mbed-os5 only for TYBLE16
Dependents: TYBLE16_simple_data_logger TYBLE16_MP3_Air
features/storage/blockdevice/MBRBlockDevice.cpp
- Committer:
- kenjiArai
- Date:
- 2019-12-17
- Revision:
- 0:5b88d5760320
File content as of revision 0:5b88d5760320:
/* mbed Microcontroller Library * Copyright (c) 2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "MBRBlockDevice.h" #include "platform/mbed_atomic.h" #include "platform/mbed_toolchain.h" #include "platform/mbed_assert.h" #include <algorithm> #include <string.h> namespace mbed { // On disk structures, all entries are little endian MBED_PACKED(struct) mbr_entry { uint8_t status; uint8_t chs_start[3]; uint8_t type; uint8_t chs_stop[3]; uint32_t lba_offset; uint32_t lba_size; }; MBED_PACKED(struct) mbr_table { struct mbr_entry entries[4]; uint8_t signature[2]; }; // Little-endian conversion, should compile to noop // if system is little-endian static inline uint32_t tole32(uint32_t a) { union { uint32_t u32; uint8_t u8[4]; } w; w.u8[0] = a >> 0; w.u8[1] = a >> 8; w.u8[2] = a >> 16; w.u8[3] = a >> 24; return w.u32; } static inline uint32_t fromle32(uint32_t a) { return tole32(a); } static void tochs(uint32_t lba, uint8_t chs[3]) { uint32_t sector = std::min<uint32_t>(lba, 0xfffffd) + 1; chs[0] = (sector >> 6) & 0xff; chs[1] = ((sector >> 0) & 0x3f) | ((sector >> 16) & 0xc0); chs[2] = (sector >> 14) & 0xff; } // Partition after address are turned into absolute // addresses, assumes bd is initialized static int partition_absolute( BlockDevice *bd, int part, uint8_t type, bd_size_t offset, bd_size_t size) { // Allocate smallest buffer necessary to write MBR uint32_t buffer_size = std::max<uint32_t>(bd->get_program_size(), sizeof(struct mbr_table)); // Prevent alignment issues if (buffer_size % bd->get_program_size() != 0) { buffer_size += bd->get_program_size() - (buffer_size % bd->get_program_size()); } uint8_t *buffer = new uint8_t[buffer_size]; // Check for existing MBR int err = bd->read(buffer, 512 - buffer_size, buffer_size); if (err) { delete[] buffer; return err; } uint32_t table_start_offset = buffer_size - sizeof(struct mbr_table); struct mbr_table *table = reinterpret_cast<struct mbr_table *>( &buffer[table_start_offset]); if (table->signature[0] != 0x55 || table->signature[1] != 0xaa) { // Setup default values for MBR table->signature[0] = 0x55; table->signature[1] = 0xaa; memset(table->entries, 0, sizeof(table->entries)); } // For Windows-formatted SD card, it is not partitioned (no MBR), but its PBR has the // same boot signature (0xaa55) as MBR. We would easily mis-recognize this SD card has valid // partitions if we only check partition type. We add check by only accepting 0x00 (inactive) // /0x80 (active) for valid partition status. for (int i = 1; i <= 4; i++) { if (table->entries[i - 1].status != 0x00 && table->entries[i - 1].status != 0x80) { memset(table->entries, 0, sizeof(table->entries)); break; } } // Setup new partition MBED_ASSERT(part >= 1 && part <= 4); table->entries[part - 1].status = 0x00; // inactive (not bootable) table->entries[part - 1].type = type; // lba dimensions MBED_ASSERT(bd->is_valid_erase(offset, size)); uint32_t sector = std::max<uint32_t>(bd->get_erase_size(), 512); uint32_t lba_offset = offset / sector; uint32_t lba_size = size / sector; table->entries[part - 1].lba_offset = tole32(lba_offset); table->entries[part - 1].lba_size = tole32(lba_size); // chs dimensions tochs(lba_offset, table->entries[part - 1].chs_start); tochs(lba_offset + lba_size - 1, table->entries[part - 1].chs_stop); // Check that we don't overlap other entries for (int i = 1; i <= 4; i++) { if (i != part && table->entries[i - 1].type != 0x00) { uint32_t neighbor_lba_offset = fromle32(table->entries[i - 1].lba_offset); uint32_t neighbor_lba_size = fromle32(table->entries[i - 1].lba_size); MBED_ASSERT( (lba_offset >= neighbor_lba_offset + neighbor_lba_size) || (lba_offset + lba_size <= neighbor_lba_offset)); (void)neighbor_lba_offset; (void)neighbor_lba_size; } } // As the erase operation may do nothing, erase remainder of the buffer, to eradicate // any remaining programmed data (such as previously programmed file systems). if (table_start_offset > 0) { memset(buffer, 0xFF, table_start_offset); } if (table_start_offset + sizeof(struct mbr_table) < buffer_size) { memset(buffer + table_start_offset + sizeof(struct mbr_table), 0xFF, buffer_size - (table_start_offset + sizeof(struct mbr_table))); } // Write out MBR err = bd->erase(0, bd->get_erase_size()); if (err) { delete[] buffer; return err; } err = bd->program(buffer, 512 - buffer_size, buffer_size); delete[] buffer; return err; } int MBRBlockDevice::partition(BlockDevice *bd, int part, uint8_t type, bd_addr_t start) { int err = bd->init(); if (err) { return err; } // Calculate dimensions bd_size_t offset = ((int64_t)start < 0) ? -start : start; bd_size_t