mbed-os5 only for TYBLE16
Dependents: TYBLE16_simple_data_logger TYBLE16_MP3_Air
features/storage/blockdevice/BufferedBlockDevice.cpp
- Committer:
- kenjiArai
- Date:
- 2019-12-31
- Revision:
- 1:9db0e321a9f4
- Parent:
- 0:5b88d5760320
File content as of revision 1:9db0e321a9f4:
/* mbed Microcontroller Library * Copyright (c) 2018 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "BufferedBlockDevice.h" #include "platform/mbed_assert.h" #include "platform/mbed_atomic.h" #include <algorithm> #include <string.h> namespace mbed { static inline uint32_t align_down(bd_size_t val, bd_size_t size) { return val / size * size; } BufferedBlockDevice::BufferedBlockDevice(BlockDevice *bd) : _bd(bd), _bd_program_size(0), _bd_read_size(0), _bd_size(0), _write_cache_addr(0), _write_cache_valid(false), _write_cache(0), _read_buf(0), _init_ref_count(0), _is_initialized(false) { MBED_ASSERT(_bd); } BufferedBlockDevice::~BufferedBlockDevice() { deinit(); } int BufferedBlockDevice::init() { uint32_t val = core_util_atomic_incr_u32(&_init_ref_count, 1); if (val != 1) { return BD_ERROR_OK; } int err = _bd->init(); if (err) { return err; } _bd_read_size = _bd->get_read_size(); _bd_program_size = _bd->get_program_size(); _bd_size = _bd->size(); if (!_write_cache) { _write_cache = new uint8_t[_bd_program_size]; } if (!_read_buf) { _read_buf = new uint8_t[_bd_read_size]; } invalidate_write_cache(); _is_initialized = true; return BD_ERROR_OK; } int BufferedBlockDevice::deinit() { if (!_is_initialized) { return BD_ERROR_OK; } // Flush out all data from buffers int err = sync(); if (err) { return err; } uint32_t val = core_util_atomic_decr_u32(&_init_ref_count, 1); if (val) { return BD_ERROR_OK; } delete[] _write_cache; _write_cache = 0; delete[] _read_buf; _read_buf = 0; _is_initialized = false; return _bd->deinit(); } int BufferedBlockDevice::flush() { MBED_ASSERT(_write_cache); if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } if (_write_cache_valid) { int ret = _bd->program(_write_cache, _write_cache_addr, _bd_program_size); if (ret) { return ret; } invalidate_write_cache(); } return 0; } void BufferedBlockDevice::invalidate_write_cache() { _write_cache_addr = _bd_size; _write_cache_valid = false; } int BufferedBlockDevice::sync() { if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } MBED_ASSERT(_write_cache); int ret = flush(); if (ret) { return ret; } return _bd->sync(); } int BufferedBlockDevice::read(void *b, bd_addr_t addr, bd_size_t size) { if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } MBED_ASSERT(_write_cache && _read_buf); if (!is_valid_read(addr, size)) { return BD_ERROR_DEVICE_ERROR; } // Common case - no need to involve write cache or read buffer if (_bd->is_valid_read(addr, size) && ((addr + size <= _write_cache_addr) || (addr > _write_cache_addr + _bd_program_size))) { return _bd->read(b, addr, size); } uint8_t *buf = static_cast<uint8_t *>(b); // Read logic: Split read to chunks, according to whether we cross the write cache while (size) { bd_size_t chunk; bool read_from_bd = true; if (_write_cache_valid && addr < _write_cache_addr) { chunk = std::min(size, _write_cache_addr - addr); } else if (_write_cache_valid && (addr >= _write_cache_addr) && (addr < _write_cache_addr + _bd_program_size)) { // One case we need to take our data from cache chunk = std::min(size, _bd_program_size - addr % _bd_program_size); memcpy(buf, _write_cache + addr % _bd_program_size, chunk); read_from_bd = false; } else { chunk = size; } // Now, in case we read from the BD, make sure we