mbed-os5 only for TYBLE16
Dependents: TYBLE16_simple_data_logger TYBLE16_MP3_Air
features/mbedtls/mbed-crypto/src/rsa_internal.c@1:9db0e321a9f4, 2019-12-31 (annotated)
- Committer:
- kenjiArai
- Date:
- Tue Dec 31 06:02:27 2019 +0000
- Revision:
- 1:9db0e321a9f4
- Parent:
- 0:5b88d5760320
updated based on mbed-os5.15.0
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
kenjiArai | 0:5b88d5760320 | 1 | /* |
kenjiArai | 0:5b88d5760320 | 2 | * Helper functions for the RSA module |
kenjiArai | 0:5b88d5760320 | 3 | * |
kenjiArai | 0:5b88d5760320 | 4 | * Copyright (C) 2006-2017, ARM Limited, All Rights Reserved |
kenjiArai | 0:5b88d5760320 | 5 | * SPDX-License-Identifier: Apache-2.0 |
kenjiArai | 0:5b88d5760320 | 6 | * |
kenjiArai | 0:5b88d5760320 | 7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
kenjiArai | 0:5b88d5760320 | 8 | * not use this file except in compliance with the License. |
kenjiArai | 0:5b88d5760320 | 9 | * You may obtain a copy of the License at |
kenjiArai | 0:5b88d5760320 | 10 | * |
kenjiArai | 0:5b88d5760320 | 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
kenjiArai | 0:5b88d5760320 | 12 | * |
kenjiArai | 0:5b88d5760320 | 13 | * Unless required by applicable law or agreed to in writing, software |
kenjiArai | 0:5b88d5760320 | 14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
kenjiArai | 0:5b88d5760320 | 15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
kenjiArai | 0:5b88d5760320 | 16 | * See the License for the specific language governing permissions and |
kenjiArai | 0:5b88d5760320 | 17 | * limitations under the License. |
kenjiArai | 0:5b88d5760320 | 18 | * |
kenjiArai | 0:5b88d5760320 | 19 | * This file is part of mbed TLS (https://tls.mbed.org) |
kenjiArai | 0:5b88d5760320 | 20 | * |
kenjiArai | 0:5b88d5760320 | 21 | */ |
kenjiArai | 0:5b88d5760320 | 22 | |
kenjiArai | 0:5b88d5760320 | 23 | #if !defined(MBEDTLS_CONFIG_FILE) |
kenjiArai | 0:5b88d5760320 | 24 | #include "mbedtls/config.h" |
kenjiArai | 0:5b88d5760320 | 25 | #else |
kenjiArai | 0:5b88d5760320 | 26 | #include MBEDTLS_CONFIG_FILE |
kenjiArai | 0:5b88d5760320 | 27 | #endif |
kenjiArai | 0:5b88d5760320 | 28 | |
kenjiArai | 0:5b88d5760320 | 29 | #if defined(MBEDTLS_RSA_C) |
kenjiArai | 0:5b88d5760320 | 30 | |
kenjiArai | 0:5b88d5760320 | 31 | #include "mbedtls/rsa.h" |
kenjiArai | 0:5b88d5760320 | 32 | #include "mbedtls/bignum.h" |
kenjiArai | 0:5b88d5760320 | 33 | #include "mbedtls/rsa_internal.h" |
kenjiArai | 0:5b88d5760320 | 34 | |
kenjiArai | 0:5b88d5760320 | 35 | /* |
kenjiArai | 0:5b88d5760320 | 36 | * Compute RSA prime factors from public and private exponents |
kenjiArai | 0:5b88d5760320 | 37 | * |
kenjiArai | 0:5b88d5760320 | 38 | * Summary of algorithm: |
kenjiArai | 0:5b88d5760320 | 39 | * Setting F := lcm(P-1,Q-1), the idea is as follows: |
kenjiArai | 0:5b88d5760320 | 40 | * |
kenjiArai | 0:5b88d5760320 | 41 | * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) |
kenjiArai | 0:5b88d5760320 | 42 | * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the |
kenjiArai | 0:5b88d5760320 | 43 | * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four |
kenjiArai | 0:5b88d5760320 | 44 | * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) |
kenjiArai | 0:5b88d5760320 | 45 | * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime |
kenjiArai | 0:5b88d5760320 | 46 | * factors of N. |
kenjiArai | 0:5b88d5760320 | 47 | * |
kenjiArai | 0:5b88d5760320 | 48 | * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same |
kenjiArai | 0:5b88d5760320 | 49 | * construction still applies since (-)^K is the identity on the set of |
kenjiArai | 0:5b88d5760320 | 50 | * roots of 1 in Z/NZ. |
kenjiArai | 0:5b88d5760320 | 51 | * |
