Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: TYBLE16_simple_data_logger TYBLE16_MP3_Air
lwip_lowpan6.c
00001 /** 00002 * @file 00003 * 00004 * 6LowPAN output for IPv6. Uses ND tables for link-layer addressing. Fragments packets to 6LowPAN units. 00005 * 00006 * This implementation aims to conform to IEEE 802.15.4(-2015), RFC 4944 and RFC 6282. 00007 * @todo: RFC 6775. 00008 */ 00009 00010 /* 00011 * Copyright (c) 2015 Inico Technologies Ltd. 00012 * All rights reserved. 00013 * 00014 * Redistribution and use in source and binary forms, with or without modification, 00015 * are permitted provided that the following conditions are met: 00016 * 00017 * 1. Redistributions of source code must retain the above copyright notice, 00018 * this list of conditions and the following disclaimer. 00019 * 2. Redistributions in binary form must reproduce the above copyright notice, 00020 * this list of conditions and the following disclaimer in the documentation 00021 * and/or other materials provided with the distribution. 00022 * 3. The name of the author may not be used to endorse or promote products 00023 * derived from this software without specific prior written permission. 00024 * 00025 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 00026 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 00027 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT 00028 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 00029 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 00030 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 00031 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 00032 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 00033 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 00034 * OF SUCH DAMAGE. 00035 * 00036 * This file is part of the lwIP TCP/IP stack. 00037 * 00038 * Author: Ivan Delamer <delamer@inicotech.com> 00039 * 00040 * 00041 * Please coordinate changes and requests with Ivan Delamer 00042 * <delamer@inicotech.com> 00043 */ 00044 00045 /** 00046 * @defgroup sixlowpan 6LoWPAN (RFC4944) 00047 * @ingroup netifs 00048 * 6LowPAN netif implementation 00049 */ 00050 00051 #include "netif/lowpan6.h" 00052 00053 #if LWIP_IPV6 00054 00055 #include "lwip/ip.h" 00056 #include "lwip/pbuf.h" 00057 #include "lwip/ip_addr.h" 00058 #include "lwip/netif.h" 00059 #include "lwip/nd6.h" 00060 #include "lwip/mem.h" 00061 #include "lwip/udp.h" 00062 #include "lwip/tcpip.h" 00063 #include "lwip/snmp.h" 00064 #include "netif/ieee802154.h" 00065 00066 #include <string.h> 00067 00068 #if LWIP_6LOWPAN_802154_HW_CRC 00069 #define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) 0 00070 #else 00071 #define LWIP_6LOWPAN_DO_CALC_CRC(buf, len) LWIP_6LOWPAN_CALC_CRC(buf, len) 00072 #endif 00073 00074 /** This is a helper struct for reassembly of fragments 00075 * (IEEE 802.15.4 limits to 127 bytes) 00076 */ 00077 struct lowpan6_reass_helper { 00078 struct lowpan6_reass_helper *next_packet; 00079 struct pbuf *reass; 00080 struct pbuf *frags; 00081 u8_t timer; 00082 struct lowpan6_link_addr sender_addr; 00083 u16_t datagram_size; 00084 u16_t datagram_tag; 00085 }; 00086 00087 /** This struct keeps track of per-netif state */ 00088 struct lowpan6_ieee802154_data { 00089 /** fragment reassembly list */ 00090 struct lowpan6_reass_helper *reass_list; 00091 #if LWIP_6LOWPAN_NUM_CONTEXTS > 0 00092 /** address context for compression */ 00093 ip6_addr_t lowpan6_context[LWIP_6LOWPAN_NUM_CONTEXTS]; 00094 #endif 00095 /** Datagram Tag for fragmentation */ 00096 u16_t tx_datagram_tag; 00097 /** local PAN ID for IEEE 802.15.4 header */ 00098 u16_t ieee_802154_pan_id; 00099 /** Sequence Number for IEEE 802.15.4 transmission */ 00100 u8_t tx_frame_seq_num; 00101 }; 00102 00103 /* Maximum frame size is 127 bytes minus CRC size */ 00104 #define LOWPAN6_MAX_PAYLOAD (127 - 2) 00105 00106 /** Currently, this state is global, since there's only one 6LoWPAN netif */ 00107 static struct lowpan6_ieee802154_data