are aligned with its read size. // If not, use read buffer as a helper. if (read_from_bd) { bd_size_t offs_in_read_buf = addr % _bd_read_size; int ret; if (offs_in_read_buf || (chunk < _bd_read_size)) { chunk = std::min(chunk, _bd_read_size - offs_in_read_buf); ret = _bd->read(_read_buf, addr - offs_in_read_buf, _bd_read_size); memcpy(buf, _read_buf + offs_in_read_buf, chunk); } else { chunk = align_down(chunk, _bd_read_size); ret = _bd->read(buf, addr, chunk); } if (ret) { return ret; } } buf += chunk; addr += chunk; size -= chunk; } return 0; } int BufferedBlockDevice::program(const void *b, bd_addr_t addr, bd_size_t size) { if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } MBED_ASSERT(_write_cache); int ret; bd_addr_t aligned_addr = align_down(addr, _bd_program_size); const uint8_t *buf = static_cast <const uint8_t *>(b); // Need to flush if moved to another program unit if (aligned_addr != _write_cache_addr) { ret = flush(); if (ret) { return ret; } } // Write logic: Keep data in cache as long as we don't reach the end of the program unit. // Otherwise, program to the underlying BD. while (size) { _write_cache_addr = align_down(addr, _bd_program_size); bd_addr_t offs_in_buf = addr - _write_cache_addr; bd_size_t chunk; if (offs_in_buf) { chunk = std::min(_bd_program_size - offs_in_buf, size); } else if (size >= _bd_program_size) { chunk = align_down(size, _bd_program_size); } else { chunk = size; } const uint8_t *prog_buf; if (chunk < _bd_program_size) { // If cache not valid, and program doesn't cover an entire unit, it means we need to // read it from the underlying BD if (!_write_cache_valid) { ret = _bd->read(_write_cache, _write_cache_addr, _bd_program_size); if (ret) { return ret; } } memcpy(_write_cache + offs_in_buf, buf, chunk); prog_buf = _write_cache; } else { prog_buf = buf; } // Only program if we reached the end of a program unit if (!((offs_in_buf + chunk) % _bd_program_size)) { ret = _bd->program(prog_buf, _write_cache_addr, std::max(chunk, _bd_program_size)); if (ret) { return ret; } invalidate_write_cache(); ret = _bd->sync(); if (ret) { return ret; } } else { _write_cache_valid = true; } buf += chunk; addr += chunk; size -= chunk; } return 0; } int BufferedBlockDevice::erase(bd_addr_t addr, bd_size_t size) { MBED_ASSERT(is_valid_erase(addr, size)); if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } if ((_write_cache_addr >= addr) && (_write_cache_addr <= addr + size)) { invalidate_write_cache(); } return _bd->erase(addr, size); } int BufferedBlockDevice::trim(bd_addr_t addr, bd_size_t size) { MBED_ASSERT(is_valid_erase(addr, size)); if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } if ((_write_cache_addr >= addr) && (_write_cache_addr <= addr + size)) { invalidate_write_cache(); } return _bd->trim(addr, size); } bd_size_t BufferedBlockDevice::get_read_size() const { return 1; } bd_size_t BufferedBlockDevice::get_program_size() const { return 1; } bd_size_t BufferedBlockDevice::get_erase_size() const { if (!_is_initialized) { return 0; } return _bd->get_erase_size(); } bd_size_t BufferedBlockDevice::get_erase_size(bd_addr_t addr) const { if (!_is_initialized) { return 0; } return _bd->get_erase_size(addr); } int BufferedBlockDevice::get_erase_value() const { if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } return _bd->get_erase_value(); } bd_size_t BufferedBlockDevice::size() const { if (!_is_initialized) { return 0; } return _bd_size; } const char *BufferedBlockDevice::get_type() const { return _bd->get_type(); } } // namespace mbed