kenjiArai | 0:5b88d5760320 | 52 | * The public and private key primitives (-)^E and (-)^D are mutually inverse |
kenjiArai | 0:5b88d5760320 | 53 | * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. |
kenjiArai | 0:5b88d5760320 | 54 | * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. |
kenjiArai | 0:5b88d5760320 | 55 | * Splitting L = 2^t * K with K odd, we have |
kenjiArai | 0:5b88d5760320 | 56 | * |
kenjiArai | 0:5b88d5760320 | 57 | * DE - 1 = FL = (F/2) * (2^(t+1)) * K, |
kenjiArai | 0:5b88d5760320 | 58 | * |
kenjiArai | 0:5b88d5760320 | 59 | * so (F / 2) * K is among the numbers |
kenjiArai | 0:5b88d5760320 | 60 | * |
kenjiArai | 0:5b88d5760320 | 61 | * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord |
kenjiArai | 0:5b88d5760320 | 62 | * |
kenjiArai | 0:5b88d5760320 | 63 | * where ord is the order of 2 in (DE - 1). |
kenjiArai | 0:5b88d5760320 | 64 | * We can therefore iterate through these numbers apply the construction |
kenjiArai | 0:5b88d5760320 | 65 | * of (a) and (b) above to attempt to factor N. |
kenjiArai | 0:5b88d5760320 | 66 | * |
kenjiArai | 0:5b88d5760320 | 67 | */ |
kenjiArai | 0:5b88d5760320 | 68 | int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, |
kenjiArai | 0:5b88d5760320 | 69 | mbedtls_mpi const *E, mbedtls_mpi const *D, |
kenjiArai | 0:5b88d5760320 | 70 | mbedtls_mpi *P, mbedtls_mpi *Q ) |
kenjiArai | 0:5b88d5760320 | 71 | { |
kenjiArai | 0:5b88d5760320 | 72 | int ret = 0; |
kenjiArai | 0:5b88d5760320 | 73 | |
kenjiArai | 0:5b88d5760320 | 74 | uint16_t attempt; /* Number of current attempt */ |
kenjiArai | 0:5b88d5760320 | 75 | uint16_t iter; /* Number of squares computed in the current attempt */ |
kenjiArai | 0:5b88d5760320 | 76 | |
kenjiArai | 0:5b88d5760320 | 77 | uint16_t order; /* Order of 2 in DE - 1 */ |
kenjiArai | 0:5b88d5760320 | 78 | |
kenjiArai | 0:5b88d5760320 | 79 | mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */ |
kenjiArai | 0:5b88d5760320 | 80 | mbedtls_mpi K; /* Temporary holding the current candidate */ |
kenjiArai | 0:5b88d5760320 | 81 | |
kenjiArai | 0:5b88d5760320 | 82 | const unsigned char primes[] = { 2, |
kenjiArai | 0:5b88d5760320 | 83 | 3, 5, 7, 11, 13, 17, 19, 23, |
kenjiArai | 0:5b88d5760320 | 84 | 29, 31, 37, 41, 43, 47, 53, 59, |
kenjiArai | 0:5b88d5760320 | 85 | 61, 67, 71, 73, 79, 83, 89, 97, |
kenjiArai | 0:5b88d5760320 | 86 | 101, 103, 107, 109, 113, 127, 131, 137, |
kenjiArai | 0:5b88d5760320 | 87 | 139, 149, 151, 157, 163, 167, 173, 179, |
kenjiArai | 0:5b88d5760320 | 88 | 181, 191, 193, 197, 199, 211, 223, 227, |
kenjiArai | 0:5b88d5760320 | 89 | 229, 233, 239, 241, 251 |
kenjiArai | 0:5b88d5760320 | 90 | }; |
kenjiArai | 0:5b88d5760320 | 91 | |
kenjiArai | 0:5b88d5760320 | 92 | const size_t num_primes = sizeof( primes ) / sizeof( *primes ); |
kenjiArai | 0:5b88d5760320 | 93 | |
kenjiArai | 0:5b88d5760320 | 94 | if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL ) |
kenjiArai | 0:5b88d5760320 | 95 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
kenjiArai | 0:5b88d5760320 | 96 | |
kenjiArai | 0:5b88d5760320 | 97 | if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || |
kenjiArai | 0:5b88d5760320 | 98 | mbedtls_mpi_cmp_int( D, 1 ) <= 0 || |
kenjiArai | 0:5b88d5760320 | 99 | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || |
kenjiArai | 0:5b88d5760320 | 100 | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || |
kenjiArai | 0:5b88d5760320 | 101 | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) |
kenjiArai | 0:5b88d5760320 | 102 | { |
kenjiArai | 0:5b88d5760320 | 103 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
kenjiArai | 0:5b88d5760320 | 104 | } |
kenjiArai | 0:5b88d5760320 | 105 | |
kenjiArai | 0:5b88d5760320 | 106 | /* |
