. No bounds checks are needed here. In
00224        * rare cases the advertisement may un-deprecate the address, though.
00225        * Deprecation is left to the timer code where it is handled anyway. */
00226       if (pref_life > 0 && addr_state == IP6_ADDR_DEPRECATED) {
00227         netif_ip6_addr_set_state(netif, i, IP6_ADDR_PREFERRED);
00228       }
00229       netif_ip6_addr_set_pref_life(netif, i, pref_life);
00230       return; /* there should be at most one matching address */
00231     }
00232   }
00233 
00234   /* No autogenerated address exists for this prefix yet. See if we can add a
00235    * new one. However, if IPv6 autoconfiguration is administratively disabled,
00236    * do not generate new addresses, but do keep updating lifetimes for existing
00237    * addresses. Also, when adding new addresses, we must protect explicitly
00238    * against a valid lifetime of zero, because again, we use that as a special
00239    * value. The generated address would otherwise expire immediately anyway.
00240    * Finally, the original link-local address must be usable at all. We start
00241    * creating addresses even if the link-local address is still in tentative
00242    * state though, and deal with the fallout of that upon DAD collision. */
00243   addr_state = netif_ip6_addr_state(netif, 0);
00244   if (!netif->ip6_autoconfig_enabled || valid_life == IP6_ADDR_LIFE_STATIC ||
00245       ip6_addr_isinvalid(addr_state) || ip6_addr_isduplicated(addr_state)) {
00246     return;
00247   }
00248 
00249   /* Construct the new address that we intend to use, and then see if that
00250    * address really does not exist. It might have been added manually, after
00251    * all. As a side effect, find a free slot. Note that we cannot use
00252    * netif_add_ip6_address() here, as it would return ERR_OK if the address
00253    * already did exist, resulting in that address being given lifetimes. */
00254   IP6_ADDR(&ip6addr, prefix_addr->addr[0], prefix_addr->addr[1],
00255     netif_ip6_addr(netif, 0)->addr[2], netif_ip6_addr(netif, 0)->addr[3]);
00256   ip6_addr_assign_zone(&ip6addr, IP6_UNICAST, netif);
00257 
00258   free_idx = 0;
00259   for (i = 1; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
00260     if (!ip6_addr_isinvalid(netif_ip6_addr_state(netif, i))) {
00261       if (ip6_addr_cmp(&ip6addr, netif_ip6_addr(netif, i))) {
00262         return; /* formed address already exists */
00263       }
00264     } else if (free_idx == 0) {
00265       free_idx = i;
00266     }
00267   }
00268   if (free_idx == 0) {
00269     return; /* no address slots available, try again on next advertisement */
00270   }
00271 
00272   /* Assign the new address to the interface. */
00273   ip_addr_copy_from_ip6(netif->ip6_addr[free_idx], ip6addr);
00274   netif_ip6_addr_set_valid_life(netif, free_idx, valid_life);
00275   netif_ip6_addr_set_pref_life(netif, free_idx, pref_life);
00276   netif_ip6_addr_set_state(netif, free_idx, IP6_ADDR_TENTATIVE);
00277 }
00278 #endif /* LWIP_IPV6_AUTOCONFIG */
00279 
00280 /**
00281  * Process an incoming neighbor discovery message
00282  *
00283  * @param p the nd packet, p->payload pointing to the icmpv6 header
00284  * @param inp the netif on which this packet was received
00285  */
00286 void
00287 nd6_input(struct pbuf *p, struct netif *inp)
00288 {
00289   u8_t msg_type;
00290   s8_t i;
00291   s16_t dest_idx;
00292 
00293   ND6_STATS_INC(nd6.recv);
00294 
00295   msg_type = *((u8_t *)p->payload);
00296   switch (msg_type) {
00297   case ICMP6_TYPE_NA: /* Neighbor Advertisement. */
00298   {
00299     struct na_header *na_hdr;
00300     struct lladdr_option *lladdr_opt;
00301     ip6_addr_t target_address;
00302 
00303     /* Check that na header fits in packet. */
00304     if (p->len < (sizeof(struct na_header))) {
00305       /* @todo debug message */
00306       pbuf_free(p);
00307       ND6_STATS_INC(nd6.lenerr);
00308       ND6_STATS_INC(nd6.drop);
00309       return;
00310     }
00311 
00312     na_hdr = (struct na_header *)p->payload;
00313 
00314     /* Create an aligned, zoned copy of the target address. */
00315     ip6_addr_copy_from_packed(target_address, na_hdr->target_address);
00316     ip6_addr_assign_zone(&target_address, IP6_UNICAST, inp);
00317 
00318     /* Check a subset of the other RFC 4861 Sec. 7.1.2 requirements. */
00319     if (IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM || na_hdr->code != 0 ||
00320         ip6_addr_ismulticast(&target_address)) {
00321       pbuf_free(p);
00322       ND6_STATS_INC(nd6.proterr);
00323       ND6_STATS_INC(nd6.drop);
00324       return;
00325     }
00326 
00327     /* @todo RFC MUST: if IP destination is multicast, Solicited flag is zero */
00328     /* @todo RFC MUST: all included options have a length greater than zero */
00329 
00330     /* Unsolicited NA?*/
00331     if (ip6_addr_ismulticast(ip6_current_dest_addr())) {
00332       /* This is an unsolicited NA.
00333        * link-layer changed?
00334        * part of DAD mechanism? */
00335 
00336 #if LWIP_IPV6_DUP_DETECT_ATTEMPTS
00337       /* If the target address matches this netif, it is a DAD response. */
00338       for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
00339         if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
00340             !ip6_addr_isduplicated(netif_ip6_addr_state(inp, i)) &&
00341             ip6_addr_cmp(&target_address, netif_ip6_addr(inp, i))) {
00342           /* We are using a duplicate address. */
00343           nd6_duplicate_addr_detected(inp, i);
00344 
00345           pbuf_free(p);
00346           return;
00347         }
00348       }
00349 #endif /* LWIP_IPV6_DUP_DETECT_ATTEMPTS */
00350 
00351       /* Check that link-layer address option also fits in packet. */
00352       if (p->len < (sizeof(struct na_header) + 2)) {
00353         /* @todo debug message */
00354         pbuf_free(p);
00355         ND6_STATS_INC(nd6.lenerr);
00356         ND6_STATS_INC(nd6.drop);
00357         return;
00358       }
00359 
00360       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
00361 
00362       if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
00363         /* @todo debug message */
00364         pbuf_free(p);
00365         ND6_STATS_INC(nd6.lenerr);
00366         ND6_STATS_INC(nd6.drop);
00367         return;
00368       }
00369 
00370       /* This is an unsolicited NA, most likely there was a LLADDR change. */
00371       i = nd6_find_neighbor_cache_entry(&target_address);
00372       if (i >= 0) {
00373         if (na_hdr->flags & ND6_FLAG_OVERRIDE) {
00374           MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00375         }
00376       }
00377     } else {
00378       /* This is a solicited NA.
00379        * neighbor address resolution response?
00380        * neighbor unreachability detection response? */
00381 
00382       /* Find the cache entry corresponding to this na. */
00383       i = nd6_find_neighbor_cache_entry(&target_address);
00384       if (i < 0) {
00385         /* We no longer care about this target address. drop it. */
00386         pbuf_free(p);
00387         return;
00388       }
00389 
00390       /* Update cache entry. */
00391       if ((na_hdr->flags & ND6_FLAG_OVERRIDE) ||
00392           (neighbor_cache[i].state == ND6_INCOMPLETE)) {
00393         /* Check that link-layer address option also fits in packet. */
00394         if (p->len < (sizeof(struct na_header) + 2)) {
00395           /* @todo debug message */
00396           pbuf_free(p);
00397           ND6_STATS_INC(nd6.lenerr);
00398           ND6_STATS_INC(nd6.drop);
00399           return;
00400         }
00401 
00402         lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
00403 
00404         if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
00405           /* @todo debug message */
00406           pbuf_free(p);
00407           ND6_STATS_INC(nd6.lenerr);
00408           ND6_STATS_INC(nd6.drop);
00409           return;
00410         }
00411 
00412         MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00413       }
00414 
00415       neighbor_cache[i].netif = inp;
00416       neighbor_cache[i].state = ND6_REACHABLE;
00417       neighbor_cache[i].counter.reachable_time = reachable_time;
00418 
00419       /* Send queued packets, if any. */
00420       if (neighbor_cache[i].q != NULL) {
00421         nd6_send_q(i);
00422       }
00423     }
00424 
00425     break; /* ICMP6_TYPE_NA */
00426   }
00427   case ICMP6_TYPE_NS: /* Neighbor solicitation. */
00428   {
00429     struct ns_header *ns_hdr;
00430     struct lladdr_option *lladdr_opt;
00431     ip6_addr_t target_address;
00432     u8_t accepted;
00433 
00434     /* Check that ns header fits in packet. */
00435     if (p->len < sizeof(struct ns_header)) {
00436       /* @todo debug message */
00437       pbuf_free(p);
00438       ND6_STATS_INC(nd6.lenerr);
00439       ND6_STATS_INC(nd6.drop);
00440       return;
00441     }
00442 
00443     ns_hdr = (struct ns_header *)p->payload;
00444 
00445     /* Create an aligned, zoned copy of the target address. */
00446     ip6_addr_copy_from_packed(target_address, ns_hdr->target_address);
00447     ip6_addr_assign_zone(&target_address, IP6_UNICAST, inp);
00448 
00449     /* Check a subset of the other RFC 4861 Sec. 7.1.1 requirements. */
00450     if (IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM || ns_hdr->code != 0 ||
00451        ip6_addr_ismulticast(&target_address)) {
00452       pbuf_free(p);
00453       ND6_STATS_INC(nd6.proterr);
00454       ND6_STATS_INC(nd6.drop);
00455       return;
00456     }
00457 
00458     /* @todo RFC MUST: all included options have a length greater than zero */
00459     /* @todo RFC MUST: if IP source is 'any', destination is solicited-node multicast address */
00460     /* @todo RFC MUST: if IP source is 'any', there is no source LL address option */
00461 
00462     /* Check if there is a link-layer address provided. Only point to it if in this buffer. */
00463     if (p->len >= (sizeof(struct ns_header) + 2)) {
00464       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
00465       if (p->len < (sizeof(struct ns_header) + (lladdr_opt->length << 3))) {
00466         lladdr_opt = NULL;
00467       }
00468     } else {
00469       lladdr_opt = NULL;
00470     }
00471 
00472     /* Check if the target address is configured on the receiving netif. */
00473     accepted = 0;
00474     for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
00475       if ((ip6_addr_isvalid(netif_ip6_addr_state(inp, i)) ||
00476            (ip6_addr_istentative(netif_ip6_addr_state(inp, i)) &&
00477             ip6_addr_isany(ip6_current_src_addr()))) &&
00478           ip6_addr_cmp(&target_address, netif_ip6_addr(inp, i))) {
00479         accepted = 1;
00480         break;
00481       }
00482     }
00483 
00484     /* NS not for us? */
00485     if (!accepted) {
00486       pbuf_free(p);
00487       return;
00488     }
00489 
00490     /* Check for ANY address in src (DAD algorithm). */
00491     if (ip6_addr_isany(ip6_current_src_addr())) {
00492       /* Sender is validating this address. */
00493       for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
00494         if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
00495             ip6_addr_cmp(&target_address, netif_ip6_addr(inp, i))) {
00496           /* Send a NA back so that the sender does not use this address. */
00497           nd6_send_na(inp, netif_ip6_addr(inp, i), ND6_FLAG_OVERRIDE | ND6_SEND_FLAG_ALLNODES_DEST);
00498           if (ip6_addr_istentative(netif_ip6_addr_state(inp, i))) {
00499             /* We shouldn't use this address either. */
00500             nd6_duplicate_addr_detected(inp, i);
00501           }
00502         }
00503       }
00504     } else {
00505       /* Sender is trying to resolve our address. */
00506       /* Verify that they included their own link-layer address. */
00507       if (lladdr_opt == NULL) {
00508         /* Not a valid message. */
00509         pbuf_free(p);
00510         ND6_STATS_INC(nd6.proterr);
00511         ND6_STATS_INC(nd6.drop);
00512         return;
00513       }
00514 
00515       i = nd6_find_neighbor_cache_entry(ip6_current_src_addr());
00516       if (i>= 0) {
00517         /* We already have a record for the solicitor. */
00518         if (neighbor_cache[i].state == ND6_INCOMPLETE) {
00519           neighbor_cache[i].netif = inp;
00520           MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00521 
00522           /* Delay probe in case we get confirmation of reachability from upper layer (TCP). */
00523           neighbor_cache[i].state = ND6_DELAY;
00524           neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
00525         }
00526       } else {
00527         /* Add their IPv6 address and link-layer address to neighbor cache.
