Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
LSM9DS1.cpp
- Committer:
- ChangYuHsuan
- Date:
- 2017-06-15
- Revision:
- 6:28c4b3c8b43d
- Parent:
- 4:7ffcb378cfd4
- Child:
- 7:e6e3d320eb6c
File content as of revision 6:28c4b3c8b43d:
#include "LSM9DS1.h"
LSM9DS1::LSM9DS1(PinName sda, PinName scl, uint8_t xgAddr, uint8_t mAddr) : i2c(sda, scl)
{
// xgAddress and mAddress will store the 7-bit I2C address, if using I2C.
xgAddress = xgAddr;
mAddress = mAddr;
}
uint16_t LSM9DS1::begin(gyro_scale gScl, accel_scale aScl, mag_scale mScl,
gyro_odr gODR, accel_odr aODR, mag_odr mODR)
{
// Store the given scales in class variables. These scale variables
// are used throughout to calculate the actual g's, DPS,and Gs's.
gScale = gScl;
aScale = aScl;
mScale = mScl;
// Once we have the scale values, we can calculate the resolution
// of each sensor. That's what these functions are for. One for each sensor
calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable
calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable
calcaRes(); // Calculate g / ADC tick, stored in aRes variable
// To verify communication, we can read from the WHO_AM_I register of
// each device. Store those in a variable so we can return them.
// The start of the addresses we want to read from
char cmd[2] = {
WHO_AM_I_XG,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
uint8_t xgTest = cmd[1]; // Read the accel/gyro WHO_AM_I
// Reset to the address of the mag who am i
cmd[0] = WHO_AM_I_M;
// Write the address we are going to read from and don't end the transaction
i2c.write(mAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(mAddress, cmd+1, 1);
uint8_t mTest = cmd[1]; // Read the mag WHO_AM_I
for(int ii = 0; ii < 3; ii++)
{
gBiasRaw[ii] = 0;
aBiasRaw[ii] = 0;
gBias[ii] = 0;
aBias[ii] = 0;
autoCalib = false;
}
// Gyro initialization stuff:
initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc.
setGyroODR(gODR); // Set the gyro output data rate and bandwidth.
setGyroScale(gScale); // Set the gyro range
// Accelerometer initialization stuff:
initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc.
setAccelODR(aODR); // Set the accel data rate.
setAccelScale(aScale); // Set the accel range.
// Magnetometer initialization stuff:
initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc.
setMagODR(mODR); // Set the magnetometer output data rate.
setMagScale(mScale); // Set the magnetometer's range.
// Interrupt initialization stuff
initIntr();
// Once everything is initialized, return the WHO_AM_I registers we read:
return (xgTest << 8) | mTest;
}
void LSM9DS1::initGyro()
{
char cmd[4] = {
CTRL_REG1_G,
gScale | G_ODR_119_BW_14,
0, // Default data out and int out
0 // Default power mode and high pass settings
};
// Write the data to the gyro control registers
i2c.write(xgAddress, cmd, 4);
}
void LSM9DS1::initAccel()
{
char cmd[4] = {
CTRL_REG5_XL,
0x38, // Enable all axis and don't decimate data in out Registers