kenjiArai | 0:5b88d5760320 | 107 | * Initializations and temporary changes |
kenjiArai | 0:5b88d5760320 | 108 | */ |
kenjiArai | 0:5b88d5760320 | 109 | |
kenjiArai | 0:5b88d5760320 | 110 | mbedtls_mpi_init( &K ); |
kenjiArai | 0:5b88d5760320 | 111 | mbedtls_mpi_init( &T ); |
kenjiArai | 0:5b88d5760320 | 112 | |
kenjiArai | 0:5b88d5760320 | 113 | /* T := DE - 1 */ |
kenjiArai | 0:5b88d5760320 | 114 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) ); |
kenjiArai | 0:5b88d5760320 | 115 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 116 | |
kenjiArai | 0:5b88d5760320 | 117 | if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 ) |
kenjiArai | 0:5b88d5760320 | 118 | { |
kenjiArai | 0:5b88d5760320 | 119 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
kenjiArai | 0:5b88d5760320 | 120 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 121 | } |
kenjiArai | 0:5b88d5760320 | 122 | |
kenjiArai | 0:5b88d5760320 | 123 | /* After this operation, T holds the largest odd divisor of DE - 1. */ |
kenjiArai | 0:5b88d5760320 | 124 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) ); |
kenjiArai | 0:5b88d5760320 | 125 | |
kenjiArai | 0:5b88d5760320 | 126 | /* |
kenjiArai | 0:5b88d5760320 | 127 | * Actual work |
kenjiArai | 0:5b88d5760320 | 128 | */ |
kenjiArai | 0:5b88d5760320 | 129 | |
kenjiArai | 0:5b88d5760320 | 130 | /* Skip trying 2 if N == 1 mod 8 */ |
kenjiArai | 0:5b88d5760320 | 131 | attempt = 0; |
kenjiArai | 0:5b88d5760320 | 132 | if( N->p[0] % 8 == 1 ) |
kenjiArai | 0:5b88d5760320 | 133 | attempt = 1; |
kenjiArai | 0:5b88d5760320 | 134 | |
kenjiArai | 0:5b88d5760320 | 135 | for( ; attempt < num_primes; ++attempt ) |
kenjiArai | 0:5b88d5760320 | 136 | { |
kenjiArai | 0:5b88d5760320 | 137 | mbedtls_mpi_lset( &K, primes[attempt] ); |
kenjiArai | 0:5b88d5760320 | 138 | |
kenjiArai | 0:5b88d5760320 | 139 | /* Check if gcd(K,N) = 1 */ |
kenjiArai | 0:5b88d5760320 | 140 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); |
kenjiArai | 0:5b88d5760320 | 141 | if( mbedtls_mpi_cmp_int( P, 1 ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 142 | continue; |
kenjiArai | 0:5b88d5760320 | 143 | |
kenjiArai | 0:5b88d5760320 | 144 | /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... |
kenjiArai | 0:5b88d5760320 | 145 | * and check whether they have nontrivial GCD with N. */ |
kenjiArai | 0:5b88d5760320 | 146 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N, |
kenjiArai | 0:5b88d5760320 | 147 | Q /* temporarily use Q for storing Montgomery |
kenjiArai | 0:5b88d5760320 | 148 | * multiplication helper values */ ) ); |
kenjiArai | 0:5b88d5760320 | 149 | |
kenjiArai | 0:5b88d5760320 | 150 | for( iter = 1; iter <= order; ++iter ) |
kenjiArai | 0:5b88d5760320 | 151 | { |
kenjiArai | 0:5b88d5760320 | 152 | /* If we reach 1 prematurely, there's no point |
kenjiArai | 0:5b88d5760320 | 153 | * in continuing to square K */ |
kenjiArai | 0:5b88d5760320 | 154 | if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 ) |
kenjiArai | 0:5b88d5760320 | 155 | break; |
kenjiArai | 0:5b88d5760320 | 156 | |
kenjiArai | 0:5b88d5760320 | 157 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 158 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); |
kenjiArai | 0:5b88d5760320 | 159 | |
kenjiArai | 0:5b88d5760320 | 160 | if( mbedtls_mpi_cmp_int( P, 1 ) == 1 && |
kenjiArai | 0:5b88d5760320 | 161 | mbedtls_mpi_cmp_mpi( P, N ) == -1 ) |
kenjiArai | 0:5b88d5760320 | 162 | { |
kenjiArai | 0:5b88d5760320 | 163 | /* |
kenjiArai | 0:5b88d5760320 | 164 | * Have found a nontrivial divisor P of N. |
kenjiArai | 0:5b88d5760320 | 165 | * Set Q := N / P. |
kenjiArai | 0:5b88d5760320 | 166 | */ |
kenjiArai | 0:5b88d5760320 | 167 | |
kenjiArai | 0:5b88d5760320 | 168 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) ); |
