Frequency counter library using GPS 1PPS signal and temperature controlled 50MHz Base clock. Ported from F411 Frequency Counter.

Dependencies:   RingBuff

Dependents:   Frequency_Cntr_1PPS_F746ZG

Fork of Frq_cuntr_full by Kenji Arai

Please refer following.
/users/kenjiArai/notebook/frequency-counters/

frq_cuntr_full.cpp

Committer:
kenjiArai
Date:
2014-11-22
Revision:
0:bfdc6ed58a06
Child:
1:102230f2879d

File content as of revision 0:bfdc6ed58a06:

/*
 * mbed Application program / Frequency Counter with GPS 1PPS Compensation
 *      Frequency Counter Hardware relataed program
 *
 * Copyright (c) 2014 Kenji Arai / JH1PJL
 *  http://www.page.sannet.ne.jp/kenjia/index.html
 *  http://mbed.org/users/kenjiArai/
 *      Additional functions and modification
 *      started: October   18th, 2014
 *      Revised: Nobember  22nd, 2014
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "frq_cuntr_full.h"

#ifdef DEBUG
Serial pcm(USBTX, USBRX);
DigitalOut debug_led(LED1);
#endif

#ifdef DEBUG
#define BAUD(x)         pcm.baud(x)
#define GETC(x)         pcm.getc(x)
#define PUTC(x)         pcm.putc(x)
#define PRINTF(...)     pcm.printf(__VA_ARGS__)
#define READABLE(x)     pcm.readable(x)
#else
#define BAUD(x)         {;}
#define GETC(x)         {;}
#define PUTC(x)         {;}
#define PRINTF(...)     {;}
#define READABLE(x)     {;}
#endif

namespace Frequency_counter
{
    #if defined(IRQ_DRIVE)
    // TIM2
    uint8_t  tim2_ready_flg;
    uint32_t tim2_cnt_data;
    uint32_t tim2_old_cnt_data;
    // TIM3+4
    uint8_t  tim3p4_ready_flg;
    uint32_t tim3p4_cnt_data;
    uint32_t tim3p4_old_cnt_data;
    #endif
    
    //-------------------------------------------------------------------------------------------------
    //  Control Program
    //-------------------------------------------------------------------------------------------------
    // TIM2 IC2 Interrupt control
    void irq_ic2_TIM2(void)
    {
        uint16_t reg;
        
        reg = TIM2->SR;
        if (reg & TIM_SR_CC2IF){
            TIM2->SR &= ~TIM_SR_CC2IF;      // clear IC flag
            tim2_old_cnt_data = tim2_cnt_data;
            tim2_cnt_data = TIM2->CCR2;
            tim2_ready_flg = 1;
        } else if (reg & TIM_SR_CC3IF){
            TIM2->SR &= ~TIM_SR_CC3IF;      // clear IC flag
            TIM2->CCR3 = TIM2->CCR3 + ONE_SECOND_COUNT;
        }
#if defined(DEBUG)
        debug_led = !debug_led;
#endif
    }
    
    // TIM3 IC2 Interrupt control (same signal connected to TIM4 IC1)
    void irq_ic2_TIM3P4(void)
    {
        TIM3->SR &= ~TIM_SR_CC2IF;      // clear IC flag
        TIM4->SR &= ~TIM_SR_CC1IF;
        tim3p4_old_cnt_data = tim3p4_cnt_data;
        tim3p4_cnt_data = (TIM4->CCR1 << 16) + TIM3->CCR2;
        tim3p4_ready_flg = 1;
#if defined(DEBUG)
        debug_led = !debug_led;
#endif
    }
    
    //---------------------------------------------------------------------------------------
    //  Frequency Counter
    //--------------------------------------------------------------------------------------- 
    FRQ_CUNTR::FRQ_CUNTR(PinName f_in): _pin(f_in)
    {
        ;
    }
    
    //---------------------------------------------------------------------------------------
    //  TIM2 (32bit Counter + IC + OC)
    //---------------------------------------------------------------------------------------
    // Read TIM2 captured counter value
    uint32_t FRQ_CUNTR::read_ic2_counter_TIM2(void)
    {
    #if !defined(IRQ_DRIVE)
        uint32_t count = 0
    
        count = TIM2->CCR2;
        TIM2->SR &= ~TIM_SR_CC2IF;          // clear IC flag
        PRINTF("T2:0x%08x\r\n", count);
        return count;
    #else
    //    return TIM2->CCR2;
        return tim2_cnt_data;
    #endif
    }
    