(A_ODR_119 << 5) | (aScale << 3) | (A_BW_AUTO_SCALE), // 119 Hz ODR, set scale, and auto BW
0 // Default resolution mode and filtering settings
};
// Write the data to the accel control registers
i2c.write(xgAddress, cmd, 4);
}
void LSM9DS1::initMag()
{
char cmd[4] = {
CTRL_REG1_M,
0x10, // Default data rate, xy axes mode, and temp comp
mScale << 5, // Set mag scale
0 // Enable I2C, write only SPI, not LP mode, Continuous conversion mode
};
// Write the data to the mag control registers
i2c.write(mAddress, cmd, 4);
}
void LSM9DS1::initIntr()
{
char cmd[2];
uint16_t thresholdG = 500;
uint8_t durationG = 10;
uint8_t thresholdX = 20;
uint8_t durationX = 1;
uint16_t thresholdM = 10000;
// 1. Configure the gyro interrupt generator
cmd[0] = INT_GEN_CFG_G;
cmd[1] = (1 << 5);
i2c.write(xgAddress, cmd, 2);
// 2. Configure the gyro threshold
cmd[0] = INT_GEN_THS_ZH_G;
cmd[1] = (thresholdG & 0x7F00) >> 8;
i2c.write(xgAddress, cmd, 2);
cmd[0] = INT_GEN_THS_ZL_G;
cmd[1] = (thresholdG & 0x00FF);
i2c.write(xgAddress, cmd, 2);
cmd[0] = INT_GEN_DUR_G;
cmd[1] = (durationG & 0x7F) | 0x80;
i2c.write(xgAddress, cmd, 2);
// 3. Configure accelerometer interrupt generator
cmd[0] = INT_GEN_CFG_XL;
cmd[1] = (1 << 1);
i2c.write(xgAddress, cmd, 2);
// 4. Configure accelerometer threshold
cmd[0] = INT_GEN_THS_X_XL;
cmd[1] = thresholdX;
i2c.write(xgAddress, cmd, 2);
cmd[0] = INT_GEN_DUR_XL;
cmd[1] = (durationX & 0x7F);
i2c.write(xgAddress, cmd, 2);
// 5. Configure INT1 - assign it to gyro interrupt
cmd[0] = INT1_CTRL;
// cmd[1] = 0xC0;
cmd[1] = (1 << 7) | (1 << 6);
i2c.write(xgAddress, cmd, 2);
cmd[0] = CTRL_REG8;
// cmd[1] = 0x04;
cmd[1] = (1 << 2) | (1 << 5) | (1 << 4);
i2c.write(xgAddress, cmd, 2);
// Configure interrupt 2 to fire whenever new accelerometer
// or gyroscope data is available.
cmd[0] = INT2_CTRL;
cmd[1] = (1 << 0) | (1 << 1);
i2c.write(xgAddress, cmd, 2);
cmd[0] = CTRL_REG8;
cmd[1] = (1 << 2) | (1 << 5) | (1 << 4);
i2c.write(xgAddress, cmd, 2);
// Configure magnetometer interrupt
cmd[0] = INT_CFG_M;
cmd[1] = (1 << 7) | (1 << 0);
i2c.write(xgAddress, cmd, 2);
// Configure magnetometer threshold
cmd[0] = INT_THS_H_M;
cmd[1] = uint8_t((thresholdM & 0x7F00) >> 8);
i2c.write(xgAddress, cmd, 2);
cmd[0] = INT_THS_L_M;
cmd[1] = uint8_t(thresholdM & 0x00FF);
i2c.write(xgAddress, cmd, 2);
}
void LSM9DS1::calibration()
{
uint16_t samples = 0;
int32_t aBiasRawTemp[3] = {0, 0, 0};
int32_t gBiasRawTemp[3] = {0, 0, 0};
/*
// Turn on FIFO and set threshold to 32 samples
enableXgFIFO(true);
setXgFIFO( 1, 0x1F);
while (samples < 0x1F)
{
samples = (i2c.read(FIFO_SRC) & 0x3F); // Read number of stored samples
}
for(int ii = 0; ii < samples ; ii++)
{ // Read the gyro data stored in the FIFO
readGyro();
gBiasRawTemp[0] += gx_raw;
gBiasRawTemp[1] += gy_raw;
gBiasRawTemp[2] += gz_raw;
readAccel();
aBiasRawTemp[0] += ax_raw;
aBiasRawTemp[1] += ay_raw;
aBiasRawTemp[2] += az_raw - (int16_t)(1./aRes); // Assumes sensor facing up!