lowpan6_data; 00108 00109 #if LWIP_6LOWPAN_NUM_CONTEXTS > 0 00110 #define LWIP_6LOWPAN_CONTEXTS(netif) lowpan6_data.lowpan6_context 00111 #else 00112 #define LWIP_6LOWPAN_CONTEXTS(netif) NULL 00113 #endif 00114 00115 static const struct lowpan6_link_addr ieee_802154_broadcast = {2, {0xff, 0xff}}; 00116 00117 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS 00118 static struct lowpan6_link_addr short_mac_addr = {2, {0, 0}}; 00119 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ 00120 00121 /* IEEE 802.15.4 specific functions: */ 00122 00123 /** Write the IEEE 802.15.4 header that encapsulates the 6LoWPAN frame. 00124 * Src and dst PAN IDs are filled with the ID set by @ref lowpan6_set_pan_id. 00125 * 00126 * Since the length is variable: 00127 * @returns the header length 00128 */ 00129 static u8_t 00130 lowpan6_write_iee802154_header(struct ieee_802154_hdr *hdr, const struct lowpan6_link_addr *src, 00131 const struct lowpan6_link_addr *dst) 00132 { 00133 u8_t ieee_header_len; 00134 u8_t *buffer; 00135 u8_t i; 00136 u16_t fc; 00137 00138 fc = IEEE_802154_FC_FT_DATA; /* send data packet (2003 frame version) */ 00139 fc |= IEEE_802154_FC_PANID_COMPR; /* set PAN ID compression, for now src and dst PANs are equal */ 00140 if (dst != &ieee_802154_broadcast) { 00141 fc |= IEEE_802154_FC_ACK_REQ; /* data packet, no broadcast: ack required. */ 00142 } 00143 if (dst->addr_len == 2) { 00144 fc |= IEEE_802154_FC_DST_ADDR_MODE_SHORT; 00145 } else { 00146 LWIP_ASSERT("invalid dst address length", dst->addr_len == 8); 00147 fc |= IEEE_802154_FC_DST_ADDR_MODE_EXT; 00148 } 00149 if (src->addr_len == 2) { 00150 fc |= IEEE_802154_FC_SRC_ADDR_MODE_SHORT; 00151 } else { 00152 LWIP_ASSERT("invalid src address length", src->addr_len == 8); 00153 fc |= IEEE_802154_FC_SRC_ADDR_MODE_EXT; 00154 } 00155 hdr->frame_control = fc; 00156 hdr->sequence_number = lowpan6_data.tx_frame_seq_num++; 00157 hdr->destination_pan_id = lowpan6_data.ieee_802154_pan_id; /* pan id */ 00158 00159 buffer = (u8_t *)hdr; 00160 ieee_header_len = 5; 00161 i = dst->addr_len; 00162 /* reverse memcpy of dst addr */ 00163 while (i-- > 0) { 00164 buffer[ieee_header_len++] = dst->addr[i]; 00165 } 00166 /* Source PAN ID skipped due to PAN ID Compression */ 00167 i = src->addr_len; 00168 /* reverse memcpy of src addr */ 00169 while (i-- > 0) { 00170 buffer[ieee_header_len++] = src->addr[i]; 00171 } 00172 return ieee_header_len; 00173 } 00174 00175 /** Parse the IEEE 802.15.4 header from a pbuf. 00176 * If successful, the header is hidden from the pbuf. 00177 * 00178 * PAN IDs and seuqence number are not checked 00179 * 00180 * @param p input pbuf, p->payload pointing at the IEEE 802.15.4 header 00181 * @param src pointer to source address filled from the header 00182 * @param dest pointer to destination address filled from the header 00183 * @returns ERR_OK if successful 00184 */ 00185 static err_t 00186 lowpan6_parse_iee802154_header(struct pbuf *p, struct lowpan6_link_addr *src, 00187 struct lowpan6_link_addr *dest) 00188 { 00189 u8_t *puc; 00190 s8_t i; 00191 u16_t frame_control, addr_mode; 00192 u16_t datagram_offset; 00193 00194 /* Parse IEEE 802.15.4 header */ 00195 puc = (u8_t *)p->payload; 00196 frame_control = puc[0] | (puc[1] << 8); 00197 datagram_offset = 2; 00198 if (frame_control & IEEE_802154_FC_SEQNO_SUPPR) { 00199 if (IEEE_802154_FC_FRAME_VERSION_GET(frame_control) <= 1) { 00200 /* sequence number suppressed, this is not valid for versions 0/1 */ 00201 return ERR_VAL; 00202 } 00203 } else { 00204 datagram_offset++; 00205 } 00206 datagram_offset += 2; /* Skip destination PAN ID */ 00207 addr_mode = frame_control & IEEE_802154_FC_DST_ADDR_MODE_MASK; 00208 if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_EXT) { 00209 /* extended address (64 bit) */ 00210 dest->addr_len = 8; 00211 /* reverse memcpy: */ 00212 for (i = 0; i < 8; i++) { 00213 dest->addr[i] = puc[datagram_offset + 7 - i]; 00214 } 00215 datagram_offset += 8; 00216 } else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) { 00217 /* short address (16 bit) */ 00218 dest->addr_len = 2; 00219 /* reverse memcpy: */ 00220 dest->addr[0] = puc[datagram_offset + 1]; 00221 dest->addr[1] = puc[datagram_offset]; 00222 datagram_offset += 2; 00223 } else { 00224 /* unsupported address mode (do we need "no address"?) */ 00225 return ERR_VAL; 00226 } 00227 00228 if (!