    // Check TIM2 IC2 status
    uint32_t FRQ_CUNTR::check_ic2_status_TIM2(void)
    {
    #if !defined(IRQ_DRIVE)
        uint32_t status = 0;
    
        status = (TIM2->SR & TIM_SR_CC2IF) >> 2;
        PRINTF("Status:0x%08x,", status);
        return status;
    #else
        if (tim2_ready_flg == 0) {
            return 0;
        } else {
            tim2_ready_flg = 0;
            avarage_1pps();
            return 0xff;
        }
    #endif
    }
    
    // Avarage measued data GPS 1PPS by 50MHz Internal Clock
    void FRQ_CUNTR::avarage_1pps(void)
    {
        uint8_t status = 0;
    
        uint32_t diff = tim2_cnt_data - tim2_old_cnt_data;
        onepps_cnt[onepps_num] = diff;
        if ((onepps_cnt[onepps_num] > CNT_UPPER) || (onepps_cnt[onepps_num] < CNT_LOWER)) {
            ;
        } else {
            status = 0;
            if (++onepps_num >= CNT_BF_SIZE) {
                onepps_num = 0;
                onepps_buf_full = 1;
            }
        }
        uint64_t total = 0;
        if (onepps_buf_full == 1) {
            for (uint32_t i = 0; i < CNT_BF_SIZE; i++) {
                total += (uint64_t)onepps_cnt[i];
            }
            onepps_cnt_avarage = total / CNT_BF_SIZE;
            status = 2;
        } else {
            for (uint32_t i = 0; i < onepps_num; i++) {
                total += (uint64_t)onepps_cnt[i];
            }
            onepps_cnt_avarage = total / onepps_num;
            status = 1;
        }
    //    PRINTF("num= %3d , status= %1d , 1PPS= %9d , 1PPS/Ave= %9d , ", onepps_num, status, diff, onepps_cnt_avarage);
        PRINTF("num= %3d , status= %1d , 1PPS= %9d , 1PPS/Ave= %9d , ", onepps_num, status, diff, 0);
    }
    
    //---------------------------------------------------------------------------------------
    //  TIM3+TIM4 (32bit Counter + IC)
    //---------------------------------------------------------------------------------------
    // Read TIM3+4(as 32bit) captured counter value
    uint32_t FRQ_CUNTR::read_ic2_counter_TIM3P4(void)
    {
    #if !defined(IRQ_DRIVE)
        uint32_t count0 = 0, count1 = 0;
    
        count0 = TIM3->CCR2;
        count1 = TIM4->CCR1;
        TIM3->SR &= ~TIM_SR_CC2IF;      // clear IC flag
        TIM4->SR &= ~TIM_SR_CC1IF;
        PRINTF("T4:0x%08x,T3:0x%08x\r\n", count1, count0);
        count0 = (count1 << 16) + count0;
        return count0;
    #else
        return tim3p4_cnt_data;
    #endif
    }
    
    // Check TIM3 IC2 & TIM4 IC1 status
    uint32_t FRQ_CUNTR::check_ic2_status_TIM3P4(void)
    {
    #if !defined(IRQ_DRIVE)
        uint32_t status0 = 0, status1 = 0;
    
        status0 = (TIM3->SR & TIM_SR_CC2IF) >> 2;
        status1 = (TIM4->SR & TIM_SR_CC1IF) >> 1;
        status0 = (status1 << 16) + status0;
        PRINTF("Status:0x%08x,", status0);
        return status0;
    #else
        if (tim3p4_ready_flg == 0) {
            return 0;
        } else {
            tim3p4_ready_flg = 0;
            return 0xff;
        }
    #endif
    }
    
    //---------------------------------------------------------------------------------------
    //  Frequency check for test purpose
    //---------------------------------------------------------------------------------------
    // Read TIM2 Clock frequency
    uint32_t FRQ_CUNTR::read_frequency_TIM2(float gate_time)
    {
        uint32_t freq = 0;
    
        TIM2->CNT = 0;
        wait(gate_time);                // Gate time for count
        freq = TIM2->CNT;               // read counter
        PRINTF("Clock freq.=%10d [Hz], gate= %4.2f [Sec]\r\n", freq, gate_time);
        return freq;                    // return counter data   
    }
    