kenjiArai | 0:5b88d5760320 | 169 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 170 | } |
kenjiArai | 0:5b88d5760320 | 171 | |
kenjiArai | 0:5b88d5760320 | 172 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 173 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) ); |
kenjiArai | 0:5b88d5760320 | 174 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) ); |
kenjiArai | 0:5b88d5760320 | 175 | } |
kenjiArai | 0:5b88d5760320 | 176 | |
kenjiArai | 0:5b88d5760320 | 177 | /* |
kenjiArai | 0:5b88d5760320 | 178 | * If we get here, then either we prematurely aborted the loop because |
kenjiArai | 0:5b88d5760320 | 179 | * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must |
kenjiArai | 0:5b88d5760320 | 180 | * be 1 if D,E,N were consistent. |
kenjiArai | 0:5b88d5760320 | 181 | * Check if that's the case and abort if not, to avoid very long, |
kenjiArai | 0:5b88d5760320 | 182 | * yet eventually failing, computations if N,D,E were not sane. |
kenjiArai | 0:5b88d5760320 | 183 | */ |
kenjiArai | 0:5b88d5760320 | 184 | if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 185 | { |
kenjiArai | 0:5b88d5760320 | 186 | break; |
kenjiArai | 0:5b88d5760320 | 187 | } |
kenjiArai | 0:5b88d5760320 | 188 | } |
kenjiArai | 0:5b88d5760320 | 189 | |
kenjiArai | 0:5b88d5760320 | 190 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
kenjiArai | 0:5b88d5760320 | 191 | |
kenjiArai | 0:5b88d5760320 | 192 | cleanup: |
kenjiArai | 0:5b88d5760320 | 193 | |
kenjiArai | 0:5b88d5760320 | 194 | mbedtls_mpi_free( &K ); |
kenjiArai | 0:5b88d5760320 | 195 | mbedtls_mpi_free( &T ); |
kenjiArai | 0:5b88d5760320 | 196 | return( ret ); |
kenjiArai | 0:5b88d5760320 | 197 | } |
kenjiArai | 0:5b88d5760320 | 198 | |
kenjiArai | 0:5b88d5760320 | 199 | /* |
kenjiArai | 0:5b88d5760320 | 200 | * Given P, Q and the public exponent E, deduce D. |
kenjiArai | 0:5b88d5760320 | 201 | * This is essentially a modular inversion. |
kenjiArai | 0:5b88d5760320 | 202 | */ |
kenjiArai | 0:5b88d5760320 | 203 | int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P, |
kenjiArai | 0:5b88d5760320 | 204 | mbedtls_mpi const *Q, |
kenjiArai | 0:5b88d5760320 | 205 | mbedtls_mpi const *E, |
kenjiArai | 0:5b88d5760320 | 206 | mbedtls_mpi *D ) |
kenjiArai | 0:5b88d5760320 | 207 | { |
kenjiArai | 0:5b88d5760320 | 208 | int ret = 0; |
kenjiArai | 0:5b88d5760320 | 209 | mbedtls_mpi K, L; |
kenjiArai | 0:5b88d5760320 | 210 | |
kenjiArai | 0:5b88d5760320 | 211 | if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 212 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
kenjiArai | 0:5b88d5760320 | 213 | |
kenjiArai | 0:5b88d5760320 | 214 | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || |
kenjiArai | 0:5b88d5760320 | 215 | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 || |
kenjiArai | 0:5b88d5760320 | 216 | mbedtls_mpi_cmp_int( E, 0 ) == 0 ) |
kenjiArai | 0:5b88d5760320 | 217 | { |
kenjiArai | 0:5b88d5760320 | 218 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); |
kenjiArai | 0:5b88d5760320 | 219 | } |
kenjiArai | 0:5b88d5760320 | 220 | |
kenjiArai | 0:5b88d5760320 | 221 | mbedtls_mpi_init( &K ); |
kenjiArai | 0:5b88d5760320 | 222 | mbedtls_mpi_init( &L ); |
kenjiArai | 0:5b88d5760320 | 223 | |
kenjiArai | 0:5b88d5760320 | 224 | /* Temporarily put K := P-1 and L := Q-1 */ |
kenjiArai | 0:5b88d5760320 | 225 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 226 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 227 | |
kenjiArai | 0:5b88d5760320 | 228 | /* Temporarily put D := gcd(P-1, Q-1) */ |
kenjiArai | 0:5b88d5760320 | 229 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) ); |
kenjiArai | 0:5b88d5760320 | 230 | |
kenjiArai | 0:5b88d5760320 | 231 | /* K := LCM(P-1, Q-1) */ |