}
for (int ii = 0; ii < 3; ii++)
{
gBias_raw[ii] = gBiasRawTemp[ii] / samples;
gBias[ii] = gBias_raw[ii] * gRes;
aBias_raw[ii] = aBiasRawTemp[ii] / samples;
aBias[ii] = aBias_raw[ii] * aRes;
}
enableXgFIFO(false);
setXgFIFO(0, 0x00);
*/
while(samples < 300)
{
readGyro();
gBiasRawTemp[0] += gx_raw;
gBiasRawTemp[1] += gy_raw;
gBiasRawTemp[2] += gz_raw;
readAccel();
aBiasRawTemp[0] += ax_raw;
aBiasRawTemp[1] += ay_raw;
aBiasRawTemp[2] += az_raw;
wait_us(1000);
samples++;
}
for(int ii = 0; ii < 3; ii++)
{
gBiasRaw[ii] = gBiasRawTemp[ii] / samples;
aBiasRaw[ii] = aBiasRawTemp[ii] / samples;
gBias[ii] = gBiasRaw[ii] * gRes;
aBias[ii] = aBiasRaw[ii] * aRes;
}
autoCalib = true;
}
void LSM9DS1::readAccel()
{
// The data we are going to read from the accel
char data[6];
// The start of the addresses we want to read from
char subAddress = OUT_X_L_XL;
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, &subAddress, 1, true);
// Read in all 8 bit registers containing the axes data
i2c.read(xgAddress, data, 6);
// Reassemble the data and convert to g
ax_raw = data[0] | (data[1] << 8);
ay_raw = data[2] | (data[3] << 8);
az_raw = data[4] | (data[5] << 8);
ax = ax_raw * aRes;
ay = ay_raw * aRes;
az = az_raw * aRes;
if(autoCalib == true)
{
ax_raw -= aBiasRaw[0];
ay_raw -= aBiasRaw[1];
az_raw -= aBiasRaw[2];
ax = ax_raw * aRes;
ay = ay_raw * aRes;
az = az_raw * aRes;
}
}
void LSM9DS1::readMag()
{
// The data we are going to read from the mag
char data[6];
// The start of the addresses we want to read from
char subAddress = OUT_X_L_M;
// Write the address we are going to read from and don't end the transaction
i2c.write(mAddress, &subAddress, 1, true);
// Read in all 8 bit registers containing the axes data
i2c.read(mAddress, data, 6);
// Reassemble the data and convert to degrees
mx_raw = data[0] | (data[1] << 8);
my_raw = data[2] | (data[3] << 8);
mz_raw = data[4] | (data[5] << 8);
mx = mx_raw * mRes;
my = my_raw * mRes;
mz = mz_raw * mRes;
}
void LSM9DS1::readIntr()
{
char data[1];
char subAddress = INT_GEN_SRC_G;
i2c.write(xgAddress, &subAddress, 1, true);
i2c.read(xgAddress, data, 1);
intr = (float)data[0];
}
void LSM9DS1::readTemp()
{
// The data we are going to read from the temp
char data[2];
// The start of the addresses we want to read from
char subAddress = OUT_TEMP_L;
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, &subAddress, 1, true);
// Read in all 8 bit registers containing the axes data
i2c.read(xgAddress, data, 2);
// Temperature is a 12-bit signed integer
temperature_raw = data[0] | (data[1] << 8);
temperature_c = (float)temperature_raw / 8.0 + 25;
temperature_f = temperature_c * 1.8 + 32;
}
void LSM9DS1::readGyro()
{
// The data we are going to read from the gyro
char data[6];
// The start of the addresses we want to read from
char subAddress = OUT_X_L_G;
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, &subAddress, 1, true);
// Read in all 8 bit registers containing the axes data
i2c.read(xgAddress, data, 6);
// Reassemble the data and convert to degrees/sec
gx_raw = data[0] | (data[1] << 8);
gy_raw = data[2] | (data[3] << 8);
gz_raw = data[4] | (data[5] << 8);
gx = gx_raw * gRes;
gy = gy_raw * gRes;
gz = gz_raw * gRes;
if(autoCalib == true)
{
gx_raw -= gBiasRaw[0];
gy_raw -= gBiasRaw[1];
gz_raw -= gBiasRaw[2];
gx = gx_raw * gRes;
gy = gy_raw * gRes;
gz = gz_raw * gRes;
}
}
void LSM9DS1::setGyroScale(gyro_scale gScl)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG1_G,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
// Then mask out the gyro scale bits:
cmd[1] &= 0xFF^(0x3 << 3);
// Then shift in our new scale bits:
cmd[1] |= gScl << 3;
// Write the gyroscale out to the gyro
i2c.write(xgAddress, cmd, 2);
// We've updated the sensor, but we also need to update our class variables
// First update gScale:
gScale = gScl;
// Then calculate a new gRes, which relies on gScale being set correctly:
calcgRes();
}
void LSM9DS1::setAccelScale(accel_scale aScl)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG6_XL,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