    // Read TIM3(+TIM4) Input frequency
    uint32_t FRQ_CUNTR::read_frequency_TIM3P4(float gate_time)
    {
        uint32_t freq0 = 0, freq1 = 0;
    
        TIM3->CNT = 0;
        TIM4->CNT = 0;
        TIM3->CNT = 0;
        wait(gate_time);                // Gate time for count
        freq0 = TIM3->CNT;
        freq1 = TIM4->CNT;
        freq0 = (freq1 << 16) + freq0;
        PRINTF("Input freq.=%10d [Hz], gate= %4.2f [Sec]\r\n", freq0, gate_time);
        return freq0;                   // read counter
    }
    
    //---------------------------------------------------------------------------------------
    //  Clock output for test purpose
    //---------------------------------------------------------------------------------------
    // Output internal clock
    void FRQ_CUNTR::port_mco1_mco2_set(uint8_t select)
    {
        // PA8 -> MCO_1   
        GPIOA->AFR[1] &= 0xfffffff0;
        GPIOA->AFR[1] |= GPIO_AF0_MCO << 0;
        GPIOA->MODER &= ~(GPIO_MODER_MODER8);   // AF
        GPIOA->MODER |= GPIO_MODER_MODER8_1;
        GPIOA->OTYPER &= ~(GPIO_OTYPER_OT_8);   // Output Push-Pull=0
        GPIOA->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR8;// Speed full=11
        GPIOA->PUPDR &= ~(GPIO_PUPDR_PUPDR8);   // Pull-up=01
        GPIOA->PUPDR |= GPIO_PUPDR_PUPDR8_0;
        // PC9 -> MCO_2
        GPIOC->AFR[1] &= 0xffffff0f;
        GPIOC->AFR[1] |= GPIO_AF0_MCO << 4;
        GPIOC->MODER &= ~(GPIO_MODER_MODER9);   // AF
        GPIOC->MODER |= GPIO_MODER_MODER9_1;
        GPIOC->OTYPER &= ~(GPIO_OTYPER_OT_9);   // Output Push-Pull=0
        GPIOC->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR9;// Speed full=11
        GPIOC->PUPDR &= ~(GPIO_PUPDR_PUPDR9);   // Pull-up=01
        GPIOC->PUPDR |= GPIO_PUPDR_PUPDR9_0;
        // Select output clock source
        RCC->CFGR &= 0x009fffff;
        if (select == 1){
            // MC01 output HSE 1/1, MCO2 output SYSCLK 1/1
            //             MCO2          MCO2PRE       MCO1PRE       MCO1
            RCC->CFGR |= (0x0 << 30) + (0x0 << 27) + (0x0 << 24) + (0x2 << 21);
            PRINTF("Set MCO1(PA8):HSE/1, MCO2(PC9):SYSCLK/1\r\n");
        } else if (select == 2){
            // MC01 output HSE 1/2, MCO2 output SYSCLK 1/2
            //             MCO2          MCO2PRE       MCO1PRE       MCO1
            RCC->CFGR |= (0x0 << 30) + (0x4 << 27) + (0x4 << 24) + (0x2 << 21);
            PRINTF("Set MCO1(PA8):HSE/2, MCO2(PC9):SYSCLK/2\r\n");
        } else { // select = 4 and other wrong order
            // MC01 output HSE 1/4, MCO2 output SYSCLK 1/4
            //             MCO2          MCO2PRE       MCO1PRE       MCO1
            RCC->CFGR |= (0x0 << 30) + (0x6 << 27) + (0x6 << 24) + (0x2 << 21);
            PRINTF("Set MCO1(PA8):HSE/4, MCO2(PC9):SYSCLK/4\r\n");
        }
    }
    
    //---------------------------------------------------------------------------------------
    //  Initialize TIM2 and TIM3+4
    //---------------------------------------------------------------------------------------
    void FRQ_CUNTR::initialize_Freq_counter(void)
    {
        initialize_TIM2();
        initialize_TIM3P4();
    }
    