00528          * We will need it at least to send a unicast NA message, but most
00529          * likely we will also be communicating with this node soon. */
00530         i = nd6_new_neighbor_cache_entry();
00531         if (i < 0) {
00532           /* We couldn't assign a cache entry for this neighbor.
00533            * we won't be able to reply. drop it. */
00534           pbuf_free(p);
00535           ND6_STATS_INC(nd6.memerr);
00536           return;
00537         }
00538         neighbor_cache[i].netif = inp;
00539         MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00540         ip6_addr_set(&(neighbor_cache[i].next_hop_address), ip6_current_src_addr());
00541 
00542         /* Receiving a message does not prove reachability: only in one direction.
00543          * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
00544         neighbor_cache[i].state = ND6_DELAY;
00545         neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
00546       }
00547 
00548       /* Send back a NA for us. Allocate the reply pbuf. */
00549       nd6_send_na(inp, &target_address, ND6_FLAG_SOLICITED | ND6_FLAG_OVERRIDE);
00550     }
00551 
00552     break; /* ICMP6_TYPE_NS */
00553   }
00554   case ICMP6_TYPE_RA: /* Router Advertisement. */
00555   {
00556     struct ra_header *ra_hdr;
00557     u8_t *buffer; /* Used to copy options. */
00558     u16_t offset;
00559 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
00560     /* There can be multiple RDNSS options per RA */
00561     u8_t rdnss_server_idx = 0;
00562 #endif /* LWIP_ND6_RDNSS_MAX_DNS_SERVERS */
00563 
00564     /* Check that RA header fits in packet. */
00565     if (p->len < sizeof(struct ra_header)) {
00566       /* @todo debug message */
00567       pbuf_free(p);
00568       ND6_STATS_INC(nd6.lenerr);
00569       ND6_STATS_INC(nd6.drop);
00570       return;
00571     }
00572 
00573     ra_hdr = (struct ra_header *)p->payload;
00574 
00575     /* Check a subset of the other RFC 4861 Sec. 6.1.2 requirements. */
00576     if (!ip6_addr_islinklocal(ip6_current_src_addr()) ||
00577         IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM || ra_hdr->code != 0) {
00578       pbuf_free(p);
00579       ND6_STATS_INC(nd6.proterr);
00580       ND6_STATS_INC(nd6.drop);
00581       return;
00582     }
00583 
00584     /* @todo RFC MUST: all included options have a length greater than zero */
00585 
00586     /* If we are sending RS messages, stop. */
00587 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
00588     /* ensure at least one solicitation is sent (see RFC 4861, ch. 6.3.7) */
00589     if ((inp->rs_count < LWIP_ND6_MAX_MULTICAST_SOLICIT) ||
00590         (nd6_send_rs(inp) == ERR_OK)) {
00591       inp->rs_count = 0;
00592     } else {
00593       inp->rs_count = 1;
00594     }
00595 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
00596 
00597     /* Get the matching default router entry. */
00598     i = nd6_get_router(ip6_current_src_addr(), inp);
00599     if (i < 0) {
00600       /* Create a new router entry. */
00601       i = nd6_new_router(ip6_current_src_addr(), inp);
00602     }
00603 
00604     if (i < 0) {
00605       /* Could not create a new router entry. */
00606       pbuf_free(p);
00607       ND6_STATS_INC(nd6.memerr);
00608       return;
00609     }
00610 
00611     /* Re-set invalidation timer. */
00612     default_router_list[i].invalidation_timer = lwip_htons(ra_hdr->router_lifetime);
00613 
00614     /* Re-set default timer values. */
00615 #if LWIP_ND6_ALLOW_RA_UPDATES
00616     if (ra_hdr->retrans_timer > 0) {
00617       retrans_timer = lwip_htonl(ra_hdr->retrans_timer);
00618     }
00619     if (ra_hdr->reachable_time > 0) {
00620       reachable_time = lwip_htonl(ra_hdr->reachable_time);
00621     }
00622 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
00623 
00624     /* @todo set default hop limit... */
00625     /* ra_hdr->current_hop_limit;*/
00626 
00627     /* Update flags in local entry (incl. preference). */
00628     default_router_list[i].flags = ra_hdr->flags;
00629 
00630 #if LWIP_IPV6_DHCP6
00631     /* Trigger DHCPv6 if enabled */
00632     dhcp6_nd6_ra_trigger(inp, ra_hdr->flags & ND6_RA_FLAG_MANAGED_ADDR_CONFIG,
00633       ra_hdr->flags & ND6_RA_FLAG_OTHER_CONFIG);
00634 #endif
00635 
00636     /* Offset to options. */
00637     offset = sizeof(struct ra_header);
00638 
00639     /* Process each option. */
00640     while ((p->tot_len - offset) >= 2) {
00641       u8_t option_type;
00642       u16_t option_len;
00643       int option_len8 = pbuf_try_get_at(p, offset + 1);
00644       if (option_len8 <= 0) {
00645         /* read beyond end or zero length */
00646         goto lenerr_drop_free_return;
00647       }
00648       option_len = ((u8_t)option_len8) << 3;
00649       if (option_len > p->tot_len - offset) {
00650         /* short packet (option does not fit in) */
00651         goto lenerr_drop_free_return;
00652       }
00653       if (p->len == p->tot_len) {
00654         /* no need to copy from contiguous pbuf */
00655         buffer = &((u8_t*)p->payload)[offset];
00656       } else {
00657         /* check if this option fits into our buffer */
00658         if (option_len > sizeof(nd6_ra_buffer)) {
00659           option_type = pbuf_get_at(p, offset);
00660           /* invalid option length */
00661           if (option_type != ND6_OPTION_TYPE_RDNSS) {
00662             goto lenerr_drop_free_return;
00663           }
00664           /* we allow RDNSS option to be longer - we'll just drop some servers */
00665           option_len = sizeof(nd6_ra_buffer);
00666         }
00667         buffer = (u8_t*)&nd6_ra_buffer;
00668         option_len = pbuf_copy_partial(p, &nd6_ra_buffer, option_len, offset);
00669       }
00670       option_type = buffer[0];
00671       switch (option_type) {
00672       case ND6_OPTION_TYPE_SOURCE_LLADDR:
00673       {
00674         struct lladdr_option *lladdr_opt;
00675         if (option_len < sizeof(struct lladdr_option)) {
00676           goto lenerr_drop_free_return;
00677         }
00678         lladdr_opt = (struct lladdr_option *)buffer;
00679         if ((default_router_list[i].neighbor_entry != NULL) &&
00680             (default_router_list[i].neighbor_entry->state == ND6_INCOMPLETE)) {
00681           SMEMCPY(default_router_list[i].neighbor_entry->lladdr, lladdr_opt->addr, inp->hwaddr_len);
00682           default_router_list[i].neighbor_entry->state = ND6_REACHABLE;
00683           default_router_list[i].neighbor_entry->counter.reachable_time = reachable_time;
00684         }
00685         break;
00686       }
00687       case ND6_OPTION_TYPE_MTU:
00688       {
00689         struct mtu_option *mtu_opt;
00690         u32_t mtu32;
00691         if (option_len < sizeof(struct mtu_option)) {
00692           goto lenerr_drop_free_return;
00693         }
00694         mtu_opt = (struct mtu_option *)buffer;
00695         mtu32 = lwip_htonl(mtu_opt->mtu);
00696         if ((mtu32 >= 1280) && (mtu32 <= 0xffff)) {
00697 #if LWIP_ND6_ALLOW_RA_UPDATES
00698           if (inp->mtu) {
00699             /* don't set the mtu for IPv6 higher than the netif driver supports */
00700             inp->mtu6 = LWIP_MIN(inp->mtu, (u16_t)mtu32);
00701           } else {
00702             inp->mtu6 = (u16_t)mtu32;
00703           }
00704 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
00705         }
00706         break;
00707       }
00708       case ND6_OPTION_TYPE_PREFIX_INFO:
00709       {
00710         struct prefix_option *prefix_opt;
00711         ip6_addr_t prefix_addr;
00712         if (option_len < sizeof(struct prefix_option)) {
00713           goto lenerr_drop_free_return;
00714         }
00715 
00716         prefix_opt = (struct prefix_option *)buffer;
00717 
00718         /* Get a memory-aligned copy of the prefix. */
00719         ip6_addr_copy_from_packed(prefix_addr, prefix_opt->prefix);
00720         ip6_addr_assign_zone(&prefix_addr, IP6_UNICAST, inp);
00721 
00722         if (!ip6_addr_islinklocal(&prefix_addr)) {
00723           if ((prefix_opt->flags & ND6_PREFIX_FLAG_ON_LINK) &&
00724               (prefix_opt->prefix_length == 64)) {
00725             /* Add to on-link prefix list. */
00726             u32_t valid_life;
00727             s8_t prefix;
00728 
00729             valid_life = lwip_htonl(prefix_opt->valid_lifetime);
00730 
00731             /* find cache entry for this prefix. */
00732             prefix = nd6_get_onlink_prefix(&prefix_addr, inp);
00733             if (prefix < 0 && valid_life > 0) {
00734               /* Create a new cache entry. */
00735               prefix = nd6_new_onlink_prefix(&prefix_addr, inp);
00736             }
00737             if (prefix >= 0) {
00738               prefix_list[prefix].invalidation_timer = valid_life;
00739             }
00740           }
00741 #if LWIP_IPV6_AUTOCONFIG
00742           if (prefix_opt->flags & ND6_PREFIX_FLAG_AUTONOMOUS) {
00743             /* Perform processing for autoconfiguration. */
00744             nd6_process_autoconfig_prefix(inp, prefix_opt, &prefix_addr);
00745           }
00746 #endif /* LWIP_IPV6_AUTOCONFIG */
00747         }
00748 
00749         break;
00750       }
00751       case ND6_OPTION_TYPE_ROUTE_INFO:
00752         /* @todo implement preferred routes.
