Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: TYBLE16_simple_data_logger TYBLE16_MP3_Air
ecp_internal.h
00001 /** 00002 * \file ecp_internal.h 00003 * 00004 * \brief Function declarations for alternative implementation of elliptic curve 00005 * point arithmetic. 00006 */ 00007 /* 00008 * Copyright (C) 2016, ARM Limited, All Rights Reserved 00009 * SPDX-License-Identifier: Apache-2.0 00010 * 00011 * Licensed under the Apache License, Version 2.0 (the "License"); you may 00012 * not use this file except in compliance with the License. 00013 * You may obtain a copy of the License at 00014 * 00015 * http://www.apache.org/licenses/LICENSE-2.0 00016 * 00017 * Unless required by applicable law or agreed to in writing, software 00018 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 00019 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00020 * See the License for the specific language governing permissions and 00021 * limitations under the License. 00022 * 00023 * This file is part of mbed TLS (https://tls.mbed.org) 00024 */ 00025 00026 /* 00027 * References: 00028 * 00029 * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records. 00030 * <http://cr.yp.to/ecdh/curve25519-20060209.pdf> 00031 * 00032 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis 00033 * for elliptic curve cryptosystems. In : Cryptographic Hardware and 00034 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. 00035 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> 00036 * 00037 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to 00038 * render ECC resistant against Side Channel Attacks. IACR Cryptology 00039 * ePrint Archive, 2004, vol. 2004, p. 342. 00040 * <http://eprint.iacr.org/2004/342.pdf> 00041 * 00042 * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters. 00043 * <http://www.secg.org/sec2-v2.pdf> 00044 * 00045 * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic 00046 * Curve Cryptography. 00047 * 00048 * [6] Digital Signature Standard (DSS), FIPS 186-4. 00049 * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf> 00050 * 00051 * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer 00052 * Security (TLS), RFC 4492. 00053 * <https://tools.ietf.org/search/rfc4492> 00054 * 00055 * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html> 00056 * 00057 * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory. 00058 * Springer Science & Business Media, 1 Aug 2000 00059 */ 00060 00061 #ifndef MBEDTLS_ECP_INTERNAL_H 00062 #define MBEDTLS_ECP_INTERNAL_H 00063 00064 #if !defined(MBEDTLS_CONFIG_FILE) 00065 #include "mbedtls/config.h" 00066 #else 00067 #include MBEDTLS_CONFIG_FILE 00068 #endif 00069 00070 #if defined(MBEDTLS_ECP_INTERNAL_ALT) 00071 00072 /** 00073 * \brief Indicate if the Elliptic Curve Point module extension can 00074 * handle the group. 00075 * 00076 * \param grp The pointer to the elliptic curve group that will be the 00077 * basis of the cryptographic computations. 00078 * 00079 * \return Non-zero if successful. 00080 */ 00081 unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp ); 00082 00083 /** 00084 * \brief Initialise the Elliptic Curve Point module extension. 00085 * 00086 * If mbedtls_internal_ecp_grp_capable returns true for a 00087 * group, this function has to be able to initialise the 00088 * module for it. 00089 * 00090 * This module can be a driver to a crypto hardware 00091 * accelerator, for which this could be an initialise function. 00092 * 00093 * \param grp The pointer to the group the module needs to be 00094 * initialised for. 00095 * 00096 * \return 0 if successful. 00097 */ 00098 int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp ); 00099 00100 /** 00101 * \brief Frees and deallocates the Elliptic Curve Point module 00102 * extension. 00103 * 00104 * \param grp The pointer to the group the module was initialised for. 00105 */ 00106 void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp ); 00107 00108 #if defined(ECP_SHORTWEIERSTRASS) 00109 00110 #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) 00111 /** 00112 * \brief Randomize jacobian coordinates: 00113 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l. 00114 * 00115 * \param grp Pointer to the group representing the curve. 00116 * 00117 * \param pt The point on the curve to be randomised, given with Jacobian 00118 * coordinates. 00119 * 00120 * \param f_rng A function pointer to the random number generator. 00121 * 00122 * \param p_rng A pointer to the random number generator state. 00123 * 00124 * \return 0 if successful. 00125 */ 00126 int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp, 00127 mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t), 00128 void *p_rng ); 00129 #endif 00130 00131 #if defined(MBEDTLS_ECP_ADD_MIXED_ALT) 00132 /** 00133 * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates. 00134 * 00135 * The coordinates of Q must be normalized (= affine), 00136 * but those of P don't need to. R is not normalized. 00137 * 00138 * This function is used only as a subrutine of 00139 * ecp_mul_comb(). 