    // Initialize TIM2
    // Internal clock (50MHz) and IC2 for GPS 1pps signal measurement
    void FRQ_CUNTR::initialize_TIM2(void)
    {
    #if defined(BASE_EXTERNAL_CLOCK)
        // PA0 -> Counter frequency input pin as Timer2 CH1/TI1
        RCC->AHB1ENR |= (RCC_AHB1ENR_GPIOAEN);
        GPIOA->AFR[0] &= 0xfffffff0;
        GPIOA->AFR[0] |= GPIO_AF1_TIM2;
        GPIOA->MODER &= ~(GPIO_MODER_MODER0);   // AF
        GPIOA->MODER |= GPIO_MODER_MODER0_1;
        GPIOA->PUPDR &= ~(GPIO_PUPDR_PUPDR0);   // PU
        GPIOA->PUPDR |= GPIO_PUPDR_PUPDR0_0;
        // Initialize Timer2(32bit) for an external up counter mode
        RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
        TIM2->CR1 &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS | TIM_CR1_CKD));  // count_up + div by 1
        TIM2->CR1 |= TIM_CR1_URS;
        TIM2->ARR = 0xffffffff;
        TIM2->PSC = 0x0000;
        TIM2->CCER &= (uint16_t)~TIM_CCER_CC1E;      // Disable the CC1
        TIM2->CCMR1 &= (uint16_t)~(TIM_CCMR1_IC1F | TIM_CCMR1_CC1S);    // input filter + input select
        TIM2->CCMR1 |= (uint16_t)TIM_CCMR1_CC1S_0;
        TIM2->CCER &= (uint16_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NE | TIM_CCER_CC1NP); // positive edge
        TIM2->SMCR &= (uint16_t)~(TIM_SMCR_ECE | TIM_SMCR_TS | TIM_SMCR_SMS);   // external mode 1
        TIM2->SMCR |= (uint16_t)( TIM_TS_TI1FP1 | TIM_SLAVEMODE_EXTERNAL1);     // ECE must be ZERO!!!!
        TIM2->CR1 |= (uint16_t)TIM_CR1_CEN;          // Enable the TIM Counter
    #else
        // Initialize Timer2(32bit) for an external up counter mode
        RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
        TIM2->CR1 &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS | TIM_CR1_CKD));  // count_up + div by 1
        TIM2->CR1 |= TIM_CR1_URS;
        TIM2->ARR = 0xffffffff;
        TIM2->PSC = 0x0000;
        TIM2->CCER &= (uint16_t)~TIM_CCER_CC1E;      // Disable the CC1
        TIM2->SMCR &= (uint16_t)~(TIM_SMCR_ECE | TIM_SMCR_TS | TIM_SMCR_SMS);
        TIM2->SMCR |= (uint16_t)0;     // Internal clock = 100MHz
        TIM2->CR1 |= (uint16_t)TIM_CR1_CEN;          // Enable the TIM Counter
    #endif
        // PA1 -> Input Capture pin as Timer2 IC2
        GPIOA->AFR[0] &= 0xffffff0f;
        GPIOA->AFR[0] |= GPIO_AF1_TIM2 << 4;
        GPIOA->MODER &= ~(GPIO_MODER_MODER1);  // AF
        GPIOA->MODER |= GPIO_MODER_MODER1_1;
        GPIOA->PUPDR &= ~(GPIO_PUPDR_PUPDR1);
        GPIOA->PUPDR |= GPIO_PUPDR_PUPDR1_0;   // PU
        // Initialize Timer2 I.C.2
        TIM2->CCER  &= (uint16_t)~TIM_CCER_CC2E;    // Disable the CC2
        TIM2->CCMR1 &= (uint16_t)~(TIM_CCMR1_IC2F | TIM_CCMR1_CC2S);// input filter + input select
        TIM2->CCMR1 |= (uint16_t)TIM_CCMR1_CC2S_0;
        TIM2->CCER  &= (uint16_t)~(TIM_CCER_CC2P | TIM_CCER_CC2NP); // positive edge
        TIM2->CCER  |= (uint16_t)TIM_CCER_CC2E;     // enable capture
        // PB10 -> Output Compare pin as Timer2 CH3/OC3
        GPIOB->AFR[1] &= 0xfffff0ff;
        GPIOB->AFR[1] |= GPIO_AF1_TIM2 << 8;
        GPIOB->MODER &= ~(GPIO_MODER_MODER10);  // AF
        GPIOB->MODER |= GPIO_MODER_MODER10_1;
        GPIOB->OTYPER &= ~(GPIO_OTYPER_OT_10);// Output Push-Pull=0