00753         struct route_option * route_opt;
00754         route_opt = (struct route_option *)buffer;*/
00755 
00756         break;
00757 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
00758       case ND6_OPTION_TYPE_RDNSS:
00759       {
00760         u8_t num, n;
00761         u16_t copy_offset = offset + SIZEOF_RDNSS_OPTION_BASE;
00762         struct rdnss_option * rdnss_opt;
00763         if (option_len < SIZEOF_RDNSS_OPTION_BASE) {
00764           goto lenerr_drop_free_return;
00765         }
00766 
00767         rdnss_opt = (struct rdnss_option *)buffer;
00768         num = (rdnss_opt->length - 1) / 2;
00769         for (n = 0; (rdnss_server_idx < DNS_MAX_SERVERS) && (n < num); n++) {
00770           ip_addr_t rdnss_address;
00771 
00772           /* Copy directly from pbuf to get an aligned, zoned copy of the prefix. */
00773           if (pbuf_copy_partial(p, &rdnss_address, sizeof(ip6_addr_p_t), copy_offset) == sizeof(ip6_addr_p_t)) {
00774             IP_SET_TYPE_VAL(rdnss_address, IPADDR_TYPE_V6);
00775             ip6_addr_assign_zone(ip_2_ip6(&rdnss_address), IP6_UNKNOWN, inp);
00776 
00777             if (htonl(rdnss_opt->lifetime) > 0) {
00778               /* TODO implement Lifetime > 0 */
00779               dns_setserver(rdnss_server_idx++, &rdnss_address, inp);
00780             } else {
00781               /* TODO implement DNS removal in dns.c */
00782               u8_t s;
00783               for (s = 0; s < DNS_MAX_SERVERS; s++) {
00784                 const ip_addr_t *addr = dns_getserver(s,netif_get_name(inp));
00785                 if(ip_addr_cmp(addr, &rdnss_address)) {
00786                   dns_setserver(s, NULL, inp);
00787                 }
00788               }
00789             }
00790           }
00791         }
00792         break;
00793       }
00794 #endif /* LWIP_ND6_RDNSS_MAX_DNS_SERVERS */
00795       default:
00796         /* Unrecognized option, abort. */
00797         ND6_STATS_INC(nd6.proterr);
00798         break;
00799       }
00800       /* option length is checked earlier to be non-zero to make sure loop ends */
00801       offset += 8 * (u8_t)option_len8;
00802     }
00803 
00804     break; /* ICMP6_TYPE_RA */
00805   }
00806   case ICMP6_TYPE_RD: /* Redirect */
00807   {
00808     struct redirect_header *redir_hdr;
00809     struct lladdr_option *lladdr_opt;
00810     ip6_addr_t destination_address, target_address;
00811 
00812     /* Check that Redir header fits in packet. */
00813     if (p->len < sizeof(struct redirect_header)) {
00814       /* @todo debug message */
00815       pbuf_free(p);
00816       ND6_STATS_INC(nd6.lenerr);
00817       ND6_STATS_INC(nd6.drop);
00818       return;
00819     }
00820 
00821     redir_hdr = (struct redirect_header *)p->payload;
00822 
00823     /* Create an aligned, zoned copy of the destination address. */
00824     ip6_addr_copy_from_packed(destination_address, redir_hdr->destination_address);
00825     ip6_addr_assign_zone(&destination_address, IP6_UNICAST, inp);
00826 
00827     /* Check a subset of the other RFC 4861 Sec. 8.1 requirements. */
00828     if (!ip6_addr_islinklocal(ip6_current_src_addr()) ||
00829         IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM ||
00830         redir_hdr->code != 0 || ip6_addr_ismulticast(&destination_address)) {
00831       pbuf_free(p);
00832       ND6_STATS_INC(nd6.proterr);
00833       ND6_STATS_INC(nd6.drop);
00834       return;
00835     }
00836 
00837     /* @todo RFC MUST: IP source address equals first-hop router for destination_address */
00838     /* @todo RFC MUST: ICMP target address is either link-local address or same as destination_address */
00839     /* @todo RFC MUST: all included options have a length greater than zero */
00840 
00841     if (p->len >= (sizeof(struct redirect_header) + 2)) {
00842       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct redirect_header));
00843       if (p->len < (sizeof(struct redirect_header) + (lladdr_opt->length << 3))) {
00844         lladdr_opt = NULL;
00845       }
00846     } else {
00847       lladdr_opt = NULL;
00848     }
00849 
00850     /* Find dest address in cache */
00851     dest_idx = nd6_find_destination_cache_entry(&destination_address);
00852     if (dest_idx < 0) {
00853       /* Destination not in cache, drop packet. */
00854       pbuf_free(p);
00855       return;
00856     }
00857 
00858     /* Create an aligned, zoned copy of the target address. */
00859     ip6_addr_copy_from_packed(target_address, redir_hdr->target_address);
00860     ip6_addr_assign_zone(&target_address, IP6_UNICAST, inp);
00861 
00862     /* Set the new target address. */
00863     ip6_addr_copy(destination_cache[dest_idx].next_hop_addr, target_address);
00864 
00865     /* If Link-layer address of other router is given, try to add to neighbor cache. */
00866     if (lladdr_opt != NULL) {
00867       if (lladdr_opt->type == ND6_OPTION_TYPE_TARGET_LLADDR) {
00868         i = nd6_find_neighbor_cache_entry(&target_address);
00869         if (i < 0) {
00870           i = nd6_new_neighbor_cache_entry();
00871           if (i >= 0) {
00872             neighbor_cache[i].netif = inp;
00873             MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00874             ip6_addr_copy(neighbor_cache[i].next_hop_address, target_address);
00875 
00876             /* Receiving a message does not prove reachability: only in one direction.
00877              * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
00878             neighbor_cache[i].state = ND6_DELAY;
00879             neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
00880           }
00881         }
00882         if (i >= 0) {
00883           if (neighbor_cache[i].state == ND6_INCOMPLETE) {
00884             MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
00885             /* Receiving a message does not prove reachability: only in one direction.
00886              * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
00887             neighbor_cache[i].state = ND6_DELAY;
00888             neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
00889           }
00890         }
00891       }
00892     }
00893     break; /* ICMP6_TYPE_RD */
00894   }
00895   case ICMP6_TYPE_PTB: /* Packet too big */
00896   {
00897     struct icmp6_hdr *icmp6hdr; /* Packet too big message */
00898     struct ip6_hdr *ip6hdr; /* IPv6 header of the packet which caused the error */
00899     u32_t pmtu;
00900     ip6_addr_t destination_address;
00901 
00902     /* Check that ICMPv6 header + IPv6 header fit in payload */
00903     if (p->len < (sizeof(struct icmp6_hdr) + IP6_HLEN)) {
00904       /* drop short packets */
00905       pbuf_free(p);
00906       ND6_STATS_INC(nd6.lenerr);
00907       ND6_STATS_INC(nd6.drop);
00908       return;
00909     }
00910 
00911     icmp6hdr = (struct icmp6_hdr *)p->payload;
00912     ip6hdr = (struct ip6_hdr *)((u8_t*)p->payload + sizeof(struct icmp6_hdr));
00913 
00914     /* Create an aligned, zoned copy of the destination address. */
00915     ip6_addr_copy_from_packed(destination_address, ip6hdr->dest);
00916     ip6_addr_assign_zone(&destination_address, IP6_UNKNOWN, inp);
00917 
00918     /* Look for entry in destination cache. */
00919     dest_idx = nd6_find_destination_cache_entry(&destination_address);
00920     if (dest_idx < 0) {
00921       /* Destination not in cache, drop packet. */
00922       pbuf_free(p);
00923       return;
00924     }
00925 
00926     /* Change the Path MTU. */
00927     pmtu = lwip_htonl(icmp6hdr->data);
00928     destination_cache[dest_idx].pmtu = (u16_t)LWIP_MIN(pmtu, 0xFFFF);
00929 
00930     break; /* ICMP6_TYPE_PTB */
00931   }
00932 
00933   default:
00934     ND6_STATS_INC(nd6.proterr);
00935     ND6_STATS_INC(nd6.drop);
00936     break; /* default */
00937   }
00938 
00939   pbuf_free(p);
00940   return;
00941 lenerr_drop_free_return:
00942   ND6_STATS_INC(nd6.lenerr);
00943   ND6_STATS_INC(nd6.drop);
00944   pbuf_free(p);
00945 }
00946 
00947 
00948 /**
00949  * Periodic timer for Neighbor discovery functions:
00950  *
00951  * - Update neighbor reachability states
00952  * - Update destination cache entries age
00953  * - Update invalidation timers of default routers and on-link prefixes
00954  * - Update lifetimes of our addresses
00955  * - Perform duplicate address detection (DAD) for our addresses
00956  * - Send router solicitations
00957  */
00958 void
00959 nd6_tmr(void)
00960 {
00961   s8_t i;
00962   struct netif *netif;
00963 
00964   /* Process neighbor entries. */
00965   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
00966     switch (neighbor_cache[i].state) {
00967     case ND6_INCOMPLETE:
00968       if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
00969           (!neighbor_cache[i].isrouter)) {
00970         /* Retries exceeded. */
00971         nd6_free_neighbor_cache_entry(i);
00972       } else {
00973         /* Send a NS for this entry. */
00974         neighbor_cache[i].counter.probes_sent++;
00975         nd6_send_neighbor_cache_probe(&neighbor_cache[i], ND6_SEND_FLAG_MULTICAST_DEST);
00976       }
00977       break;
00978     case ND6_REACHABLE:
00979       /* Send queued packets, if any are left. Should have been sent already. */
00980       if (neighbor_cache[i].q != NULL) {
00981         nd6_send_q(i);
00982       }
00983       if (neighbor_cache[i].counter.reachable_time <= ND6_TMR_INTERVAL) {
00984         /* Change to stale state. */
00985         neighbor_cache[i].state = ND6_STALE;
00986         neighbor_cache[i].counter.stale_time = 0;
00987       } else {
00988         neighbor_cache[i].counter.reachable_time -= ND6_TMR_INTERVAL;
00989       }
00990       break;
00991     case ND6_STALE:
00992       neighbor_cache[i].counter.stale_time++;
00993       break;
00994     case ND6_DELAY:
00995       if (neighbor_cache[i].counter.delay_time <= 1) {
00996         /* Change to PROBE state. */
00997         neighbor_cache[i].state = ND6_PROBE;
00998         neighbor_cache[i].counter.probes_sent = 0;
00999       } else {
01000         neighbor_cache[i].counter.delay_time--;
01001       }
01002       break;
01003     case ND6_PROBE:
01004       if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
01005           (!neighbor_cache[i].isrouter)) {
01006         /* Retries exceeded. */
01007         nd6_free_neighbor_cache_entry(i);
01008       } else {
01009         /* Send a NS for this entry. */
01010         neighbor_cache[i].counter.probes_sent++;
01011         nd6_send_neighbor_cache_probe(&neighbor_cache[i], 0);
01012       }
01013       break;
01014     case ND6_NO_ENTRY:
01015     default:
01016       /* Do nothing. */
01017       break;
01018     }
01019   }
01020 
01021   /* Process destination entries. */
01022   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
01023     destination_cache[i].age++;
01024   }
01025 
01026   /* Process router entries. */
01027   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
01028     if (default_router_list[i].neighbor_entry != NULL) {
01029       /* Active entry. */
01030       if (default_router_list[i].invalidation_timer <= ND6_TMR_INTERVAL / 1000) {
01031         /* No more than 1 second remaining. Clear this entry. Also clear any of
01032          * its destination cache entries, as per RFC 4861 Sec. 5.3 and 6.3.5. */
01033         s8_t j;
01034         for (j = 0; j < LWIP_ND6_NUM_DESTINATIONS; j++) {
01035           if (ip6_addr_cmp(&destination_cache[j].next_hop_addr,
01036                &default_router_list[i].neighbor_entry->next_hop_address)) {
01037              ip6_addr_set_any(&destination_cache[j].destination_addr);
01038           }
01039         }
01040         default_router_list[i].neighbor_entry->isrouter = 0;
01041         default_router_list[i].neighbor_entry = NULL;
01042         default_router_list[i].invalidation_timer = 0;
01043         default_router_list[i].flags = 0;
01044       } else {
01045         default_router_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
01046       }
01047     }
01048   }
01049 
01050   /* Process prefix entries. */
01051   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
01052     if (prefix_list[i].netif != NULL) {
01053       if (prefix_list[i].invalidation_timer <= ND6_TMR_INTERVAL / 1000) {
01054         /* Entry timed out, remove it */
01055         prefix_list[i].invalidation_timer = 0;
01056         prefix_list[i].netif = NULL;
01057       } else {
01058         prefix_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
01059       }
01060     }
01061   }
01062 
01063   /* Process our own addresses, updating address lifetimes and/or DAD state. */
01064   NETIF_FOREACH(netif) {
01065     for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
01066       u8_t addr_state;
01067 #if LWIP_IPV6_ADDRESS_LIFETIMES
01068       /* Step 1: update address lifetimes (valid and preferred). */
01069       addr_state = netif_ip6_addr_state(netif, i);
01070       /* RFC 4862 is not entirely clear as to whether address lifetimes affect
01071        * tentative addresses, and is even less clear as to what should happen
01072        * with duplicate addresses. We choose to track and update lifetimes for
01073        * both those types, although for different reasons:
01074        * - for tentative addresses, the line of thought of Sec. 5.7 combined
01075        *   with the potentially long period that an address may be in tentative
01076        *   state (due to the interface being down) suggests that lifetimes
01077        *   should be independent of external factors which would include DAD;
01078        * - for duplicate addresses, retiring them early could result in a new
01079        *   but unwanted attempt at marking them as valid, while retiring them
01080        *   late/never could clog up address slots on the netif.