(frame_control & IEEE_802154_FC_PANID_COMPR)) { 00229 /* No PAN ID compression, skip source PAN ID */ 00230 datagram_offset += 2; 00231 } 00232 00233 addr_mode = frame_control & IEEE_802154_FC_SRC_ADDR_MODE_MASK; 00234 if (addr_mode == IEEE_802154_FC_SRC_ADDR_MODE_EXT) { 00235 /* extended address (64 bit) */ 00236 src->addr_len = 8; 00237 /* reverse memcpy: */ 00238 for (i = 0; i < 8; i++) { 00239 src->addr[i] = puc[datagram_offset + 7 - i]; 00240 } 00241 datagram_offset += 8; 00242 } else if (addr_mode == IEEE_802154_FC_DST_ADDR_MODE_SHORT) { 00243 /* short address (16 bit) */ 00244 src->addr_len = 2; 00245 src->addr[0] = puc[datagram_offset + 1]; 00246 src->addr[1] = puc[datagram_offset]; 00247 datagram_offset += 2; 00248 } else { 00249 /* unsupported address mode (do we need "no address"?) */ 00250 return ERR_VAL; 00251 } 00252 00253 /* hide IEEE802.15.4 header. */ 00254 if (pbuf_remove_header(p, datagram_offset)) { 00255 return ERR_VAL; 00256 } 00257 return ERR_OK; 00258 } 00259 00260 /** Calculate the 16-bit CRC as required by IEEE 802.15.4 */ 00261 u16_t 00262 lowpan6_calc_crc(const void* buf, u16_t len) 00263 { 00264 #define CCITT_POLY_16 0x8408U 00265 u16_t i; 00266 u8_t b; 00267 u16_t crc = 0; 00268 const u8_t* p = (const u8_t*)buf; 00269 00270 for (i = 0; i < len; i++) { 00271 u8_t data = *p; 00272 for (b = 0U; b < 8U; b++) { 00273 if (((data ^ crc) & 1) != 0) { 00274 crc = (u16_t)((crc >> 1) ^ CCITT_POLY_16); 00275 } else { 00276 crc = (u16_t)(crc >> 1); 00277 } 00278 data = (u8_t)(data >> 1); 00279 } 00280 p++; 00281 } 00282 return crc; 00283 } 00284 00285 /* Fragmentation specific functions: */ 00286 00287 static void 00288 free_reass_datagram(struct lowpan6_reass_helper *lrh) 00289 { 00290 if (lrh->reass) { 00291 pbuf_free(lrh->reass); 00292 } 00293 if (lrh->frags) { 00294 pbuf_free(lrh->frags); 00295 } 00296 mem_free(lrh); 00297 } 00298 00299 /** 00300 * Removes a datagram from the reassembly queue. 00301 **/ 00302 static void 00303 dequeue_datagram(struct lowpan6_reass_helper *lrh, struct lowpan6_reass_helper *prev) 00304 { 00305 if (lowpan6_data.reass_list == lrh) { 00306 lowpan6_data.reass_list = lowpan6_data.reass_list->next_packet; 00307 } else { 00308 /* it wasn't the first, so it must have a valid 'prev' */ 00309 LWIP_ASSERT("sanity check linked list", prev != NULL); 00310 prev->next_packet = lrh->next_packet; 00311 } 00312 } 00313 00314 /** 00315 * Periodic timer for 6LowPAN functions: 00316 * 00317 * - Remove incomplete/old packets 00318 */ 00319 void 00320 lowpan6_tmr(void) 00321 { 00322 struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL; 00323 00324 lrh = lowpan6_data.reass_list; 00325 while (lrh != NULL) { 00326 lrh_next = lrh->next_packet; 00327 if ((--lrh->timer) == 0) { 00328 dequeue_datagram(lrh, lrh_prev); 00329 free_reass_datagram(lrh); 00330 } else { 00331 lrh_prev = lrh; 00332 } 00333 lrh = lrh_next; 00334 } 00335 } 00336 00337 /* 00338 * Encapsulates data into IEEE 802.15.4 frames. 00339 * Fragments an IPv6 datagram into 6LowPAN units, which fit into IEEE 802.15.4 frames. 00340 * If configured, will compress IPv6 and or UDP headers. 