        GPIOB->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR10;// Speed full=11
        GPIOB->PUPDR &= ~(GPIO_PUPDR_PUPDR10);   // Pull-up=01
        GPIOB->PUPDR |= GPIO_PUPDR_PUPDR10_0;
        // Initialize Timer2 O.C.3
        TIM2->CCER &= (uint16_t)~TIM_CCER_CC3E; // Reset the CC3E Bit
        TIM2->CCMR2 &= (uint16_t)~(TIM_CCMR2_OC3M | TIM_CCMR2_CC3S |
                                    TIM_CCMR2_OC3PE | TIM_CCMR2_OC3CE | TIM_CCMR2_OC3FE);
        TIM2->CCMR2 |= (TIM_CCMR2_OC3M_0 | TIM_CCMR2_OC3M_1);                        
        TIM2->CCER &= (uint16_t)~TIM_CCER_CC3P;// Reset the Output Polarity level
        TIM2->CCER |= (uint16_t)TIM_CCER_CC3E; // Set the CC3E Bit
        TIM2->CCR3 = TIM2->CNT + ONE_SECOND_COUNT;// Set the Capture Compare Register value
        // Only for Debug purpose
        BAUD(9600);
        //  PA
        PRINTF("// Timer2(32bit) for an internal up counter mode\r\n");
        PRINTF("// PA1  -> Input Capture pin as Timer2 CH2/TI2\r\n");
        PRINTF("GPIOA->AFR[0]0x%08x:0x%08x\r\n",&GPIOA->AFR[0], GPIOA->AFR[0]);
        PRINTF("GPIOA->AFR[1]0x%08x:0x%08x\r\n",&GPIOA->AFR[1], GPIOA->AFR[1]);
        PRINTF("GPIOA->MODER 0x%08x:0x%08x\r\n",&GPIOA->MODER, GPIOA->MODER);
        PRINTF("GPIOA->PUPDR 0x%08x:0x%08x\r\n",&GPIOA->PUPDR, GPIOA->PUPDR);
        //  PB
        PRINTF("// PB10 -> Output Compare pin as Timer2 CH3/TI3\r\n");
        PRINTF("GPIOB->AFR[0]0x%08x:0x%08x\r\n",&GPIOB->AFR[0], GPIOB->AFR[0]);
        PRINTF("GPIOB->AFR[1]0x%08x:0x%08x\r\n",&GPIOB->AFR[1], GPIOB->AFR[1]);
        PRINTF("GPIOB->MODER 0x%08x:0x%08x\r\n",&GPIOB->MODER, GPIOB->MODER);
        PRINTF("GPIOB->PUPDR 0x%08x:0x%08x\r\n",&GPIOB->PUPDR, GPIOB->PUPDR);
        //  TIM2
        PRINTF("// PA1 -> Timer2 IC2\r\n");
        PRINTF("// PB10-> Timer2 OC3\r\n");
        PRINTF("TIM2->CR1    0x%08x:0x%08x\r\n",&TIM2->CR1, TIM2->CR1);
        PRINTF("TIM2->ARR    0x%08x:0x%08x\r\n",&TIM2->ARR, TIM2->ARR);
        PRINTF("TIM2->PSC    0x%08x:0x%08x\r\n",&TIM2->PSC, TIM2->PSC);
        PRINTF("TIM2->CCMR1  0x%08x:0x%08x\r\n",&TIM2->CCMR1, TIM2->CCMR1);
        PRINTF("TIM2->CCMR2  0x%08x:0x%08x\r\n",&TIM2->CCMR2, TIM2->CCMR2);
        PRINTF("TIM2->CCER   0x%08x:0x%08x\r\n",&TIM2->CCER, TIM2->CCER);
        PRINTF("TIM2->SMCR   0x%08x:0x%08x\r\n",&TIM2->SMCR, TIM2->SMCR);
        PRINTF("TIM2->CCR3   0x%08x:0x%08x\r\n\r\n",&TIM2->CCR3, TIM2->CCR3);
    #if defined(IRQ_DRIVE)
        // Interrupt Timer2 IC2
        for (uint32_t i = 0; i < CNT_BF_SIZE; i++) {
            onepps_cnt[i] = 0;
        }
        onepps_num = 0;
        onepps_ready_flg = 0;
        onepps_buf_full = 0;
        onepps_cnt_avarage = 0;
        tim2_ready_flg = 0;
        tim2_cnt_data = 0;
        tim2_old_cnt_data = 0;
        TIM2->SR &= ~(TIM_SR_CC2IF + TIM_SR_CC3IF); // clear IC flag
        TIM2->DIER |= TIM_DIER_CC2IE + TIM_DIER_CC3IE;
    //    void (FRQ_CUNTER::*Func)() = &FRQ_CUNTER::irq_ic2_TIM2;
        NVIC_SetVector(TIM2_IRQn, (uint32_t)irq_ic2_TIM2);
    //    NVIC_SetVector(TIM2_IRQn, (uint32_t)Func);
        NVIC_ClearPendingIRQ(TIM2_IRQn);
        NVIC_EnableIRQ(TIM2_IRQn);
    #endif
    }
    