kenjiArai | 0:5b88d5760320 | 232 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) ); |
kenjiArai | 0:5b88d5760320 | 233 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) ); |
kenjiArai | 0:5b88d5760320 | 234 | |
kenjiArai | 0:5b88d5760320 | 235 | /* Compute modular inverse of E in LCM(P-1, Q-1) */ |
kenjiArai | 0:5b88d5760320 | 236 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) ); |
kenjiArai | 0:5b88d5760320 | 237 | |
kenjiArai | 0:5b88d5760320 | 238 | cleanup: |
kenjiArai | 0:5b88d5760320 | 239 | |
kenjiArai | 0:5b88d5760320 | 240 | mbedtls_mpi_free( &K ); |
kenjiArai | 0:5b88d5760320 | 241 | mbedtls_mpi_free( &L ); |
kenjiArai | 0:5b88d5760320 | 242 | |
kenjiArai | 0:5b88d5760320 | 243 | return( ret ); |
kenjiArai | 0:5b88d5760320 | 244 | } |
kenjiArai | 0:5b88d5760320 | 245 | |
kenjiArai | 0:5b88d5760320 | 246 | /* |
kenjiArai | 0:5b88d5760320 | 247 | * Check that RSA CRT parameters are in accordance with core parameters. |
kenjiArai | 0:5b88d5760320 | 248 | */ |
kenjiArai | 0:5b88d5760320 | 249 | int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, |
kenjiArai | 0:5b88d5760320 | 250 | const mbedtls_mpi *D, const mbedtls_mpi *DP, |
kenjiArai | 0:5b88d5760320 | 251 | const mbedtls_mpi *DQ, const mbedtls_mpi *QP ) |
kenjiArai | 0:5b88d5760320 | 252 | { |
kenjiArai | 0:5b88d5760320 | 253 | int ret = 0; |
kenjiArai | 0:5b88d5760320 | 254 | |
kenjiArai | 0:5b88d5760320 | 255 | mbedtls_mpi K, L; |
kenjiArai | 0:5b88d5760320 | 256 | mbedtls_mpi_init( &K ); |
kenjiArai | 0:5b88d5760320 | 257 | mbedtls_mpi_init( &L ); |
kenjiArai | 0:5b88d5760320 | 258 | |
kenjiArai | 0:5b88d5760320 | 259 | /* Check that DP - D == 0 mod P - 1 */ |
kenjiArai | 0:5b88d5760320 | 260 | if( DP != NULL ) |
kenjiArai | 0:5b88d5760320 | 261 | { |
kenjiArai | 0:5b88d5760320 | 262 | if( P == NULL ) |
kenjiArai | 0:5b88d5760320 | 263 | { |
kenjiArai | 0:5b88d5760320 | 264 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
kenjiArai | 0:5b88d5760320 | 265 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 266 | } |
kenjiArai | 0:5b88d5760320 | 267 | |
kenjiArai | 0:5b88d5760320 | 268 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 269 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) ); |
kenjiArai | 0:5b88d5760320 | 270 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); |
kenjiArai | 0:5b88d5760320 | 271 | |
kenjiArai | 0:5b88d5760320 | 272 | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 273 | { |
kenjiArai | 0:5b88d5760320 | 274 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 275 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 276 | } |
kenjiArai | 0:5b88d5760320 | 277 | } |
kenjiArai | 0:5b88d5760320 | 278 | |
kenjiArai | 0:5b88d5760320 | 279 | /* Check that DQ - D == 0 mod Q - 1 */ |
kenjiArai | 0:5b88d5760320 | 280 | if( DQ != NULL ) |
kenjiArai | 0:5b88d5760320 | 281 | { |
kenjiArai | 0:5b88d5760320 | 282 | if( Q == NULL ) |
kenjiArai | 0:5b88d5760320 | 283 | { |
kenjiArai | 0:5b88d5760320 | 284 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
kenjiArai | 0:5b88d5760320 | 285 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 286 | } |
kenjiArai | 0:5b88d5760320 | 287 | |
kenjiArai | 0:5b88d5760320 | 288 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 289 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) ); |
kenjiArai | 0:5b88d5760320 | 290 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); |
kenjiArai | 0:5b88d5760320 | 291 | |
kenjiArai | 0:5b88d5760320 | 292 | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 293 | { |
kenjiArai | 0:5b88d5760320 | 294 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 295 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 296 | } |