01081        * As a result, we may end up expiring addresses of either type here.
01082        */
01083       if (!ip6_addr_isinvalid(addr_state) &&
01084           !netif_ip6_addr_isstatic(netif, i)) {
01085         u32_t life = netif_ip6_addr_valid_life(netif, i);
01086         if (life <= ND6_TMR_INTERVAL / 1000) {
01087           /* The address has expired. */
01088           netif_ip6_addr_set_valid_life(netif, i, 0);
01089           netif_ip6_addr_set_pref_life(netif, i, 0);
01090           netif_ip6_addr_set_state(netif, i, IP6_ADDR_INVALID);
01091         } else {
01092           if (!ip6_addr_life_isinfinite(life)) {
01093             life -= ND6_TMR_INTERVAL / 1000;
01094             LWIP_ASSERT("bad valid lifetime", life != IP6_ADDR_LIFE_STATIC);
01095             netif_ip6_addr_set_valid_life(netif, i, life);
01096           }
01097           /* The address is still here. Update the preferred lifetime too. */
01098           life = netif_ip6_addr_pref_life(netif, i);
01099           if (life <= ND6_TMR_INTERVAL / 1000) {
01100             /* This case must also trigger if 'life' was already zero, so as to
01101              * deal correctly with advertised preferred-lifetime reductions. */
01102             netif_ip6_addr_set_pref_life(netif, i, 0);
01103             if (addr_state == IP6_ADDR_PREFERRED)
01104               netif_ip6_addr_set_state(netif, i, IP6_ADDR_DEPRECATED);
01105           } else if (!ip6_addr_life_isinfinite(life)) {
01106             life -= ND6_TMR_INTERVAL / 1000;
01107             netif_ip6_addr_set_pref_life(netif, i, life);
01108           }
01109         }
01110       }
01111       /* The address state may now have changed, so reobtain it next. */
01112 #endif /* LWIP_IPV6_ADDRESS_LIFETIMES */
01113       /* Step 2: update DAD state. */
01114       addr_state = netif_ip6_addr_state(netif, i);
01115       if (ip6_addr_istentative(addr_state)) {
01116         if ((addr_state & IP6_ADDR_TENTATIVE_COUNT_MASK) >= LWIP_IPV6_DUP_DETECT_ATTEMPTS) {
01117           /* No NA received in response. Mark address as valid. For dynamic
01118            * addresses with an expired preferred lifetime, the state is set to
01119            * deprecated right away. That should almost never happen, though. */
01120           addr_state = IP6_ADDR_PREFERRED;
01121 #if LWIP_IPV6_ADDRESS_LIFETIMES
01122           if (!netif_ip6_addr_isstatic(netif, i) &&
01123               netif_ip6_addr_pref_life(netif, i) == 0) {
01124             addr_state = IP6_ADDR_DEPRECATED;
01125           }
01126 #endif /* LWIP_IPV6_ADDRESS_LIFETIMES */
01127           netif_ip6_addr_set_state(netif, i, addr_state);
01128         } else if (netif_is_up(netif) && netif_is_link_up(netif)) {
01129           /* tentative: set next state by increasing by one */
01130           netif_ip6_addr_set_state(netif, i, addr_state + 1);
01131           /* Send a NS for this address. Use the unspecified address as source
01132            * address in all cases (RFC 4862 Sec. 5.4.2), not in the least
01133            * because as it is, we only consider multicast replies for DAD. */
01134           nd6_send_ns(netif, netif_ip6_addr(netif, i),
01135             ND6_SEND_FLAG_MULTICAST_DEST | ND6_SEND_FLAG_ANY_SRC);
01136         }
01137       }
01138     }
01139   }
01140 
01141 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
01142   /* Send router solicitation messages, if necessary. */
01143   if (!nd6_tmr_rs_reduction) {
01144     nd6_tmr_rs_reduction = (ND6_RTR_SOLICITATION_INTERVAL / ND6_TMR_INTERVAL) - 1;
01145     NETIF_FOREACH(netif) {
01146       if ((netif->rs_count > 0) && netif_is_up(netif) &&
01147           netif_is_link_up(netif) &&
01148           !ip6_addr_isinvalid(netif_ip6_addr_state(netif, 0)) &&
01149           !ip6_addr_isduplicated(netif_ip6_addr_state(netif, 0))) {
01150         if (nd6_send_rs(netif) == ERR_OK) {
01151           netif->rs_count--;
01152         }
01153       }
01154     }
01155   } else {
01156     nd6_tmr_rs_reduction--;
01157   }
01158 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
01159 
01160 }
01161 
01162 /** Send a neighbor solicitation message for a specific neighbor cache entry
01163  *
01164  * @param entry the neightbor cache entry for wich to send the message
01165  * @param flags one of ND6_SEND_FLAG_*
01166  */
01167 static void
01168 nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry *entry, u8_t flags)
01169 {
01170   nd6_send_ns(entry->netif, &entry->next_hop_address, flags);
01171 }
01172 
01173 /**
01174  * Send a neighbor solicitation message
01175  *
01176  * @param netif the netif on which to send the message
01177  * @param target_addr the IPv6 target address for the ND message
01178  * @param flags one of ND6_SEND_FLAG_*
01179  */
01180 static void
01181 nd6_send_ns(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags)
01182 {
01183   struct ns_header *ns_hdr;
01184   struct pbuf *p;
01185   const ip6_addr_t *src_addr;
01186   u16_t lladdr_opt_len;
01187 
01188   LWIP_ASSERT("target address is required", target_addr != NULL);
01189 
01190   if (!(flags & ND6_SEND_FLAG_ANY_SRC) &&
01191       ip6_addr_isvalid(netif_ip6_addr_state(netif,0))) {
01192     /* Use link-local address as source address. */
01193     src_addr = netif_ip6_addr(netif, 0);
01194     /* calculate option length (in 8-byte-blocks) */
01195     lladdr_opt_len = ((netif->hwaddr_len + 2) + 7) >> 3;
01196   } else {
01197     src_addr = IP6_ADDR_ANY6;
01198     /* Option "MUST NOT be included when the source IP address is the unspecified address." */
01199     lladdr_opt_len = 0;
01200   }
01201 
01202   /* Allocate a packet. */
01203   p = pbuf_alloc(PBUF_IP, sizeof(struct ns_header) + (lladdr_opt_len << 3), PBUF_RAM);
01204   if (p == NULL) {
01205     ND6_STATS_INC(nd6.memerr);
01206     return;
01207   }
01208 
01209   /* Set fields. */
01210   ns_hdr = (struct ns_header *)p->payload;
01211 
01212   ns_hdr->type = ICMP6_TYPE_NS;
01213   ns_hdr->code = 0;
01214   ns_hdr->chksum = 0;
01215   ns_hdr->reserved = 0;
01216   ip6_addr_copy_to_packed(ns_hdr->target_address, *target_addr);
01217 
01218   if (lladdr_opt_len != 0) {
01219     struct lladdr_option *lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
01220     lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
01221     lladdr_opt->length = (u8_t)lladdr_opt_len;
01222     SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
01223   }
01224 
01225   /* Generate the solicited node address for the target address. */
01226   if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
01227     ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
01228     ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
01229     target_addr = &multicast_address;
01230   }
01231 
01232 #if CHECKSUM_GEN_ICMP6
01233   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
01234     ns_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
01235       target_addr);
01236   }
01237 #endif /* CHECKSUM_GEN_ICMP6 */
01238 
01239   /* Send the packet out. */
01240   ND6_STATS_INC(nd6.xmit);
01241   ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, target_addr,
01242       ND6_HOPLIM, 0, IP6_NEXTH_ICMP6, netif);
01243   pbuf_free(p);
01244 }
01245 
01246 /**
01247  * Send a neighbor advertisement message
01248  *
01249  * @param netif the netif on which to send the message
01250  * @param target_addr the IPv6 target address for the ND message
01251  * @param flags one of ND6_SEND_FLAG_*
01252  */
01253 static void
01254 nd6_send_na(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags)
01255 {
01256   struct na_header *na_hdr;
01257   struct lladdr_option *lladdr_opt;
01258   struct pbuf *p;
01259   const ip6_addr_t *src_addr;
01260   const ip6_addr_t *dest_addr;
01261   u16_t lladdr_opt_len;
01262 
01263   LWIP_ASSERT("target address is required", target_addr != NULL);
01264 
01265   /* Use link-local address as source address. */
01266   /* src_addr = netif_ip6_addr(netif, 0); */
01267   /* Use target address as source address. */
01268   src_addr = target_addr;
01269 
01270   /* Allocate a packet. */
01271   lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
01272   p = pbuf_alloc(PBUF_IP, sizeof(struct na_header) + (lladdr_opt_len << 3), PBUF_RAM);
01273   if (p == NULL) {
01274     ND6_STATS_INC(nd6.memerr);
01275     return;
01276   }
01277 
01278   /* Set fields. */
01279   na_hdr = (struct na_header *)p->payload;
01280   lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
01281 
01282   na_hdr->type = ICMP6_TYPE_NA;
01283   na_hdr->code = 0;
01284   na_hdr->chksum = 0;
01285   na_hdr->flags = flags & 0xf0;
01286   na_hdr->reserved[0] = 0;
01287   na_hdr->reserved[1] = 0;
01288   na_hdr->reserved[2] = 0;
01289   ip6_addr_copy_to_packed(na_hdr->target_address, *target_addr);
01290 
01291   lladdr_opt->type = ND6_OPTION_TYPE_TARGET_LLADDR;
01292   lladdr_opt->length = (u8_t)lladdr_opt_len;
01293   SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
01294 
01295   /* Generate the solicited node address for the target address. */
01296   if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
01297     ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
01298     ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
01299     dest_addr = &multicast_address;
01300   } else if (flags & ND6_SEND_FLAG_ALLNODES_DEST) {
01301     ip6_addr_set_allnodes_linklocal(&multicast_address);
01302     ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
01303     dest_addr = &multicast_address;
01304   } else {
01305     dest_addr = ip6_current_src_addr();
01306   }
01307 
01308 #if CHECKSUM_GEN_ICMP6
01309   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
01310     na_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