    // Initialize TIM3 and TIM4 as 32bit counter (TIM3(16bit) + TIM4(16bit))
    //      TIM3 clock input is unkown freq.(measuring freq.) and TIM4 is slave counter
    //      1sec gate signal connected both TIM3 IC2 and TIM4 IC1
    void FRQ_CUNTR::initialize_TIM3P4(void)
    {
        // PC6 -> Unkown frequency input pin as Timer3 CH1/TI1
        RCC->AHB1ENR  |= (RCC_AHB1ENR_GPIOCEN);
        GPIOC->AFR[0] &= 0xf0ffffff;
        GPIOC->AFR[0] |= GPIO_AF2_TIM3 << 24;
        GPIOC->MODER  &= ~(GPIO_MODER_MODER6);   // AF
        GPIOC->MODER  |= GPIO_MODER_MODER6_1;
        GPIOC->PUPDR &= ~(GPIO_PUPDR_PUPDR6);
        GPIOC->PUPDR |= GPIO_PUPDR_PUPDR6_0;   // PU
        // Initialize Timer3(16bit) for an external up counter mode
        RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
        TIM3->CR1   &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS | TIM_CR1_CKD));// count_up + div by 1
        TIM3->CR1   |= (uint16_t)TIM_CR1_URS;
        TIM3->ARR    = 0xffff;
        TIM3->CCER  &= (uint16_t)~TIM_CCER_CC1E;    // Disable the CC1
        TIM3->CCMR1 &= (uint16_t)~(TIM_CCMR1_IC1F | TIM_CCMR1_CC1S);    // input filter + input select
        TIM3->CCMR1 |= (uint16_t)TIM_CCMR1_CC1S_0;
        TIM3->CCER  &= (uint16_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NE | TIM_CCER_CC1NP);// positive edge
        TIM3->SMCR  &= (uint16_t)~(TIM_SMCR_ECE | TIM_SMCR_TS | TIM_SMCR_SMS);// external mode 1
        TIM3->SMCR  |= (uint16_t)( TIM_TS_TI1FP1 | TIM_SLAVEMODE_EXTERNAL1);  // ECE must be ZERO!!!!
        TIM3->CR2   &= (uint16_t)~(TIM_CR2_TI1S | TIM_CR2_MMS);
        TIM3->CR2   |= (uint16_t)TIM_CR2_MMS_1;       // TRGO update
        TIM3->CR1   |= (uint16_t)TIM_CR1_CEN;         // Enable the TIM Counter
        // Initialize Timer4(16bit) for an slave up counter of TIM3
        RCC->APB1ENR |= RCC_APB1ENR_TIM4EN;
        TIM4->CR1  &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS | TIM_CR1_CKD));// count_up + div by 1
        TIM4->CR1  |= (uint16_t)TIM_CR1_URS;
        TIM4->ARR   = 0xffff;
        TIM4->CCER &= (uint16_t)TIM_CCER_CC1E; // Capture enable
        TIM4->SMCR &= (uint16_t)~(TIM_SMCR_ECE | TIM_SMCR_TS | TIM_SMCR_SMS);// external mode 1
        TIM4->SMCR |= (uint16_t)( TIM_TS_ITR2 | TIM_SLAVEMODE_EXTERNAL1);// ECE must be ZERO!!!!
        TIM4->CR2  &= (uint16_t)~(TIM_CR2_TI1S | TIM_CR2_MMS);
        TIM4->CR1  |= (uint16_t)TIM_CR1_CEN;         // Enable the TIM Counter
        // PC7 -> Input Capture pin as Timer3 IC2
        GPIOC->AFR[0] &= 0x0fffffff;
        GPIOC->AFR[0] |= GPIO_AF2_TIM3 << 28;
        GPIOC->MODER  &= ~(GPIO_MODER_MODER7);  // AF