kenjiArai | 0:5b88d5760320 | 297 | } |
kenjiArai | 0:5b88d5760320 | 298 | |
kenjiArai | 0:5b88d5760320 | 299 | /* Check that QP * Q - 1 == 0 mod P */ |
kenjiArai | 0:5b88d5760320 | 300 | if( QP != NULL ) |
kenjiArai | 0:5b88d5760320 | 301 | { |
kenjiArai | 0:5b88d5760320 | 302 | if( P == NULL || Q == NULL ) |
kenjiArai | 0:5b88d5760320 | 303 | { |
kenjiArai | 0:5b88d5760320 | 304 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
kenjiArai | 0:5b88d5760320 | 305 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 306 | } |
kenjiArai | 0:5b88d5760320 | 307 | |
kenjiArai | 0:5b88d5760320 | 308 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) ); |
kenjiArai | 0:5b88d5760320 | 309 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 310 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) ); |
kenjiArai | 0:5b88d5760320 | 311 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 312 | { |
kenjiArai | 0:5b88d5760320 | 313 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 314 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 315 | } |
kenjiArai | 0:5b88d5760320 | 316 | } |
kenjiArai | 0:5b88d5760320 | 317 | |
kenjiArai | 0:5b88d5760320 | 318 | cleanup: |
kenjiArai | 0:5b88d5760320 | 319 | |
kenjiArai | 0:5b88d5760320 | 320 | /* Wrap MPI error codes by RSA check failure error code */ |
kenjiArai | 0:5b88d5760320 | 321 | if( ret != 0 && |
kenjiArai | 0:5b88d5760320 | 322 | ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && |
kenjiArai | 0:5b88d5760320 | 323 | ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA ) |
kenjiArai | 0:5b88d5760320 | 324 | { |
kenjiArai | 0:5b88d5760320 | 325 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 326 | } |
kenjiArai | 0:5b88d5760320 | 327 | |
kenjiArai | 0:5b88d5760320 | 328 | mbedtls_mpi_free( &K ); |
kenjiArai | 0:5b88d5760320 | 329 | mbedtls_mpi_free( &L ); |
kenjiArai | 0:5b88d5760320 | 330 | |
kenjiArai | 0:5b88d5760320 | 331 | return( ret ); |
kenjiArai | 0:5b88d5760320 | 332 | } |
kenjiArai | 0:5b88d5760320 | 333 | |
kenjiArai | 0:5b88d5760320 | 334 | /* |
kenjiArai | 0:5b88d5760320 | 335 | * Check that core RSA parameters are sane. |
kenjiArai | 0:5b88d5760320 | 336 | */ |
kenjiArai | 0:5b88d5760320 | 337 | int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, |
kenjiArai | 0:5b88d5760320 | 338 | const mbedtls_mpi *Q, const mbedtls_mpi *D, |
kenjiArai | 0:5b88d5760320 | 339 | const mbedtls_mpi *E, |
kenjiArai | 0:5b88d5760320 | 340 | int (*f_rng)(void *, unsigned char *, size_t), |
kenjiArai | 0:5b88d5760320 | 341 | void *p_rng ) |
kenjiArai | 0:5b88d5760320 | 342 | { |
kenjiArai | 0:5b88d5760320 | 343 | int ret = 0; |
kenjiArai | 0:5b88d5760320 | 344 | mbedtls_mpi K, L; |
kenjiArai | 0:5b88d5760320 | 345 | |
kenjiArai | 0:5b88d5760320 | 346 | mbedtls_mpi_init( &K ); |
kenjiArai | 0:5b88d5760320 | 347 | mbedtls_mpi_init( &L ); |
kenjiArai | 0:5b88d5760320 | 348 | |
kenjiArai | 0:5b88d5760320 | 349 | /* |
kenjiArai | 0:5b88d5760320 | 350 | * Step 1: If PRNG provided, check that P and Q are prime |
kenjiArai | 0:5b88d5760320 | 351 | */ |
kenjiArai | 0:5b88d5760320 | 352 | |
kenjiArai | 0:5b88d5760320 | 353 | #if defined(MBEDTLS_GENPRIME) |
kenjiArai | 0:5b88d5760320 | 354 | /* |
kenjiArai | 0:5b88d5760320 | 355 | * When generating keys, the strongest security we support aims for an error |
kenjiArai | 0:5b88d5760320 | 356 | * rate of at most 2^-100 and we are aiming for the same certainty here as |
kenjiArai | 0:5b88d5760320 | 357 | * well. |
kenjiArai | 0:5b88d5760320 | 358 | */ |
kenjiArai | 0:5b88d5760320 | 359 | if( f_rng != NULL && P != NULL && |
kenjiArai | 0:5b88d5760320 | 360 | ( ret = mbedtls_mpi_is_prime_ext( P, 50, f_rng, p_rng ) ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 361 | { |