00341 * */ 00342 static err_t 00343 lowpan6_frag(struct netif *netif, struct pbuf *p, const struct lowpan6_link_addr *src, const struct lowpan6_link_addr *dst) 00344 { 00345 struct pbuf *p_frag; 00346 u16_t frag_len, remaining_len, max_data_len; 00347 u8_t *buffer; 00348 u8_t ieee_header_len; 00349 u8_t lowpan6_header_len; 00350 u8_t hidden_header_len; 00351 u16_t crc; 00352 u16_t datagram_offset; 00353 err_t err = ERR_IF; 00354 00355 LWIP_ASSERT("lowpan6_frag: netif->linkoutput not set", netif->linkoutput != NULL); 00356 00357 /* We'll use a dedicated pbuf for building 6LowPAN fragments. */ 00358 p_frag = pbuf_alloc(PBUF_RAW, 127, PBUF_RAM); 00359 if (p_frag == NULL) { 00360 MIB2_STATS_NETIF_INC(netif, ifoutdiscards); 00361 return ERR_MEM; 00362 } 00363 LWIP_ASSERT("this needs a pbuf in one piece", p_frag->len == p_frag->tot_len); 00364 00365 /* Write IEEE 802.15.4 header. */ 00366 buffer = (u8_t *)p_frag->payload; 00367 ieee_header_len = lowpan6_write_iee802154_header((struct ieee_802154_hdr *)buffer, src, dst); 00368 LWIP_ASSERT("ieee_header_len < p_frag->len", ieee_header_len < p_frag->len); 00369 00370 #if LWIP_6LOWPAN_IPHC 00371 /* Perform 6LowPAN IPv6 header compression according to RFC 6282 */ 00372 /* do the header compression (this does NOT copy any non-compressed data) */ 00373 err = lowpan6_compress_headers(netif, (u8_t *)p->payload, p->len, 00374 &buffer[ieee_header_len], p_frag->len - ieee_header_len, &lowpan6_header_len, 00375 &hidden_header_len, LWIP_6LOWPAN_CONTEXTS(netif), src, dst); 00376 if (err != ERR_OK) { 00377 MIB2_STATS_NETIF_INC(netif, ifoutdiscards); 00378 pbuf_free(p_frag); 00379 return err; 00380 } 00381 pbuf_remove_header(p, hidden_header_len); 00382 00383 #else /* LWIP_6LOWPAN_IPHC */ 00384 /* Send uncompressed IPv6 header with appropriate dispatch byte. */ 00385 lowpan6_header_len = 1; 00386 buffer[ieee_header_len] = 0x41; /* IPv6 dispatch */ 00387 #endif /* LWIP_6LOWPAN_IPHC */ 00388 00389 /* Calculate remaining packet length */ 00390 remaining_len = p->tot_len; 00391 00392 if (remaining_len > 0x7FF) { 00393 MIB2_STATS_NETIF_INC(netif, ifoutdiscards); 00394 /* datagram_size must fit into 11 bit */ 00395 pbuf_free(p_frag); 00396 return ERR_VAL; 00397 } 00398 00399 /* Fragment, or 1 packet? */ 00400 max_data_len = LOWPAN6_MAX_PAYLOAD - ieee_header_len - lowpan6_header_len; 00401 if (remaining_len > max_data_len) { 00402 u16_t data_len; 00403 /* We must move the 6LowPAN header to make room for the FRAG header. */ 00404 memmove(&buffer[ieee_header_len + 4], &buffer[ieee_header_len], lowpan6_header_len); 00405 00406 /* Now we need to fragment the packet. FRAG1 header first */ 00407 buffer[ieee_header_len] = 0xc0 | (((p->tot_len + hidden_header_len) >> 8) & 0x7); 00408 buffer[ieee_header_len + 1] = (p->tot_len + hidden_header_len) & 0xff; 00409 00410 lowpan6_data.tx_datagram_tag++; 00411 buffer[ieee_header_len + 2] = (lowpan6_data.tx_datagram_tag >> 8) & 0xff; 00412 buffer[ieee_header_len + 3] = lowpan6_data.tx_datagram_tag & 0xff; 00413 00414 /* Fragment follows. */ 00415 data_len = (max_data_len - 4) & 0xf8; 00416 frag_len = data_len + lowpan6_header_len; 00417 00418 pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len + 4, frag_len - lowpan6_header_len, 0); 00419 remaining_len -= frag_len - lowpan6_header_len; 00420 /* datagram offset holds the offset before compression */ 00421 datagram_offset = frag_len - lowpan6_header_len + hidden_header_len; 00422 LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0); 00423 00424 /* Calculate frame length */ 00425 p_frag->len = p_frag->tot_len = ieee_header_len + 4 + frag_len + 2; /* add 2 bytes for crc*/ 00426 00427 /* 2 bytes CRC */ 00428 crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); 00429 pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); 00430 00431 /* send the packet */ 00432 MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); 00433 LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); 00434 err = netif->linkoutput(netif, p_frag); 00435 00436 while ((remaining_len > 0) && (err == ERR_OK)) { 00437 struct ieee_802154_hdr *hdr = (struct ieee_802154_hdr *)buffer; 00438 /* new frame, new seq num for ACK */ 00439 hdr->sequence_number = lowpan6_data.tx_frame_seq_num++; 00440 00441 buffer[ieee_header_len] |= 0x20; /* Change FRAG1 to FRAGN */ 00442 00443 LWIP_ASSERT("datagram offset must be a multiple of 8", (datagram_offset & 7) == 0); 00444 buffer[ieee_header_len + 