01311       dest_addr);
01312   }
01313 #endif /* CHECKSUM_GEN_ICMP6 */
01314 
01315   /* Send the packet out. */
01316   ND6_STATS_INC(nd6.xmit);
01317   ip6_output_if(p, src_addr, dest_addr,
01318       ND6_HOPLIM, 0, IP6_NEXTH_ICMP6, netif);
01319   pbuf_free(p);
01320 }
01321 
01322 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
01323 /**
01324  * Send a router solicitation message
01325  *
01326  * @param netif the netif on which to send the message
01327  */
01328 static err_t
01329 nd6_send_rs(struct netif *netif)
01330 {
01331   struct rs_header *rs_hdr;
01332   struct lladdr_option *lladdr_opt;
01333   struct pbuf *p;
01334   const ip6_addr_t *src_addr;
01335   err_t err;
01336   u16_t lladdr_opt_len = 0;
01337 
01338   /* Link-local source address, or unspecified address? */
01339   if (ip6_addr_isvalid(netif_ip6_addr_state(netif, 0))) {
01340     src_addr = netif_ip6_addr(netif, 0);
01341   } else {
01342     src_addr = IP6_ADDR_ANY6;
01343   }
01344 
01345   /* Generate the all routers target address. */
01346   ip6_addr_set_allrouters_linklocal(&multicast_address);
01347   ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
01348 
01349   /* Allocate a packet. */
01350   if (src_addr != IP6_ADDR_ANY6 && netif->hwaddr_len) {
01351     lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
01352   }
01353   p = pbuf_alloc(PBUF_IP, sizeof(struct rs_header) + (lladdr_opt_len << 3), PBUF_RAM);
01354   if (p == NULL) {
01355     ND6_STATS_INC(nd6.memerr);
01356     return ERR_BUF;
01357   }
01358 
01359   /* Set fields. */
01360   rs_hdr = (struct rs_header *)p->payload;
01361 
01362   rs_hdr->type = ICMP6_TYPE_RS;
01363   rs_hdr->code = 0;
01364   rs_hdr->chksum = 0;
01365   rs_hdr->reserved = 0;
01366 
01367   if (src_addr != IP6_ADDR_ANY6 && lladdr_opt_len) {
01368     /* Include our hw address. */
01369     lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct rs_header));
01370     lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
01371     lladdr_opt->length = (u8_t)lladdr_opt_len;
01372     SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
01373   }
01374 
01375 #if CHECKSUM_GEN_ICMP6
01376   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
01377     rs_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
01378       &multicast_address);
01379   }
01380 #endif /* CHECKSUM_GEN_ICMP6 */
01381 
01382   /* Send the packet out. */
01383   ND6_STATS_INC(nd6.xmit);
01384 
01385   err = ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, &multicast_address,
01386       ND6_HOPLIM, 0, IP6_NEXTH_ICMP6, netif);
01387   pbuf_free(p);
01388 
01389   return err;
01390 }
01391 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
01392 
01393 /**
01394  * Search for a neighbor cache entry
01395  *
01396  * @param ip6addr the IPv6 address of the neighbor
01397  * @return The neighbor cache entry index that matched, -1 if no
01398  * entry is found
01399  */
01400 static s8_t
01401 nd6_find_neighbor_cache_entry(const ip6_addr_t *ip6addr)
01402 {
01403   s8_t i;
01404   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01405     if (ip6_addr_cmp(ip6addr, &(neighbor_cache[i].next_hop_address))) {
01406       return i;
01407     }
01408   }
01409   return -1;
01410 }
01411 
01412 /**
01413  * Create a new neighbor cache entry.
01414  *
01415  * If no unused entry is found, will try to recycle an old entry
01416  * according to ad-hoc "age" heuristic.
01417  *
01418  * @return The neighbor cache entry index that was created, -1 if no
01419  * entry could be created
01420  */
01421 static s8_t
01422 nd6_new_neighbor_cache_entry(void)
01423 {
01424   s8_t i;
01425   s8_t j;
01426   u32_t time;
01427 
01428 
01429   /* First, try to find an empty entry. */
01430   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01431     if (neighbor_cache[i].state == ND6_NO_ENTRY) {
01432       return i;
01433     }
01434   }
01435 
01436   /* We need to recycle an entry. in general, do not recycle if it is a router. */
01437 
01438   /* Next, try to find a Stale entry. */
01439   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01440     if ((neighbor_cache[i].state == ND6_STALE) &&
01441         (!neighbor_cache[i].isrouter)) {
01442       nd6_free_neighbor_cache_entry(i);
01443       return i;
01444     }
01445   }
01446 
01447   /* Next, try to find a Probe entry. */
01448   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01449     if ((neighbor_cache[i].state == ND6_PROBE) &&
01450         (!neighbor_cache[i].isrouter)) {
01451       nd6_free_neighbor_cache_entry(i);
01452       return i;
01453     }
01454   }
01455 
01456   /* Next, try to find a Delayed entry. */
01457   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01458     if ((neighbor_cache[i].state == ND6_DELAY) &&
01459         (!neighbor_cache[i].isrouter)) {
01460       nd6_free_neighbor_cache_entry(i);
01461       return i;
01462     }
01463   }
01464 
01465   /* Next, try to find the oldest reachable entry. */
01466   time = 0xfffffffful;
01467   j = -1;
01468   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01469     if ((neighbor_cache[i].state == ND6_REACHABLE) &&
01470         (!neighbor_cache[i].isrouter)) {
01471       if (neighbor_cache[i].counter.reachable_time < time) {
01472         j = i;
01473         time = neighbor_cache[i].counter.reachable_time;
01474       }
01475     }
01476   }
01477   if (j >= 0) {
01478     nd6_free_neighbor_cache_entry(j);
01479     return j;
01480   }
01481 
01482   /* Next, find oldest incomplete entry without queued packets. */
01483   time = 0;
01484   j = -1;
01485   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01486     if (
01487         (neighbor_cache[i].q == NULL) &&
01488         (neighbor_cache[i].state == ND6_INCOMPLETE) &&
01489         (!neighbor_cache[i].isrouter)) {
01490       if (neighbor_cache[i].counter.probes_sent >= time) {
01491         j = i;
01492         time = neighbor_cache[i].counter.probes_sent;
01493       }
01494     }
01495   }
01496   if (j >= 0) {
01497     nd6_free_neighbor_cache_entry(j);
01498     return j;
01499   }
01500 
01501   /* Next, find oldest incomplete entry with queued packets. */
01502   time = 0;
01503   j = -1;
01504   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
01505     if ((neighbor_cache[i].state == ND6_INCOMPLETE) &&
01506         (!neighbor_cache[i].isrouter)) {
01507       if (neighbor_cache[i].counter.probes_sent >= time) {
01508         j = i;
01509         time = neighbor_cache[i].counter.probes_sent;
01510       }
01511     }
01512   }
01513   if (j >= 0) {
01514     nd6_free_neighbor_cache_entry(j);
01515     return j;
01516   }
01517 
01518   /* No more entries to try. */
01519   return -1;
01520 }
01521 
01522 /**
01523  * Will free any resources associated with a neighbor cache
01524  * entry, and will mark it as unused.
01525  *
01526  * @param i the neighbor cache entry index to free
01527  */
01528 static void
01529 nd6_free_neighbor_cache_entry(s8_t i)
01530 {
01531   if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
01532     return;
01533   }
01534   if (neighbor_cache[i].isrouter) {
01535     /* isrouter needs to be cleared before deleting a neighbor cache entry */
01536     return;
01537   }
01538 
01539   /* Free any queued packets. */
01540   if (neighbor_cache[i].q != NULL) {
01541     nd6_free_q(neighbor_cache[i].q);
01542     neighbor_cache[i].q = NULL;
01543   }
01544 
01545   neighbor_cache[i].state = ND6_NO_ENTRY;
01546   neighbor_cache[i].isrouter = 0;
01547   neighbor_cache[i].netif = NULL;
01548   neighbor_cache[i].counter.reachable_time = 0;
01549   ip6_addr_set_zero(&(neighbor_cache[i].next_hop_address));
01550 }
01551 
01552 /**
01553  * Search for a destination cache entry
01554  *
01555  * @param ip6addr the IPv6 address of the destination
01556  * @return The destination cache entry index that matched, -1 if no
01557  * entry is found
01558  */
01559 static s16_t
01560 nd6_find_destination_cache_entry(const ip6_addr_t *ip6addr)
01561 {
01562   s16_t i;
01563 
01564   IP6_ADDR_ZONECHECK(ip6addr);
01565 
01566   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
01567     if (ip6_addr_cmp(ip6addr, &(destination_cache[i].destination_addr))) {
01568       return i;
01569     }
01570   }
01571   return -1;
01572 }
01573 
01574 /**
01575  * Create a new destination cache entry. If no unused entry is found,
01576  * will recycle oldest entry.
01577  *
01578  * @return The destination cache entry index that was created, -1 if no
01579  * entry was created
01580  */
01581 static s16_t
01582 nd6_new_destination_cache_entry(void)
01583 {
01584   s16_t i, j;
01585   u32_t age;
01586 
01587   /* Find an empty entry. */
01588   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
01589     if (ip6_addr_isany(&(destination_cache[i].destination_addr))) {
01590       return i;
01591     }
01592   }
01593 
01594   /* Find oldest entry. */
01595   age = 0;
01596   j = LWIP_ND6_NUM_DESTINATIONS - 1;
01597   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
01598     if (destination_cache[i].age > age) {
01599       j = i;
01600     }
01601   }
01602 
01603   return j;
01604 }
01605 
01606 /**
01607  * Clear the destination cache.
01608  *
01609  * This operation may be necessary for consistency in the light of changing
01610  * local addresses and/or use of the gateway hook.
01611  */
01612 void
01613 nd6_clear_destination_cache(void)
01614 {
01615   int i;
01616 
01617   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
01618     ip6_addr_set_any(&destination_cache[i].destination_addr);
01619   }
01620 }
01621 
01622 /**
01623  * Determine whether an address matches an on-link prefix or the subnet of a
01624  * statically assigned address.