kenjiArai | 0:5b88d5760320 | 362 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 363 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 364 | } |
kenjiArai | 0:5b88d5760320 | 365 | |
kenjiArai | 0:5b88d5760320 | 366 | if( f_rng != NULL && Q != NULL && |
kenjiArai | 0:5b88d5760320 | 367 | ( ret = mbedtls_mpi_is_prime_ext( Q, 50, f_rng, p_rng ) ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 368 | { |
kenjiArai | 0:5b88d5760320 | 369 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 370 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 371 | } |
kenjiArai | 0:5b88d5760320 | 372 | #else |
kenjiArai | 0:5b88d5760320 | 373 | ((void) f_rng); |
kenjiArai | 0:5b88d5760320 | 374 | ((void) p_rng); |
kenjiArai | 0:5b88d5760320 | 375 | #endif /* MBEDTLS_GENPRIME */ |
kenjiArai | 0:5b88d5760320 | 376 | |
kenjiArai | 0:5b88d5760320 | 377 | /* |
kenjiArai | 0:5b88d5760320 | 378 | * Step 2: Check that 1 < N = P * Q |
kenjiArai | 0:5b88d5760320 | 379 | */ |
kenjiArai | 0:5b88d5760320 | 380 | |
kenjiArai | 0:5b88d5760320 | 381 | if( P != NULL && Q != NULL && N != NULL ) |
kenjiArai | 0:5b88d5760320 | 382 | { |
kenjiArai | 0:5b88d5760320 | 383 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) ); |
kenjiArai | 0:5b88d5760320 | 384 | if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 || |
kenjiArai | 0:5b88d5760320 | 385 | mbedtls_mpi_cmp_mpi( &K, N ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 386 | { |
kenjiArai | 0:5b88d5760320 | 387 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 388 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 389 | } |
kenjiArai | 0:5b88d5760320 | 390 | } |
kenjiArai | 0:5b88d5760320 | 391 | |
kenjiArai | 0:5b88d5760320 | 392 | /* |
kenjiArai | 0:5b88d5760320 | 393 | * Step 3: Check and 1 < D, E < N if present. |
kenjiArai | 0:5b88d5760320 | 394 | */ |
kenjiArai | 0:5b88d5760320 | 395 | |
kenjiArai | 0:5b88d5760320 | 396 | if( N != NULL && D != NULL && E != NULL ) |
kenjiArai | 0:5b88d5760320 | 397 | { |
kenjiArai | 0:5b88d5760320 | 398 | if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 || |
kenjiArai | 0:5b88d5760320 | 399 | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || |
kenjiArai | 0:5b88d5760320 | 400 | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || |
kenjiArai | 0:5b88d5760320 | 401 | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) |
kenjiArai | 0:5b88d5760320 | 402 | { |
kenjiArai | 0:5b88d5760320 | 403 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 404 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 405 | } |
kenjiArai | 0:5b88d5760320 | 406 | } |
kenjiArai | 0:5b88d5760320 | 407 | |
kenjiArai | 0:5b88d5760320 | 408 | /* |
kenjiArai | 0:5b88d5760320 | 409 | * Step 4: Check that D, E are inverse modulo P-1 and Q-1 |
kenjiArai | 0:5b88d5760320 | 410 | */ |
kenjiArai | 0:5b88d5760320 | 411 | |
kenjiArai | 0:5b88d5760320 | 412 | if( P != NULL && Q != NULL && D != NULL && E != NULL ) |
kenjiArai | 0:5b88d5760320 | 413 | { |
kenjiArai | 0:5b88d5760320 | 414 | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || |
kenjiArai | 0:5b88d5760320 | 415 | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ) |
kenjiArai | 0:5b88d5760320 | 416 | { |
kenjiArai | 0:5b88d5760320 | 417 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 418 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 419 | } |
kenjiArai | 0:5b88d5760320 | 420 | |
kenjiArai | 0:5b88d5760320 | 421 | /* Compute DE-1 mod P-1 */ |
kenjiArai | 0:5b88d5760320 | 422 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); |
kenjiArai | 0:5b88d5760320 | 423 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 424 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 425 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); |