4] = (u8_t)(datagram_offset >> 3); /* datagram offset in FRAGN header (datagram_offset is max. 11 bit) */ 00445 00446 frag_len = (127 - ieee_header_len - 5 - 2) & 0xf8; 00447 if (frag_len > remaining_len) { 00448 frag_len = remaining_len; 00449 } 00450 00451 pbuf_copy_partial(p, buffer + ieee_header_len + 5, frag_len, p->tot_len - remaining_len); 00452 remaining_len -= frag_len; 00453 datagram_offset += frag_len; 00454 00455 /* Calculate frame length */ 00456 p_frag->len = p_frag->tot_len = frag_len + 5 + ieee_header_len + 2; 00457 00458 /* 2 bytes CRC */ 00459 crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); 00460 pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); 00461 00462 /* send the packet */ 00463 MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); 00464 LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); 00465 err = netif->linkoutput(netif, p_frag); 00466 } 00467 } else { 00468 /* It fits in one frame. */ 00469 frag_len = remaining_len; 00470 00471 /* Copy IPv6 packet */ 00472 pbuf_copy_partial(p, buffer + ieee_header_len + lowpan6_header_len, frag_len, 0); 00473 remaining_len = 0; 00474 00475 /* Calculate frame length */ 00476 p_frag->len = p_frag->tot_len = frag_len + lowpan6_header_len + ieee_header_len + 2; 00477 LWIP_ASSERT("", p_frag->len <= 127); 00478 00479 /* 2 bytes CRC */ 00480 crc = LWIP_6LOWPAN_DO_CALC_CRC(p_frag->payload, p_frag->len - 2); 00481 pbuf_take_at(p_frag, &crc, 2, p_frag->len - 2); 00482 00483 /* send the packet */ 00484 MIB2_STATS_NETIF_ADD(netif, ifoutoctets, p_frag->tot_len); 00485 LWIP_DEBUGF(LWIP_LOWPAN6_DEBUG | LWIP_DBG_TRACE, ("lowpan6_send: sending packet %p\n", (void *)p)); 00486 err = netif->linkoutput(netif, p_frag); 00487 } 00488 00489 pbuf_free(p_frag); 00490 00491 return err; 00492 } 00493 00494 /** 00495 * @ingroup sixlowpan 00496 * Set context 00497 */ 00498 err_t 00499 lowpan6_set_context(u8_t idx, const ip6_addr_t *context) 00500 { 00501 #if LWIP_6LOWPAN_NUM_CONTEXTS > 0 00502 if (idx >= LWIP_6LOWPAN_NUM_CONTEXTS) { 00503 return ERR_ARG; 00504 } 00505 00506 IP6_ADDR_ZONECHECK(context); 00507 00508 ip6_addr_set(&lowpan6_data.lowpan6_context[idx], context); 00509 00510 return ERR_OK; 00511 #else 00512 LWIP_UNUSED_ARG(idx); 00513 LWIP_UNUSED_ARG(context); 00514 return ERR_ARG; 00515 #endif 00516 } 00517 00518 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS 00519 /** 00520 * @ingroup sixlowpan 00521 * Set short address 00522 */ 00523 err_t 00524 lowpan6_set_short_addr(u8_t addr_high, u8_t addr_low) 00525 { 00526 short_mac_addr.addr[0] = addr_high; 00527 short_mac_addr.addr[1] = addr_low; 00528 00529 return ERR_OK; 00530 } 00531 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ 00532 00533 /* Create IEEE 802.15.4 address from netif address */ 00534 static err_t 00535 lowpan6_hwaddr_to_addr(struct netif *netif, struct lowpan6_link_addr *addr) 00536 { 00537 addr->addr_len = 8; 00538 if (netif->hwaddr_len == 8) { 00539 LWIP_ERROR("NETIF_MAX_HWADDR_LEN >= 8 required", sizeof(netif->hwaddr) >= 8, return ERR_VAL;); 00540 SMEMCPY(addr->addr, netif->hwaddr, 8); 00541 } else if (netif->hwaddr_len == 6) { 00542 /* Copy from MAC-48 */ 00543 SMEMCPY(addr->addr, netif->hwaddr, 3); 00544 addr->addr[3] = addr->addr[4] = 0xff; 00545 SMEMCPY(&addr->addr[5], &netif->hwaddr[3], 3); 00546 } else { 00547 /* Invalid address length, don't know how to convert this */ 00548 return ERR_VAL; 00549 } 00550 return ERR_OK; 00551 } 00552 00553 /** 00554 * @ingroup sixlowpan 00555 * Resolve and fill-in IEEE 802.15.4 address header for outgoing IPv6 packet. 00556 * 00557 * Perform Header Compression and fragment if necessary. 00558 * 00559 * @param netif The lwIP network interface which the IP packet will be sent on. 00560 * @param q The pbuf(s) containing the IP packet to be sent. 00561 * @param ip6addr The IP address of the packet destination. 