00140 * 00141 * Special cases: (1) P or Q is zero, (2) R is zero, 00142 * (3) P == Q. 00143 * None of these cases can happen as intermediate step in 00144 * ecp_mul_comb(): 00145 * - at each step, P, Q and R are multiples of the base 00146 * point, the factor being less than its order, so none of 00147 * them is zero; 00148 * - Q is an odd multiple of the base point, P an even 00149 * multiple, due to the choice of precomputed points in the 00150 * modified comb method. 00151 * So branches for these cases do not leak secret information. 00152 * 00153 * We accept Q->Z being unset (saving memory in tables) as 00154 * meaning 1. 00155 * 00156 * Cost in field operations if done by [5] 3.22: 00157 * 1A := 8M + 3S 00158 * 00159 * \param grp Pointer to the group representing the curve. 00160 * 00161 * \param R Pointer to a point structure to hold the result. 00162 * 00163 * \param P Pointer to the first summand, given with Jacobian 00164 * coordinates 00165 * 00166 * \param Q Pointer to the second summand, given with affine 00167 * coordinates. 00168 * 00169 * \return 0 if successful. 00170 */ 00171 int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp, 00172 mbedtls_ecp_point *R, const mbedtls_ecp_point *P, 00173 const mbedtls_ecp_point *Q ); 00174 #endif 00175 00176 /** 00177 * \brief Point doubling R = 2 P, Jacobian coordinates. 00178 * 00179 * Cost: 1D := 3M + 4S (A == 0) 00180 * 4M + 4S (A == -3) 00181 * 3M + 6S + 1a otherwise 00182 * when the implementation is based on the "dbl-1998-cmo-2" 00183 * doubling formulas in [8] and standard optimizations are 00184 * applied when curve parameter A is one of { 0, -3 }. 00185 * 00186 * \param grp Pointer to the group representing the curve. 00187 * 00188 * \param R Pointer to a point structure to hold the result. 00189 * 00190 * \param P Pointer to the point that has to be doubled, given with 00191 * Jacobian coordinates. 00192 * 00193 * \return 0 if successful. 00194 */ 00195 #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) 00196 int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp, 00197 mbedtls_ecp_point *R, const mbedtls_ecp_point *P ); 00198 #endif 00199 00200 /** 00201 * \brief Normalize jacobian coordinates of an array of (pointers to) 00202 * points. 00203 * 00204 * Using Montgomery's trick to perform only one inversion mod P 00205 * the cost is: 00206 * 1N(t) := 1I + (6t - 3)M + 1S 00207 * (See for example Algorithm 10.3.4. in [9]) 00208 * 00209 * This function is used only as a subrutine of 00210 * ecp_mul_comb(). 00211 * 00212 * Warning: fails (returning an error) if one of the points is 00213 * zero! 00214 * This should never happen, see choice of w in ecp_mul_comb(). 00215 * 00216 * \param grp Pointer to the group representing the curve. 00217 * 00218 * \param T Array of pointers to the points to normalise. 00219 * 00220 * \param t_len Number of elements in the array. 00221 * 00222 * \return 0 if successful, 00223 * an error if one of the points is zero. 00224 */ 00225 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) 00226 int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp, 00227 mbedtls_ecp_point *T[], size_t t_len ); 00228 #endif 00229 00230 /** 00231 * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1. 00232 * 00233 * Cost in field operations if done by [5] 3.2.1: 00234 * 1N := 1I + 3M + 1S 00235 * 00236 * \param grp Pointer to the group representing the curve. 00237 * 00238 * \param pt pointer to the point to be normalised. This is an 00239 * input/output parameter. 00240 * 00241 * \return 0 if successful. 00242 */ 00243 #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) 00244 int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp, 00245 mbedtls_ecp_point *pt ); 00246 #endif 00247 00248 #endif /* ECP_SHORTWEIERSTRASS */ 00249 00250 #if defined(ECP_MONTGOMERY) 00251 00252 #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) 00253 int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp, 00254 mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P, 00255 const mbedtls_ecp_point *Q, const mbedtls_mpi *d ); 00256 #endif 00257 00258 /** 00259 * \brief Randomize projective x/z coordinates: 00260 * (X, Z) -> (l X, l Z) for random l 00261 * 00262 * \param grp pointer to the group representing the curve 00263 * 00264 * \param P the point on the curve to be randomised given with 00265 * projective coordinates. This is an input/output parameter. 00266 * 00267 * \param f_rng a function pointer to the random number generator 00268 * 00269 * \param p_rng a pointer to the random number generator state 00270 * 00271 * \return 0 if successful 00272 */ 00273 #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) 00274 int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp, 00275 mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), 00276 void *p_rng ); 00277 #endif 00278 00279 /** 00280 * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1. 00281 * 00282 * \param grp pointer to the group representing the curve 00283 * 00284 * \param P pointer to the point to be normalised. This is an 00285 * input/output parameter. 00286 * 00287 * \return 0 if successful 00288 */ 00289 #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) 00290 int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp, 00291 mbedtls_ecp_point *P ); 00292 #endif 00293 00294 #endif /* ECP_MONTGOMERY */ 00295 00296 #endif /* MBEDTLS_ECP_INTERNAL_ALT */ 00297 00298 #endif /* ecp_internal.h */ 00299
Generated on Tue Jul 12 2022 13:54:18 by
1.7.2