kenjiArai | 0:5b88d5760320 | 426 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 427 | { |
kenjiArai | 0:5b88d5760320 | 428 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 429 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 430 | } |
kenjiArai | 0:5b88d5760320 | 431 | |
kenjiArai | 0:5b88d5760320 | 432 | /* Compute DE-1 mod Q-1 */ |
kenjiArai | 0:5b88d5760320 | 433 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); |
kenjiArai | 0:5b88d5760320 | 434 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 435 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 436 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); |
kenjiArai | 0:5b88d5760320 | 437 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) |
kenjiArai | 0:5b88d5760320 | 438 | { |
kenjiArai | 0:5b88d5760320 | 439 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 440 | goto cleanup; |
kenjiArai | 0:5b88d5760320 | 441 | } |
kenjiArai | 0:5b88d5760320 | 442 | } |
kenjiArai | 0:5b88d5760320 | 443 | |
kenjiArai | 0:5b88d5760320 | 444 | cleanup: |
kenjiArai | 0:5b88d5760320 | 445 | |
kenjiArai | 0:5b88d5760320 | 446 | mbedtls_mpi_free( &K ); |
kenjiArai | 0:5b88d5760320 | 447 | mbedtls_mpi_free( &L ); |
kenjiArai | 0:5b88d5760320 | 448 | |
kenjiArai | 0:5b88d5760320 | 449 | /* Wrap MPI error codes by RSA check failure error code */ |
kenjiArai | 0:5b88d5760320 | 450 | if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ) |
kenjiArai | 0:5b88d5760320 | 451 | { |
kenjiArai | 0:5b88d5760320 | 452 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
kenjiArai | 0:5b88d5760320 | 453 | } |
kenjiArai | 0:5b88d5760320 | 454 | |
kenjiArai | 0:5b88d5760320 | 455 | return( ret ); |
kenjiArai | 0:5b88d5760320 | 456 | } |
kenjiArai | 0:5b88d5760320 | 457 | |
kenjiArai | 0:5b88d5760320 | 458 | int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, |
kenjiArai | 0:5b88d5760320 | 459 | const mbedtls_mpi *D, mbedtls_mpi *DP, |
kenjiArai | 0:5b88d5760320 | 460 | mbedtls_mpi *DQ, mbedtls_mpi *QP ) |
kenjiArai | 0:5b88d5760320 | 461 | { |
kenjiArai | 0:5b88d5760320 | 462 | int ret = 0; |
kenjiArai | 0:5b88d5760320 | 463 | mbedtls_mpi K; |
kenjiArai | 0:5b88d5760320 | 464 | mbedtls_mpi_init( &K ); |
kenjiArai | 0:5b88d5760320 | 465 | |
kenjiArai | 0:5b88d5760320 | 466 | /* DP = D mod P-1 */ |
kenjiArai | 0:5b88d5760320 | 467 | if( DP != NULL ) |
kenjiArai | 0:5b88d5760320 | 468 | { |
kenjiArai | 0:5b88d5760320 | 469 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 470 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) ); |
kenjiArai | 0:5b88d5760320 | 471 | } |
kenjiArai | 0:5b88d5760320 | 472 | |
kenjiArai | 0:5b88d5760320 | 473 | /* DQ = D mod Q-1 */ |
kenjiArai | 0:5b88d5760320 | 474 | if( DQ != NULL ) |
kenjiArai | 0:5b88d5760320 | 475 | { |
kenjiArai | 0:5b88d5760320 | 476 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); |
kenjiArai | 0:5b88d5760320 | 477 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) ); |
kenjiArai | 0:5b88d5760320 | 478 | } |
kenjiArai | 0:5b88d5760320 | 479 | |
kenjiArai | 0:5b88d5760320 | 480 | /* QP = Q^{-1} mod P */ |
kenjiArai | 0:5b88d5760320 | 481 | if( QP != NULL ) |
kenjiArai | 0:5b88d5760320 | 482 | { |
kenjiArai | 0:5b88d5760320 | 483 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) ); |
kenjiArai | 0:5b88d5760320 | 484 | } |
kenjiArai | 0:5b88d5760320 | 485 | |
kenjiArai | 0:5b88d5760320 | 486 | cleanup: |
kenjiArai | 0:5b88d5760320 | 487 | mbedtls_mpi_free( &K ); |
kenjiArai | 0:5b88d5760320 | 488 | |
kenjiArai | 0:5b88d5760320 | 489 | return( ret ); |
kenjiArai | 0:5b88d5760320 | 490 | } |
kenjiArai | 0:5b88d5760320 | 491 | |
kenjiArai | 0:5b88d5760320 | 492 | #endif /* MBEDTLS_RSA_C */ |