00562 * 00563 * @return err_t 00564 */ 00565 err_t 00566 lowpan6_output(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr) 00567 { 00568 err_t result; 00569 const u8_t *hwaddr; 00570 struct lowpan6_link_addr src, dest; 00571 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS 00572 ip6_addr_t ip6_src; 00573 struct ip6_hdr *ip6_hdr; 00574 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ 00575 00576 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS 00577 /* Check if we can compress source address (use aligned copy) */ 00578 ip6_hdr = (struct ip6_hdr *)q->payload; 00579 ip6_addr_copy_from_packed(ip6_src, ip6_hdr->src); 00580 ip6_addr_assign_zone(&ip6_src, IP6_UNICAST, netif); 00581 if (lowpan6_get_address_mode(&ip6_src, &short_mac_addr) == 3) { 00582 src.addr_len = 2; 00583 src.addr[0] = short_mac_addr.addr[0]; 00584 src.addr[1] = short_mac_addr.addr[1]; 00585 } else 00586 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ 00587 { 00588 result = lowpan6_hwaddr_to_addr(netif, &src); 00589 if (result != ERR_OK) { 00590 MIB2_STATS_NETIF_INC(netif, ifoutdiscards); 00591 return result; 00592 } 00593 } 00594 00595 /* multicast destination IP address? */ 00596 if (ip6_addr_ismulticast(ip6addr)) { 00597 MIB2_STATS_NETIF_INC(netif, ifoutnucastpkts); 00598 /* We need to send to the broadcast address.*/ 00599 return lowpan6_frag(netif, q, &src, &ieee_802154_broadcast); 00600 } 00601 00602 /* We have a unicast destination IP address */ 00603 /* @todo anycast? */ 00604 00605 #if LWIP_6LOWPAN_INFER_SHORT_ADDRESS 00606 if (src.addr_len == 2) { 00607 /* If source address was compressable to short_mac_addr, and dest has same subnet and 00608 * is also compressable to 2-bytes, assume we can infer dest as a short address too. */ 00609 dest.addr_len = 2; 00610 dest.addr[0] = ((u8_t *)q->payload)[38]; 00611 dest.addr[1] = ((u8_t *)q->payload)[39]; 00612 if ((src.addr_len == 2) && (ip6_addr_netcmp_zoneless(&ip6_hdr->src, &ip6_hdr->dest)) && 00613 (lowpan6_get_address_mode(ip6addr, &dest) == 3)) { 00614 MIB2_STATS_NETIF_INC(netif, ifoutucastpkts); 00615 return lowpan6_frag(netif, q, &src, &dest); 00616 } 00617 } 00618 #endif /* LWIP_6LOWPAN_INFER_SHORT_ADDRESS */ 00619 00620 /* Ask ND6 what to do with the packet. */ 00621 result = nd6_get_next_hop_addr_or_queue(netif, q, ip6addr, &hwaddr); 00622 if (result != ERR_OK) { 00623 MIB2_STATS_NETIF_INC(netif, ifoutdiscards); 00624 return result; 00625 } 00626 00627 /* If no hardware address is returned, nd6 has queued the packet for later. */ 00628 if (hwaddr == NULL) { 00629 return ERR_OK; 00630 } 00631 00632 /* Send out the packet using the returned hardware address. */ 00633 dest.addr_len = netif->hwaddr_len; 00634 /* XXX: Inferring the length of the source address from the destination address 00635 * is not correct for IEEE 802.15.4, but currently we don't get this information 00636 * from the neighbor cache */ 00637 SMEMCPY(dest.addr, hwaddr, netif->hwaddr_len); 00638 MIB2_STATS_NETIF_INC(netif, ifoutucastpkts); 00639 return lowpan6_frag(netif, q, &src, &dest); 00640 } 00641 /** 00642 * @ingroup sixlowpan 00643 * NETIF input function: don't free the input pbuf when returning != ERR_OK! 00644 */ 00645 err_t 00646 lowpan6_input(struct pbuf *p, struct netif *netif) 00647 { 00648 u8_t *puc, b; 00649 s8_t i; 00650 struct lowpan6_link_addr src, dest; 00651 u16_t datagram_size = 0; 00652 u16_t datagram_offset, datagram_tag; 00653 struct lowpan6_reass_helper *lrh, *lrh_next, *lrh_prev = NULL; 00654 00655 if (p == NULL) { 00656 return ERR_OK; 00657 } 00658 00659 MIB2_STATS_NETIF_ADD(netif, ifinoctets, p->tot_len); 00660 00661 if (p->len != p->tot_len) { 00662 /* for now, this needs a pbuf in one piece */ 00663 goto lowpan6_input_discard; 00664 } 00665 00666 if (lowpan6_parse_iee802154_header(p, &src, &dest) != ERR_OK) { 00667 goto lowpan6_input_discard; 00668 } 00669 00670 /* Check dispatch. */ 00671 puc = (u8_t *)p->payload; 00672 00673 b = *puc; 00674 if ((b & 0xf8) == 0xc0) { 00675 /* FRAG1 dispatch. add this packet to reassembly list. */ 00676 datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1]; 