01625  *
01626  * @param ip6addr the IPv6 address to match
01627  * @return 1 if the address is on-link, 0 otherwise
01628  */
01629 static int
01630 nd6_is_prefix_in_netif(const ip6_addr_t *ip6addr, struct netif *netif)
01631 {
01632   s8_t i;
01633 
01634   /* Check to see if the address matches an on-link prefix. */
01635   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
01636     if ((prefix_list[i].netif == netif) &&
01637         (prefix_list[i].invalidation_timer > 0) &&
01638         ip6_addr_netcmp(ip6addr, &(prefix_list[i].prefix))) {
01639       return 1;
01640     }
01641   }
01642   /* Check to see if address prefix matches a manually configured (= static)
01643    * address. Static addresses have an implied /64 subnet assignment. Dynamic
01644    * addresses (from autoconfiguration) have no implied subnet assignment, and
01645    * are thus effectively /128 assignments. See RFC 5942 for more on this. */
01646   for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
01647     if (ip6_addr_isvalid(netif_ip6_addr_state(netif, i)) &&
01648         netif_ip6_addr_isstatic(netif, i) &&
01649         ip6_addr_netcmp(ip6addr, netif_ip6_addr(netif, i))) {
01650       return 1;
01651     }
01652   }
01653   return 0;
01654 }
01655 
01656 /**
01657  * Select a default router for a destination.
01658  *
01659  * This function is used both for routing and for finding a next-hop target for
01660  * a packet. In the former case, the given netif is NULL, and the returned
01661  * router entry must be for a netif suitable for sending packets (up, link up).
01662  * In the latter case, the given netif is not NULL and restricts router choice.
01663  *
01664  * @param ip6addr the destination address
01665  * @param netif the netif for the outgoing packet, if known
01666  * @return the default router entry index, or -1 if no suitable
01667  *         router is found
01668  */
01669 static s8_t
01670 nd6_select_router(const ip6_addr_t *ip6addr, struct netif *netif)
01671 {
01672   struct netif *router_netif;
01673   s8_t i, j, valid_router;
01674   static s8_t last_router;
01675 
01676   LWIP_UNUSED_ARG(ip6addr); /* @todo match preferred routes!! (must implement ND6_OPTION_TYPE_ROUTE_INFO) */
01677 
01678   /* @todo: implement default router preference */
01679 
01680   /* Look for valid routers. A reachable router is preferred. */
01681   valid_router = -1;
01682   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
01683     /* Is the router netif both set and apppropriate? */
01684     if (default_router_list[i].neighbor_entry != NULL) {
01685       router_netif = default_router_list[i].neighbor_entry->netif;
01686       if ((router_netif != NULL) && (netif != NULL ? netif == router_netif :
01687           (netif_is_up(router_netif) && netif_is_link_up(router_netif)))) {
01688         /* Is the router valid, i.e., reachable or probably reachable as per
01689          * RFC 4861 Sec. 6.3.6? Note that we will never return a router that
01690          * has no neighbor cache entry, due to the netif association tests. */
01691         if (default_router_list[i].neighbor_entry->state != ND6_INCOMPLETE) {
01692           /* Is the router known to be reachable? */
01693           if (default_router_list[i].neighbor_entry->state == ND6_REACHABLE) {
01694             return i; /* valid and reachable - done! */
01695           } else if (valid_router < 0) {
01696             valid_router = i; /* valid but not known to be reachable */
01697           }
01698         }
01699       }
01700     }
01701   }
01702   if (valid_router >= 0) {
01703     return valid_router;
01704   }
01705 
01706   /* Look for any router for which we have any information at all. */
01707   /* last_router is used for round-robin selection of incomplete routers, as
01708    * recommended in RFC 4861 Sec. 6.3.6 point (2). Advance only when picking a
01709    * route, to select the same router as next-hop target in the common case. */
01710   if ((netif == NULL) && (++last_router >= LWIP_ND6_NUM_ROUTERS)) {
01711     last_router = 0;
01712   }
01713   i = last_router;
01714   for (j = 0; j < LWIP_ND6_NUM_ROUTERS; j++) {
01715     if (default_router_list[i].neighbor_entry != NULL) {
01716       router_netif = default_router_list[i].neighbor_entry->netif;
01717       if ((router_netif != NULL) && (netif != NULL ? netif == router_netif :
01718           (netif_is_up(router_netif) && netif_is_link_up(router_netif)))) {
01719         return i;
01720       }
01721     }
01722     if (++i >= LWIP_ND6_NUM_ROUTERS) {
01723       i = 0;
01724     }
01725   }
01726 
01727   /* no suitable router found. */
01728   return -1;
01729 }
01730 
01731 /**
01732  * Find a router-announced route to the given destination. This route may be
01733  * based on an on-link prefix or a default router.
01734  *
01735  * If a suitable route is found, the returned netif is guaranteed to be in a
01736  * suitable state (up, link up) to be used for packet transmission.
01737  *
01738  * @param ip6addr the destination IPv6 address
01739  * @return the netif to use for the destination, or NULL if none found
01740  */
01741 struct netif *
01742 nd6_find_route(const ip6_addr_t *ip6addr)
01743 {
01744   struct netif *netif;
01745   s8_t i;
01746 
01747   /* @todo decide if it makes sense to check the destination cache first */
01748 
01749   /* Check if there is a matching on-link prefix. There may be multiple
01750    * matches. Pick the first one that is associated with a suitable netif. */
01751   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
01752     netif = prefix_list[i].netif;
01753     if ((netif != NULL) && ip6_addr_netcmp(&prefix_list[i].prefix, ip6addr) &&
01754         netif_is_up(netif) && netif_is_link_up(netif)) {
01755       return netif;
01756     }
01757   }
01758 
01759   /* No on-link prefix match. Find a router that can forward the packet. */
01760   i = nd6_select_router(ip6addr, NULL);
01761   if (i >= 0) {
01762     LWIP_ASSERT("selected router must have a neighbor entry",
01763       default_router_list[i].neighbor_entry != NULL);
01764     return default_router_list[i].neighbor_entry->netif;
01765   }
01766 
01767   return NULL;
01768 }
01769 
01770 /**
01771  * Find an entry for a default router.
01772  *
01773  * @param router_addr the IPv6 address of the router
01774  * @param netif the netif on which the router is found, if known
01775  * @return the index of the router entry, or -1 if not found
01776  */
01777 static s8_t
01778 nd6_get_router(const ip6_addr_t *router_addr, struct netif *netif)
01779 {
01780   s8_t i;
01781 
01782   IP6_ADDR_ZONECHECK_NETIF(router_addr, netif);
01783 
01784   /* Look for router. */
01785   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
01786     if ((default_router_list[i].neighbor_entry != NULL) &&
01787         ((netif != NULL) ? netif == default_router_list[i].neighbor_entry->netif : 1) &&
01788         ip6_addr_cmp(router_addr, &(default_router_list[i].neighbor_entry->next_hop_address))) {
01789       return i;
01790     }
01791   }
01792 
01793   /* router not found. */
01794   return -1;
01795 }
01796 
01797 /**
01798  * Create a new entry for a default router.
01799  *
01800  * @param router_addr the IPv6 address of the router
01801  * @param netif the netif on which the router is connected, if known
01802  * @return the index on the router table, or -1 if could not be created
01803  */
01804 static s8_t
01805 nd6_new_router(const ip6_addr_t *router_addr, struct netif *netif)
01806 {
01807   s8_t router_index;
01808   s8_t free_router_index;
01809   s8_t neighbor_index;
01810 
01811   IP6_ADDR_ZONECHECK_NETIF(router_addr, netif);
01812 
01813   /* Do we have a neighbor entry for this router? */
01814   neighbor_index = nd6_find_neighbor_cache_entry(router_addr);
01815   if (neighbor_index < 0) {
01816     /* Create a neighbor entry for this router. */
01817     neighbor_index = nd6_new_neighbor_cache_entry();
01818     if (neighbor_index < 0) {
01819       /* Could not create neighbor entry for this router. */
01820       return -1;
01821     }
01822     ip6_addr_set(&(neighbor_cache[neighbor_index].next_hop_address), router_addr);
01823     neighbor_cache[neighbor_index].netif = netif;
01824     neighbor_cache[neighbor_index].q = NULL;
01825     if (netif->hwaddr_len) {
01826       neighbor_cache[neighbor_index].state = ND6_INCOMPLETE;
01827       neighbor_cache[neighbor_index].counter.probes_sent = 1;
01828       nd6_send_neighbor_cache_probe(&neighbor_cache[neighbor_index], ND6_SEND_FLAG_MULTICAST_DEST);
01829     } else {
01830       neighbor_cache[neighbor_index].state = ND6_STALE;
01831     }
01832   }
01833 
01834   /* Mark neighbor as router. */
01835   neighbor_cache[neighbor_index].isrouter = 1;
01836 
01837   /* Look for empty entry. */
01838   free_router_index = LWIP_ND6_NUM_ROUTERS;
01839   for (router_index = LWIP_ND6_NUM_ROUTERS - 1; router_index >= 0; router_index--) {
01840     /* check if router already exists (this is a special case for 2 netifs on the same subnet
01841        - e.g. wifi and cable) */
01842     if(default_router_list[router_index].neighbor_entry == &(neighbor_cache[neighbor_index])){ 
01843       return router_index; 
01844     } 
01845     if (default_router_list[router_index].neighbor_entry == NULL) {
01846       /* remember lowest free index to create a new entry */
01847       free_router_index = router_index;
01848     }
01849   }
01850   if (free_router_index < LWIP_ND6_NUM_ROUTERS) {
01851     default_router_list[free_router_index].neighbor_entry = &(neighbor_cache[neighbor_index]);
01852     return free_router_index;
01853   }
01854 
01855   /* Could not create a router entry. */
01856 
01857   /* Mark neighbor entry as not-router. Entry might be useful as neighbor still. */
01858   neighbor_cache[neighbor_index].isrouter = 0;
01859 
01860   /* router not found. */
01861   return -1;
01862 }
01863 
01864 /**
01865  * Find the cached entry for an on-link prefix.
01866  *
01867  * @param prefix the IPv6 prefix that is on-link
01868  * @param netif the netif on which the prefix is on-link
01869  * @return the index on the prefix table, or -1 if not found
01870  */
01871 static s8_t
01872 nd6_get_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif)
01873 {
01874   s8_t i;
01875 
01876   /* Look for prefix in list. */
01877   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
01878     if ((ip6_addr_netcmp(&(prefix_list[i].prefix), prefix)) &&
01879         (prefix_list[i].netif == netif)) {
01880       return i;
01881     }
01882   }
01883 
01884   /* Entry not available. */
01885   return -1;
01886 }
01887 
01888 /**
01889  * Creates a new entry for an on-link prefix.
01890  *
01891  * @param prefix the IPv6 prefix that is on-link
01892  * @param netif the netif on which the prefix is on-link
01893  * @return the index on the prefix table, or -1 if not created
01894  */
01895 static s8_t
01896 nd6_new_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif)
01897 {
01898   s8_t i;
01899 
01900   /* Create new entry. */
01901   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
01902     if ((prefix_list[i].netif == NULL) ||
01903         (prefix_list[i].invalidation_timer == 0)) {
01904       /* Found empty prefix entry. */
01905       prefix_list[i].netif = netif;
01906       ip6_addr_set(&(prefix_list[i].prefix), prefix);
01907       return i;
01908     }
01909   }
01910 
01911   /* Entry not available. */
01912   return -1;
01913 }
01914 
01915 /**
01916  * Determine the next hop for a destination. Will determine if the
01917  * destination is on-link, else a suitable on-link router is selected.