size = bd->size(); if (offset < 512) { offset += std::max<uint32_t>(bd->get_erase_size(), 512); } size -= offset; err = partition_absolute(bd, part, type, offset, size); if (err) { return err; } err = bd->deinit(); if (err) { return err; } return 0; } int MBRBlockDevice::partition(BlockDevice *bd, int part, uint8_t type, bd_addr_t start, bd_addr_t stop) { int err = bd->init(); if (err) { return err; } // Calculate dimensions bd_size_t offset = ((int64_t)start < 0) ? -start : start; bd_size_t size = ((int64_t)stop < 0) ? -stop : stop; if (offset < 512) { offset += std::max<uint32_t>(bd->get_erase_size(), 512); } size -= offset; err = partition_absolute(bd, part, type, offset, size); if (err) { return err; } err = bd->deinit(); if (err) { return err; } return 0; } MBRBlockDevice::MBRBlockDevice(BlockDevice *bd, int part) : _bd(bd), _offset(0), _size(0), _type(0), _part(part), _init_ref_count(0), _is_initialized(false) { MBED_ASSERT(_part >= 1 && _part <= 4); } int MBRBlockDevice::init() { uint32_t buffer_size; uint8_t *buffer = 0; struct mbr_table *table; bd_size_t sector; int err; uint32_t val = core_util_atomic_incr_u32(&_init_ref_count, 1); if (val != 1) { return BD_ERROR_OK; } err = _bd->init(); if (err) { goto fail; } // Allocate smallest buffer necessary to write MBR buffer_size = std::max<uint32_t>(_bd->get_read_size(), sizeof(struct mbr_table)); buffer = new uint8_t[buffer_size]; err = _bd->read(buffer, 512 - buffer_size, buffer_size); if (err) { goto fail; } // Check for valid table table = reinterpret_cast<struct mbr_table *>(&buffer[buffer_size - sizeof(struct mbr_table)]); if (table->signature[0] != 0x55 || table->signature[1] != 0xaa) { err = BD_ERROR_INVALID_MBR; goto fail; } // Check for valid partition status // Same reason as in partition_absolute regarding Windows-formatted SD card if (table->entries[_part - 1].status != 0x00 && table->entries[_part - 1].status != 0x80) { err = BD_ERROR_INVALID_PARTITION; goto fail; } // Check for valid entry // 0x00 = no entry // 0x05, 0x0f = extended partitions, currently not supported if ((table->entries[_part - 1].type == 0x00 || table->entries[_part - 1].type == 0x05 || table->entries[_part - 1].type == 0x0f)) { err = BD_ERROR_INVALID_PARTITION; goto fail; } // Get partition attributes sector = std::max<uint32_t>(_bd->get_erase_size(), 512); _type = table->entries[_part - 1].type; _offset = fromle32(table->entries[_part - 1].lba_offset) * sector; _size = fromle32(table->entries[_part - 1].lba_size) * sector; // Check that block addresses are valid if (!_bd->is_valid_erase(_offset, _size)) { err = BD_ERROR_INVALID_PARTITION; goto fail; } _is_initialized = true; delete[] buffer; return BD_ERROR_OK; fail: delete[] buffer; _is_initialized = false; _init_ref_count = 0; return err; } int MBRBlockDevice::deinit() { if (!_is_initialized) { return BD_ERROR_OK; } uint32_t val = core_util_atomic_decr_u32(&_init_ref_count, 1); if (val) { return BD_ERROR_OK; } _is_initialized = false; return _bd->deinit(); } int MBRBlockDevice::sync() { if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } return _bd->sync(); } int MBRBlockDevice::read(void *b, bd_addr_t addr, bd_size_t size) { MBED_ASSERT(is_valid_read(addr, size)); if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } return _bd->read(b, addr + _offset, size); } int MBRBlockDevice::program(const void *b, bd_addr_t addr, bd_size_t size) { MBED_ASSERT(is_valid_program(addr, size)); if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } return _bd->program(b, addr + _offset, size); } int MBRBlockDevice::erase(bd_addr_t addr, bd_size_t size) { MBED_ASSERT(is_valid_erase(addr, size)); if (!_is_initialized) { return BD_ERROR_DEVICE_ERROR; } return _bd->erase(addr + _offset, size); } bd_size_t MBRBlockDevice::get_read_size() const { if (!_is_initialized) { return 0; } return _bd->get_read_size(); } bd_size_t MBRBlockDevice::get_program_size() const { if (!_is_initialized) { return 0; } return _bd->get_program_size(); } bd_size_t MBRBlockDevice::get_erase_size() const { if (!_is_initialized) { return 0; } return _bd->get_erase_size(); } bd_size_t MBRBlockDevice::get_erase_size(bd_addr_t addr) const { if (!_is_initialized) { return 0; } return _bd->get_erase_size(_offset + addr); } int MBRBlockDevice::get_erase_value() const { if (!_is_initialized) { return 0; } return _bd->get_erase_value(); } bd_size_t MBRBlockDevice::size() const { return _size; } bd_size_t MBRBlockDevice::get_partition_start() const { return _offset; } bd_size_t MBRBlockDevice::get_partition_stop() const { return _offset + _size; } uint8_t MBRBlockDevice::get_partition_type() const { return _type; } int MBRBlockDevice::get_partition_number() const { return _part; } const char *MBRBlockDevice::get_type() const { if (_bd != NULL) { return _bd->get_type(); } return NULL; } } // namespace mbed