00677 datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3]; 00678 00679 /* check for duplicate */ 00680 lrh = lowpan6_data.reass_list; 00681 while (lrh != NULL) { 00682 uint8_t discard = 0; 00683 lrh_next = lrh->next_packet; 00684 if ((lrh->sender_addr.addr_len == src.addr_len) && 00685 (memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0)) { 00686 /* address match with packet in reassembly. */ 00687 if ((datagram_tag == lrh->datagram_tag) && (datagram_size == lrh->datagram_size)) { 00688 /* duplicate fragment. */ 00689 goto lowpan6_input_discard; 00690 } else { 00691 /* We are receiving the start of a new datagram. Discard old one (incomplete). */ 00692 discard = 1; 00693 } 00694 } 00695 if (discard) { 00696 dequeue_datagram(lrh, lrh_prev); 00697 free_reass_datagram(lrh); 00698 } else { 00699 lrh_prev = lrh; 00700 } 00701 /* Check next datagram in queue. */ 00702 lrh = lrh_next; 00703 } 00704 00705 pbuf_remove_header(p, 4); /* hide frag1 dispatch */ 00706 00707 lrh = (struct lowpan6_reass_helper *) mem_malloc(sizeof(struct lowpan6_reass_helper)); 00708 if (lrh == NULL) { 00709 goto lowpan6_input_discard; 00710 } 00711 00712 lrh->sender_addr.addr_len = src.addr_len; 00713 for (i = 0; i < src.addr_len; i++) { 00714 lrh->sender_addr.addr[i] = src.addr[i]; 00715 } 00716 lrh->datagram_size = datagram_size; 00717 lrh->datagram_tag = datagram_tag; 00718 lrh->frags = NULL; 00719 if (*(u8_t *)p->payload == 0x41) { 00720 /* This is a complete IPv6 packet, just skip dispatch byte. */ 00721 pbuf_remove_header(p, 1); /* hide dispatch byte. */ 00722 lrh->reass = p; 00723 } else if ((*(u8_t *)p->payload & 0xe0 ) == 0x60) { 00724 lrh->reass = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest); 00725 if (lrh->reass == NULL) { 00726 /* decompression failed */ 00727 mem_free(lrh); 00728 goto lowpan6_input_discard; 00729 } 00730 } 00731 /* TODO: handle the case where we already have FRAGN received */ 00732 lrh->next_packet = lowpan6_data.reass_list; 00733 lrh->timer = 2; 00734 lowpan6_data.reass_list = lrh; 00735 00736 return ERR_OK; 00737 } else if ((b & 0xf8) == 0xe0) { 00738 /* FRAGN dispatch, find packet being reassembled. */ 00739 datagram_size = ((u16_t)(puc[0] & 0x07) << 8) | (u16_t)puc[1]; 00740 datagram_tag = ((u16_t)puc[2] << 8) | (u16_t)puc[3]; 00741 datagram_offset = (u16_t)puc[4] << 3; 00742 pbuf_remove_header(p, 4); /* hide frag1 dispatch but keep datagram offset for reassembly */ 00743 00744 for (lrh = lowpan6_data.reass_list; lrh != NULL; lrh_prev = lrh, lrh = lrh->next_packet) { 00745 if ((lrh->sender_addr.addr_len == src.addr_len) && 00746 (memcmp(lrh->sender_addr.addr, src.addr, src.addr_len) == 0) && 00747 (datagram_tag == lrh->datagram_tag) && 00748 (datagram_size == lrh->datagram_size)) { 00749 break; 00750 } 00751 } 00752 if (lrh == NULL) { 00753 /* rogue fragment */ 00754 goto lowpan6_input_discard; 00755 } 00756 /* Insert new pbuf into list of fragments. Each fragment is a pbuf, 00757 this only works for unchained pbufs. */ 00758 LWIP_ASSERT("p->next == NULL", p->next == NULL); 00759 if (lrh->reass != NULL) { 00760 /* FRAG1 already received, check this offset against first len */ 00761 if (datagram_offset < lrh->reass->len) { 00762 /* fragment overlap, discard old fragments */ 00763 dequeue_datagram(lrh, lrh_prev); 00764 free_reass_datagram(lrh); 00765 goto lowpan6_input_discard; 00766 } 00767 } 00768 if (lrh->frags == NULL) { 00769 /* first FRAGN */ 00770 lrh->frags = p; 00771 } else { 00772 /* find the correct place to insert */ 00773 struct pbuf *q, *last; 00774 u16_t new_frag_len = p->len - 1; /* p->len includes datagram_offset byte */ 00775 for (q = lrh->frags, last = NULL; q != NULL; last = q, q = q->next) { 00776 u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3; 00777 u16_t q_frag_len = q->len - 1; 00778 if (datagram_offset < q_datagram_offset) { 00779 if (datagram_offset + new_frag_len > q_datagram_offset) { 00780 /* overlap, discard old fragments */ 00781 