// Then mask out the accel scale bits:
cmd[1] &= 0xFF^(0x3 << 3);
// Then shift in our new scale bits:
cmd[1] |= aScl << 3;
// Write the accelscale out to the accel
i2c.write(xgAddress, cmd, 2);
// We've updated the sensor, but we also need to update our class variables
// First update aScale:
aScale = aScl;
// Then calculate a new aRes, which relies on aScale being set correctly:
calcaRes();
}
void LSM9DS1::setMagScale(mag_scale mScl)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG2_M,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(mAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(mAddress, cmd+1, 1);
// Then mask out the mag scale bits:
cmd[1] &= 0xFF^(0x3 << 5);
// Then shift in our new scale bits:
cmd[1] |= mScl << 5;
// Write the magscale out to the mag
i2c.write(mAddress, cmd, 2);
// We've updated the sensor, but we also need to update our class variables
// First update mScale:
mScale = mScl;
// Then calculate a new mRes, which relies on mScale being set correctly:
calcmRes();
}
void LSM9DS1::setGyroODR(gyro_odr gRate)
{
char cmd[2];
char cmdLow[2];
if(gRate == G_ODR_15_BW_0 | gRate == G_ODR_60_BW_16 | gRate == G_ODR_119_BW_14 | gRate == G_ODR_119_BW_31) {
cmdLow[0] = CTRL_REG3_G;
cmdLow[1] = 1;
i2c.write(xgAddress, cmdLow, 2);
}
// The start of the addresses we want to read from
cmd[0] = CTRL_REG1_G;
cmd[1] = 0;
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
// Then mask out the gyro odr bits:
cmd[1] &= (0x3 << 3);
// Then shift in our new odr bits:
cmd[1] |= gRate;
// Write the gyroodr out to the gyro
i2c.write(xgAddress, cmd, 2);
}
void LSM9DS1::setAccelODR(accel_odr aRate)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG6_XL,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(xgAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(xgAddress, cmd+1, 1);
// Then mask out the accel odr bits:
cmd[1] &= 0xFF^(0x7 << 5);
// Then shift in our new odr bits:
cmd[1] |= aRate << 5;
// Write the accelodr out to the accel
i2c.write(xgAddress, cmd, 2);
}
void LSM9DS1::setMagODR(mag_odr mRate)
{
// The start of the addresses we want to read from
char cmd[2] = {
CTRL_REG1_M,
0
};
// Write the address we are going to read from and don't end the transaction
i2c.write(mAddress, cmd, 1, true);
// Read in all the 8 bits of data
i2c.read(mAddress, cmd+1, 1);
// Then mask out the mag odr bits:
cmd[1] &= 0xFF^(0x7 << 2);
// Then shift in our new odr bits:
cmd[1] |= mRate << 2;
// Write the magodr out to the mag
i2c.write(mAddress, cmd, 2);
}
void LSM9DS1::calcgRes()
{
// Possible gyro scales (and their register bit settings) are:
// 245 DPS (00), 500 DPS (01), 2000 DPS (10).
switch (gScale)
{
case G_SCALE_245DPS:
gRes = 245.0 / 32768.0;
break;
case G_SCALE_500DPS:
gRes = 500.0 / 32768.0;
break;
case G_SCALE_2000DPS:
gRes = 2000.0 / 32768.0;
break;
}
}
void LSM9DS1::calcaRes()
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100).
switch (aScale)
{
case A_SCALE_2G:
aRes = 2.0 / 32768.0;
break;
case A_SCALE_4G:
aRes = 4.0 / 32768.0;
break;
case A_SCALE_8G:
aRes = 8.0 / 32768.0;
break;
case A_SCALE_16G:
aRes = 16.0 / 32768.0;
break;
}
}
void LSM9DS1::calcmRes()
{
// Possible magnetometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11).
switch (mScale)
{
case M_SCALE_4GS:
mRes = 4.0 / 32768.0;
break;
case M_SCALE_8GS:
mRes = 8.0 / 32768.0;
break;
case M_SCALE_12GS:
mRes = 12.0 / 32768.0;
break;
case M_SCALE_16GS:
mRes = 16.0 / 32768.0;
break;
}
}
/*
void LSM9DS1::enableXgFIFO(bool enable)
{
char cmd[2] = {CTRL_REG9, 0};
i2c.write(xgAddress, cmd, 1);
cmd[1] = i2c.read(CTRL_REG9);
if (enable) cmd[1] |= (1<<1);
else cmd[1] &= ~(1<<1);
i2c.write(xgAddress, cmd, 2);
}
void LSM9DS1::setXgFIFO(uint8_t fifoMode, uint8_t fifoThs)
{
// Limit threshold - 0x1F (31) is the maximum. If more than that was asked
// limit it to the maximum.
char cmd[2] = {FIFO_CTRL, 0};
uint8_t threshold = fifoThs <= 0x1F ? fifoThs : 0x1F;
cmd[1] = ((fifoMode & 0x7) << 5) | (threshold & 0x1F);
i2c.write(xgAddress, cmd, 2);
}
*/