01918  *
01919  * The last entry index is cached for fast entry search.
01920  *
01921  * @param ip6addr the destination address
01922  * @param netif the netif on which the packet will be sent
01923  * @return the neighbor cache entry for the next hop, ERR_RTE if no
01924  *         suitable next hop was found, ERR_MEM if no cache entry
01925  *         could be created
01926  */
01927 static s8_t
01928 nd6_get_next_hop_entry(const ip6_addr_t *ip6addr, struct netif *netif)
01929 {
01930 #ifdef LWIP_HOOK_ND6_GET_GW
01931   const ip6_addr_t *next_hop_addr;
01932 #endif /* LWIP_HOOK_ND6_GET_GW */
01933   s8_t i;
01934   s16_t dst_idx;
01935 
01936   IP6_ADDR_ZONECHECK_NETIF(ip6addr, netif);
01937 
01938 #if LWIP_NETIF_HWADDRHINT
01939   if (netif->hints != NULL) {
01940     /* per-pcb cached entry was given */
01941     netif_addr_idx_t addr_hint = netif->hints->addr_hint;
01942     if (addr_hint < LWIP_ND6_NUM_DESTINATIONS) {
01943       nd6_cached_destination_index = addr_hint;
01944     }
01945   }
01946 #endif /* LWIP_NETIF_HWADDRHINT */
01947 
01948   /* Look for ip6addr in destination cache. */
01949   if (ip6_addr_cmp(ip6addr, &(destination_cache[nd6_cached_destination_index].destination_addr))) {
01950     /* the cached entry index is the right one! */
01951     /* do nothing. */
01952     ND6_STATS_INC(nd6.cachehit);
01953   } else {
01954     /* Search destination cache. */
01955     dst_idx = nd6_find_destination_cache_entry(ip6addr);
01956     if (dst_idx >= 0) {
01957       /* found destination entry. make it our new cached index. */
01958       LWIP_ASSERT("type overflow", (size_t)dst_idx < NETIF_ADDR_IDX_MAX);
01959       nd6_cached_destination_index = (netif_addr_idx_t)dst_idx;
01960     } else {
01961       /* Not found. Create a new destination entry. */
01962       dst_idx = nd6_new_destination_cache_entry();
01963       if (dst_idx >= 0) {
01964         /* got new destination entry. make it our new cached index. */
01965         LWIP_ASSERT("type overflow", (size_t)dst_idx < NETIF_ADDR_IDX_MAX);
01966         nd6_cached_destination_index = (netif_addr_idx_t)dst_idx;
01967       } else {
01968         /* Could not create a destination cache entry. */
01969         return ERR_MEM;
01970       }
01971 
01972       /* Copy dest address to destination cache. */
01973       ip6_addr_set(&(destination_cache[nd6_cached_destination_index].destination_addr), ip6addr);
01974 
01975       /* Now find the next hop. is it a neighbor? */
01976       if (ip6_addr_islinklocal(ip6addr) ||
01977           nd6_is_prefix_in_netif(ip6addr, netif)) {
01978         /* Destination in local link. */
01979         destination_cache[nd6_cached_destination_index].pmtu = netif_mtu6(netif);
01980         ip6_addr_copy(destination_cache[nd6_cached_destination_index].next_hop_addr, destination_cache[nd6_cached_destination_index].destination_addr);
01981 #ifdef LWIP_HOOK_ND6_GET_GW
01982       } else if ((next_hop_addr = LWIP_HOOK_ND6_GET_GW(netif, ip6addr)) != NULL) {
01983         /* Next hop for destination provided by hook function. */
01984         destination_cache[nd6_cached_destination_index].pmtu = netif->mtu;
01985         ip6_addr_set(&destination_cache[nd6_cached_destination_index].next_hop_addr, next_hop_addr);
01986 #endif /* LWIP_HOOK_ND6_GET_GW */
01987       } else {
01988         /* We need to select a router. */
01989         i = nd6_select_router(ip6addr, netif);
01990         if (i < 0) {
01991           /* No router found. */
01992           ip6_addr_set_any(&(destination_cache[nd6_cached_destination_index].destination_addr));
01993           return ERR_RTE;
01994         }
01995         destination_cache[nd6_cached_destination_index].pmtu = netif_mtu6(netif); /* Start with netif mtu, correct through ICMPv6 if necessary */
01996         ip6_addr_copy(destination_cache[nd6_cached_destination_index].next_hop_addr, default_router_list[i].neighbor_entry->next_hop_address);
01997       }
01998     }
01999   }
02000 
02001 #if LWIP_NETIF_HWADDRHINT
02002   if (netif->hints != NULL) {
02003     /* per-pcb cached entry was given */
02004     netif->hints->addr_hint = nd6_cached_destination_index;
02005   }
02006 #endif /* LWIP_NETIF_HWADDRHINT */
02007 
02008   /* Look in neighbor cache for the next-hop address. */
02009   if (ip6_addr_cmp(&(destination_cache[nd6_cached_destination_index].next_hop_addr),
02010                    &(neighbor_cache[nd6_cached_neighbor_index].next_hop_address))) {
02011     /* Cache hit. */
02012     /* Do nothing. */
02013     ND6_STATS_INC(nd6.cachehit);
02014   } else {
02015     i = nd6_find_neighbor_cache_entry(&(destination_cache[nd6_cached_destination_index].next_hop_addr));
02016     if (i >= 0) {
02017       /* Found a matching record, make it new cached entry. */
02018       nd6_cached_neighbor_index = i;
02019     } else {
02020       /* Neighbor not in cache. Make a new entry. */
02021       i = nd6_new_neighbor_cache_entry();
02022       if (i >= 0) {
02023         /* got new neighbor entry. make it our new cached index. */
02024         nd6_cached_neighbor_index = i;
02025       } else {
02026         /* Could not create a neighbor cache entry. */
02027         return ERR_MEM;
02028       }
02029 
02030       /* Initialize fields. */
02031       ip6_addr_copy(neighbor_cache[i].next_hop_address,
02032                    destination_cache[nd6_cached_destination_index].next_hop_addr);
02033       neighbor_cache[i].isrouter = 0;
02034       neighbor_cache[i].netif = netif;
02035       neighbor_cache[i].state = ND6_INCOMPLETE;
02036       neighbor_cache[i].counter.probes_sent = 1;
02037       nd6_send_neighbor_cache_probe(&neighbor_cache[i], ND6_SEND_FLAG_MULTICAST_DEST);
02038     }
02039   }
02040 
02041   /* Reset this destination's age. */
02042   destination_cache[nd6_cached_destination_index].age = 0;
02043 
02044   return nd6_cached_neighbor_index;
02045 }
02046 
02047 /**
02048  * Queue a packet for a neighbor.
02049  *
02050  * @param neighbor_index the index in the neighbor cache table
02051  * @param q packet to be queued
02052  * @return ERR_OK if succeeded, ERR_MEM if out of memory
02053  */
02054 static err_t
02055 nd6_queue_packet(s8_t neighbor_index, struct pbuf *q)
02056 {
02057   err_t result = ERR_MEM;
02058   struct pbuf *p;
02059   int copy_needed = 0;
02060 #if LWIP_ND6_QUEUEING
02061   struct nd6_q_entry *new_entry, *r;
02062 #endif /* LWIP_ND6_QUEUEING */
02063 
02064   if ((neighbor_index < 0) || (neighbor_index >= LWIP_ND6_NUM_NEIGHBORS)) {
02065     return ERR_ARG;
02066   }
02067 
02068   /* IF q includes a pbuf that must be copied, we have to copy the whole chain
02069    * into a new PBUF_RAM. See the definition of PBUF_NEEDS_COPY for details. */
02070   p = q;
02071   while (p) {
02072     if (PBUF_NEEDS_COPY(p)) {
02073       copy_needed = 1;
02074       break;
02075     }
02076     p = p->next;
02077   }
02078   if (copy_needed) {
02079     /* copy the whole packet into new pbufs */
02080     p = pbuf_clone(PBUF_LINK, PBUF_RAM, q);
02081     while ((p == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
02082       /* Free oldest packet (as per RFC recommendation) */
02083 #if LWIP_ND6_QUEUEING
02084       r = neighbor_cache[neighbor_index].q;
02085       neighbor_cache[neighbor_index].q = r->next;
02086       r->next = NULL;
02087       nd6_free_q(r);
02088 #else /* LWIP_ND6_QUEUEING */
02089       pbuf_free(neighbor_cache[neighbor_index].q);
02090       neighbor_cache[neighbor_index].q = NULL;
02091 #endif /* LWIP_ND6_QUEUEING */
02092       p = pbuf_clone(PBUF_LINK, PBUF_RAM, q);
02093     }
02094   } else {
02095     /* referencing the old pbuf is enough */
02096     p = q;
02097     pbuf_ref(p);
02098   }
02099   /* packet was copied/ref'd? */
02100   if (p != NULL) {
02101     /* queue packet ... */
02102 #if LWIP_ND6_QUEUEING
02103     /* allocate a new nd6 queue entry */
02104     new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
02105     if ((new_entry == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
02106       /* Free oldest packet (as per RFC recommendation) */
02107       r = neighbor_cache[neighbor_index].q;
02108       neighbor_cache[neighbor_index].q = r->next;
02109       r->next = NULL;
02110       nd6_free_q(r);
02111       new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
02112     }
02113     if (new_entry != NULL) {
02114       new_entry->next = NULL;
02115       new_entry->p = p;
02116       if (neighbor_cache[neighbor_index].q != NULL) {
02117         /* queue was already existent, append the new entry to the end */
02118         r = neighbor_cache[neighbor_index].q;
02119         while (r->next != NULL) {
02120           r = r->next;
02121         }
02122         r->next = new_entry;
02123       } else {
02124         /* queue did not exist, first item in queue */
02125         neighbor_cache[neighbor_index].q = new_entry;
02126       }
02127       LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
02128       result = ERR_OK;
02129     } else {
02130       /* the pool MEMP_ND6_QUEUE is empty */
02131       pbuf_free(p);
02132       LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)p));
02133       /* { result == ERR_MEM } through initialization */
02134     }
02135 #else /* LWIP_ND6_QUEUEING */
02136     /* Queue a single packet. If an older packet is already queued, free it as per RFC. */
02137     if (neighbor_cache[neighbor_index].q != NULL) {
02138       pbuf_free(neighbor_cache[neighbor_index].q);
02139     }
02140     neighbor_cache[neighbor_index].q = p;
02141     LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
02142     result = ERR_OK;
02143 #endif /* LWIP_ND6_QUEUEING */
02144   } else {
02145     LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)q));
02146     /* { result == ERR_MEM } through initialization */
02147   }
02148 
02149   return result;
02150 }
02151 
02152 #if LWIP_ND6_QUEUEING
02153 /**
02154  * Free a complete queue of nd6 q entries
02155  *
02156  * @param q a queue of nd6_q_entry to free
02157  */
02158 static void
02159 nd6_free_q(struct nd6_q_entry *q)
02160 {
02161   struct nd6_q_entry *r;
02162   LWIP_ASSERT("q != NULL", q != NULL);
02163   LWIP_ASSERT("q->p != NULL", q->p != NULL);
02164   while (q) {
02165     r = q;
02166     q = q->next;
02167     LWIP_ASSERT("r->p != NULL", (r->p != NULL));
02168     pbuf_free(r->p);
02169     memp_free(MEMP_ND6_QUEUE, r);
02170   }
02171 }
02172 #endif /* LWIP_ND6_QUEUEING */
02173 
02174 /**
02175  * Send queued packets for a neighbor
02176  *
02177  * @param i the neighbor to send packets to
02178  */
02179 static void
02180 nd6_send_q(s8_t i)
02181 {
02182   struct ip6_hdr *ip6hdr;
02183   ip6_addr_t dest;
02184 #if LWIP_ND6_QUEUEING
02185   struct nd6_q_entry *q;
02186 #endif /* LWIP_ND6_QUEUEING */
02187 
02188   if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
02189     return;
02190   }
02191 
02192 #if LWIP_ND6_QUEUEING
02193   while (neighbor_cache[i].q != NULL) {
02194     /* remember first in queue */
02195     q = neighbor_cache[i].q;
02196     /* pop first item off the queue */
02197     neighbor_cache[i].q = q->next;
02198     /* Get ipv6 header. */
02199     ip6hdr = (struct ip6_hdr *)(q->p->payload);
02200     /* Create an aligned copy. */
02201     ip6_addr_copy_from_packed(dest, ip6hdr->dest);
02202     /* Restore the zone, if applicable. */
02203     ip6_addr_assign_zone(&dest, IP6_UNKNOWN, neighbor_cache[i].netif);
02204     /* send the queued IPv6 packet */
02205     (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, q->p, &dest);
02206     /* free the queued IP packet */
02207     pbuf_free(q->p);
02208     /* now queue entry can be freed */
02209     memp_free(MEMP_ND6_QUEUE, q);
02210   }
02211 #else /* LWIP_ND6_QUEUEING */
02212   if (neighbor_cache[i].q != NULL) {
02213     /* Get ipv6 header. */
02214     ip6hdr = (struct ip6_hdr *)(neighbor_cache[i].q->payload);
02215     /* Create an aligned copy. */
02216     ip6_addr_copy_from_packed(dest, ip6hdr->dest);
02217     /* Restore the zone, if applicable. */
02218     ip6_addr_assign_zone(&dest, IP6_UNKNOWN, neighbor_cache[i].netif);
02219     /* send the queued IPv6 packet */
02220     (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, neighbor_cache[i].q, &dest);
02221     /* free the queued IP packet */
02222     pbuf_free(neighbor_cache[i].q);
02223     neighbor_cache[i].q = NULL;
02224   }
02225 #endif /* LWIP_ND6_QUEUEING */
02226 }
02227 
02228 /**
02229  * A packet is to be transmitted to a specific IPv6 destination on a specific
02230  * interface. Check if we can find the hardware address of the next hop to use
02231  * for the packet. If so, give the hardware address to the caller, which should
02232  * use it to send the packet right away. Otherwise, enqueue the packet for
02233  * later transmission while looking up the hardware address, if possible.