dequeue_datagram(lrh, lrh_prev); 00782 free_reass_datagram(lrh); 00783 goto lowpan6_input_discard; 00784 } 00785 /* insert here */ 00786 break; 00787 } else if (datagram_offset == q_datagram_offset) { 00788 if (q_frag_len != new_frag_len) { 00789 /* fragment mismatch, discard old fragments */ 00790 dequeue_datagram(lrh, lrh_prev); 00791 free_reass_datagram(lrh); 00792 goto lowpan6_input_discard; 00793 } 00794 /* duplicate, ignore */ 00795 pbuf_free(p); 00796 return ERR_OK; 00797 } 00798 } 00799 /* insert fragment */ 00800 if (last == NULL) { 00801 lrh->frags = p; 00802 } else { 00803 last->next = p; 00804 p->next = q; 00805 } 00806 } 00807 /* check if all fragments were received */ 00808 if (lrh->reass) { 00809 u16_t offset = lrh->reass->len; 00810 struct pbuf *q; 00811 for (q = lrh->frags; q != NULL; q = q->next) { 00812 u16_t q_datagram_offset = ((u8_t *)q->payload)[0] << 3; 00813 if (q_datagram_offset != offset) { 00814 /* not complete, wait for more fragments */ 00815 return ERR_OK; 00816 } 00817 offset += q->len - 1; 00818 } 00819 if (offset == datagram_size) { 00820 /* all fragments received, combine pbufs */ 00821 u16_t datagram_left = datagram_size - lrh->reass->len; 00822 for (q = lrh->frags; q != NULL; q = q->next) { 00823 /* hide datagram_offset byte now */ 00824 pbuf_remove_header(q, 1); 00825 q->tot_len = datagram_left; 00826 datagram_left -= q->len; 00827 } 00828 LWIP_ASSERT("datagram_left == 0", datagram_left == 0); 00829 q = lrh->reass; 00830 q->tot_len = datagram_size; 00831 q->next = lrh->frags; 00832 lrh->frags = NULL; 00833 lrh->reass = NULL; 00834 dequeue_datagram(lrh, lrh_prev); 00835 mem_free(lrh); 00836 00837 /* @todo: distinguish unicast/multicast */ 00838 MIB2_STATS_NETIF_INC(netif, ifinucastpkts); 00839 return ip6_input(q, netif); 00840 } 00841 } 00842 /* pbuf enqueued, waiting for more fragments */ 00843 return ERR_OK; 00844 } else { 00845 if (b == 0x41) { 00846 /* This is a complete IPv6 packet, just skip dispatch byte. */ 00847 pbuf_remove_header(p, 1); /* hide dispatch byte. */ 00848 } else if ((b & 0xe0 ) == 0x60) { 00849 /* IPv6 headers are compressed using IPHC. */ 00850 p = lowpan6_decompress(p, datagram_size, LWIP_6LOWPAN_CONTEXTS(netif), &src, &dest); 00851 if (p == NULL) { 00852 MIB2_STATS_NETIF_INC(netif, ifindiscards); 00853 return ERR_OK; 00854 } 00855 } else { 00856 goto lowpan6_input_discard; 00857 } 00858 00859 /* @todo: distinguish unicast/multicast */ 00860 MIB2_STATS_NETIF_INC(netif, ifinucastpkts); 00861 00862 return ip6_input(p, netif); 00863 } 00864 lowpan6_input_discard: 00865 MIB2_STATS_NETIF_INC(netif, ifindiscards); 00866 pbuf_free(p); 00867 /* always return ERR_OK here to prevent the caller freeing the pbuf */ 00868 return ERR_OK; 00869 } 00870 00871 /** 00872 * @ingroup sixlowpan 00873 */ 00874 err_t 00875 lowpan6_if_init(struct netif *netif) 00876 { 00877 netif->name[0] = 'L'; 00878 netif->name[1] = '6'; 00879 netif->output_ip6 = lowpan6_output; 00880 00881 MIB2_INIT_NETIF(netif, snmp_ifType_other, 0); 00882 00883 /* maximum transfer unit */ 00884 netif->mtu = 1280; 00885 00886 /* broadcast capability */ 00887 netif->flags = NETIF_FLAG_BROADCAST /* | NETIF_FLAG_LOWPAN6 */; 00888 00889 return ERR_OK; 00890 } 00891 00892 /** 00893 * @ingroup sixlowpan 00894 * Set PAN ID 00895 */ 00896 err_t 00897 lowpan6_set_pan_id(u16_t pan_id) 00898 { 00899 lowpan6_data.ieee_802154_pan_id = pan_id; 00900 00901 return ERR_OK; 00902 } 00903 00904 #if !NO_SYS 00905 /** 00906 * @ingroup sixlowpan 00907 * Pass a received packet to tcpip_thread for input processing 00908 * 00909 * @param p the received packet, p->payload pointing to the 00910 * IEEE 802.15.4 header. 00911 * @param inp the network interface on which the packet was received 00912 */ 00913 err_t 00914 tcpip_6lowpan_input(struct pbuf *p, struct netif *inp) 00915 { 00916 return tcpip_inpkt(p, inp, lowpan6_input); 00917 } 00918 #endif /* !NO_SYS */ 00919 00920 #endif /* LWIP_IPV6 */
Generated on Tue Jul 12 2022 13:54:28 by