02234  *
02235  * As such, this function returns one of three different possible results:
02236  *
02237  * - ERR_OK with a non-NULL 'hwaddrp': the caller should send the packet now.
02238  * - ERR_OK with a NULL 'hwaddrp': the packet has been enqueued for later.
02239  * - not ERR_OK: something went wrong; forward the error upward in the stack.
02240  *
02241  * @param netif The lwIP network interface on which the IP packet will be sent.
02242  * @param q The pbuf(s) containing the IP packet to be sent.
02243  * @param ip6addr The destination IPv6 address of the packet.
02244  * @param hwaddrp On success, filled with a pointer to a HW address or NULL (meaning
02245  *        the packet has been queued).
02246  * @return
02247  * - ERR_OK on success, ERR_RTE if no route was found for the packet,
02248  * or ERR_MEM if low memory conditions prohibit sending the packet at all.
02249  */
02250 err_t
02251 nd6_get_next_hop_addr_or_queue(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr, const u8_t **hwaddrp)
02252 {
02253   s8_t i;
02254 
02255   /* Get next hop record. */
02256   i = nd6_get_next_hop_entry(ip6addr, netif);
02257   if (i < 0) {
02258     /* failed to get a next hop neighbor record. */
02259     return i;
02260   }
02261 
02262   /* Now that we have a destination record, send or queue the packet. */
02263   if (neighbor_cache[i].state == ND6_STALE) {
02264     /* Switch to delay state. */
02265     neighbor_cache[i].state = ND6_DELAY;
02266     neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
02267   }
02268   /* @todo should we send or queue if PROBE? send for now, to let unicast NS pass. */
02269   if ((neighbor_cache[i].state == ND6_REACHABLE) ||
02270       (neighbor_cache[i].state == ND6_DELAY) ||
02271       (neighbor_cache[i].state == ND6_PROBE)) {
02272 
02273     /* Tell the caller to send out the packet now. */
02274     *hwaddrp = neighbor_cache[i].lladdr;
02275     return ERR_OK;
02276   }
02277 
02278   /* We should queue packet on this interface. */
02279   *hwaddrp = NULL;
02280   return nd6_queue_packet(i, q);
02281 }
02282 
02283 
02284 /**
02285  * Get the Path MTU for a destination.
02286  *
02287  * @param ip6addr the destination address
02288  * @param netif the netif on which the packet will be sent
02289  * @return the Path MTU, if known, or the netif default MTU
02290  */
02291 u16_t
02292 nd6_get_destination_mtu(const ip6_addr_t *ip6addr, struct netif *netif)
02293 {
02294   s16_t i;
02295 
02296   i = nd6_find_destination_cache_entry(ip6addr);
02297   if (i >= 0) {
02298     if (destination_cache[i].pmtu > 0) {
02299       return destination_cache[i].pmtu;
02300     }
02301   }
02302 
02303   if (netif != NULL) {
02304     return netif_mtu6(netif);
02305   }
02306 
02307   return 1280; /* Minimum MTU */
02308 }
02309 
02310 
02311 #if LWIP_ND6_TCP_REACHABILITY_HINTS
02312 /**
02313  * Provide the Neighbor discovery process with a hint that a
02314  * destination is reachable. Called by tcp_receive when ACKs are
02315  * received or sent (as per RFC). This is useful to avoid sending
02316  * NS messages every 30 seconds.
02317  *
02318  * @param ip6addr the destination address which is know to be reachable
02319  *                by an upper layer protocol (TCP)
02320  */
02321 void
02322 nd6_reachability_hint(const ip6_addr_t *ip6addr)
02323 {
02324   s8_t i;
02325   s16_t dst_idx;
02326 
02327   /* Find destination in cache. */
02328   if (ip6_addr_cmp(ip6addr, &(destination_cache[nd6_cached_destination_index].destination_addr))) {
02329     dst_idx = nd6_cached_destination_index;
02330     ND6_STATS_INC(nd6.cachehit);
02331   } else {
02332     dst_idx = nd6_find_destination_cache_entry(ip6addr);
02333   }
02334   if (dst_idx < 0) {
02335     return;
02336   }
02337 
02338   /* Find next hop neighbor in cache. */
02339   if (ip6_addr_cmp(&(destination_cache[dst_idx].next_hop_addr), &(neighbor_cache[nd6_cached_neighbor_index].next_hop_address))) {
02340     i = nd6_cached_neighbor_index;
02341     ND6_STATS_INC(nd6.cachehit);
02342   } else {
02343     i = nd6_find_neighbor_cache_entry(&(destination_cache[dst_idx].next_hop_addr));
02344   }
02345   if (i < 0) {
02346     return;
02347   }
02348 
02349   /* For safety: don't set as reachable if we don't have a LL address yet. Misuse protection. */
02350   if (neighbor_cache[i].state == ND6_INCOMPLETE || neighbor_cache[i].state == ND6_NO_ENTRY) {
02351     return;
02352   }
02353 
02354   /* Set reachability state. */
02355   neighbor_cache[i].state = ND6_REACHABLE;
02356   neighbor_cache[i].counter.reachable_time = reachable_time;
02357 }
02358 #endif /* LWIP_ND6_TCP_REACHABILITY_HINTS */
02359 
02360 /**
02361  * Remove all prefix, neighbor_cache and router entries of the specified netif.
02362  *
02363  * @param netif points to a network interface
02364  */
02365 void
02366 nd6_cleanup_netif(struct netif *netif)
02367 {
02368   u8_t i;
02369   s8_t router_index;
02370   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
02371     if (prefix_list[i].netif == netif) {
02372       prefix_list[i].netif = NULL;
02373     }
02374   }
02375   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
02376     if (neighbor_cache[i].netif == netif) {
02377       for (router_index = 0; router_index < LWIP_ND6_NUM_ROUTERS; router_index++) {
02378         if (default_router_list[router_index].neighbor_entry == &neighbor_cache[i]) {
02379           default_router_list[router_index].neighbor_entry = NULL;
02380           default_router_list[router_index].flags = 0;
02381         }
02382       }
02383       neighbor_cache[i].isrouter = 0;
02384       nd6_free_neighbor_cache_entry(i);
02385     }
02386   }
02387   /* Clear the destination cache, since many entries may now have become
02388    * invalid for one of several reasons. As destination cache entries have no
02389    * netif association, use a sledgehammer approach (this can be improved). */
02390   nd6_clear_destination_cache();
02391 }
02392 
02393 #if LWIP_IPV6_MLD
02394 /**
02395  * The state of a local IPv6 address entry is about to change. If needed, join
02396  * or leave the solicited-node multicast group for the address.
02397  *
02398  * @param netif The netif that owns the address.
02399  * @param addr_idx The index of the address.
02400  * @param new_state The new (IP6_ADDR_) state for the address.
02401  */
02402 void
02403 nd6_adjust_mld_membership(struct netif *netif, s8_t addr_idx, u8_t new_state)
02404 {
02405   u8_t old_state, old_member, new_member;
02406 
02407   old_state = netif_ip6_addr_state(netif, addr_idx);
02408 
02409   /* Determine whether we were, and should be, a member of the solicited-node
02410    * multicast group for this address. For tentative addresses, the group is
02411    * not joined until the address enters the TENTATIVE_1 (or VALID) state. */
02412   old_member = (old_state != IP6_ADDR_INVALID && old_state != IP6_ADDR_DUPLICATED && old_state != IP6_ADDR_TENTATIVE);
02413   new_member = (new_state != IP6_ADDR_INVALID && new_state != IP6_ADDR_DUPLICATED && new_state != IP6_ADDR_TENTATIVE);
02414 
02415   if (old_member != new_member) {
02416     ip6_addr_set_solicitednode(&multicast_address, netif_ip6_addr(netif, addr_idx)->addr[3]);
02417     ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
02418 
02419     if (new_member) {
02420       mld6_joingroup_netif(netif, &multicast_address);
02421     } else {
02422       mld6_leavegroup_netif(netif, &multicast_address);
02423     }
02424   }
02425 }
02426 #endif /* LWIP_IPV6_MLD */
02427 
02428 /** Netif was added, set up, or reconnected (link up) */
02429 void
02430 nd6_restart_netif(struct netif *netif)
02431 {
02432 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
02433   /* Send Router Solicitation messages (see RFC 4861, ch. 6.3.7). */
02434   netif->rs_count = LWIP_ND6_MAX_MULTICAST_SOLICIT;
02435 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
02436 }
02437 
02438 #endif /* LWIP_IPV6 */