        GPIOC->MODER  |= GPIO_MODER_MODER7_1;
        GPIOC->PUPDR &= ~(GPIO_PUPDR_PUPDR7);
        GPIOC->PUPDR |= GPIO_PUPDR_PUPDR7_0;   // PU
        // Initialize Timer3 IC2
        TIM3->CCER  &= (uint16_t)~TIM_CCER_CC2E;    // Disable the CC2
        TIM3->CCMR1 &= (uint16_t)~(TIM_CCMR1_IC2F | TIM_CCMR1_CC2S);// input filter + input select
        TIM3->CCMR1 |= (uint16_t)TIM_CCMR1_CC2S_0;
        TIM3->CCER  &= (uint16_t)~(TIM_CCER_CC2P | TIM_CCER_CC2NP); // positive edge
        TIM3->CCER  |= (uint16_t)TIM_CCER_CC2E;     // enable capture
        // PB6 -> Input Capture pin as Timer4 IC1
        GPIOB->AFR[0] &= 0xf0ffffff;
        GPIOB->AFR[0] |= GPIO_AF2_TIM4 << 24;
        GPIOB->MODER  &= ~(GPIO_MODER_MODER6);  // AF
        GPIOB->MODER  |= GPIO_MODER_MODER6_1;
        GPIOB->PUPDR &= ~(GPIO_PUPDR_PUPDR6);
        GPIOB->PUPDR |= GPIO_PUPDR_PUPDR6_0;   // Pull-up=01
        // Initialize Timer4 IC1
        TIM4->CCER  &= (uint16_t)~TIM_CCER_CC1E;
        TIM4->CCMR1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_IC1F);
        TIM4->CCMR1 |= (uint16_t)TIM_CCMR1_CC1S_0;
        TIM4->CCER  &= (uint16_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP); // positive edge
        TIM4->CCER  |= (uint16_t)TIM_CCER_CC1E;     // enable capture
        // Only for Debug purpose
        //  PB
        PRINTF("// PB6 -> Input Capture pin as Timer4 CH1/TI1\r\n");
        PRINTF("GPIOB->AFR[0]0x%08x:0x%08x\r\n",&GPIOB->AFR[0], GPIOB->AFR[0]);
        PRINTF("GPIOB->AFR[1]0x%08x:0x%08x\r\n",&GPIOB->AFR[1], GPIOB->AFR[1]);
        PRINTF("GPIOB->MODER 0x%08x:0x%08x\r\n",&GPIOB->MODER, GPIOB->MODER);
        PRINTF("GPIOB->PUPDR 0x%08x:0x%08x\r\n",&GPIOB->PUPDR, GPIOB->PUPDR);
        PRINTF("GPIOB->OTYPER  0x%08x:0x%08x\r\n",&GPIOB->OTYPER, GPIOB->OTYPER);
        PRINTF("GPIOB->OSPEEDR 0x%08x:0x%08x\r\n",&GPIOB->OSPEEDR, GPIOB->OSPEEDR);
        //  PC
        PRINTF("// PC6 -> unkown frequency input pin as Timer3 CH1/TI1\r\n");
        PRINTF("// PC7 -> Input Capture pin as Timer3 CH2/TI2\r\n");
        PRINTF("GPIOC->AFR[0]0x%08x:0x%08x\r\n",&GPIOC->AFR[0], GPIOC->AFR[0]);
        PRINTF("GPIOC->AFR[1]0x%08x:0x%08x\r\n",&GPIOC->AFR[1], GPIOC->AFR[1]);
        PRINTF("GPIOC->MODER 0x%08x:0x%08x\r\n",&GPIOC->MODER, GPIOC->MODER);
        PRINTF("GPIOC->PUPDR 0x%08x:0x%08x\r\n",&GPIOC->PUPDR, GPIOC->PUPDR);
        PRINTF("GPIOC->OTYPER  0x%08x:0x%08x\r\n",&GPIOC->OTYPER, GPIOC->OTYPER);
        PRINTF("GPIOC->OSPEEDR 0x%08x:0x%08x\r\n",&GPIOC->OSPEEDR, GPIOC->OSPEEDR);
        //  TIM3
        PRINTF("// PC6 -> Timer3(16bit) for an external up counter mode\r\n");
        PRINTF("// PC7 -> Timer3 IC2\r\n");
        PRINTF("TIM3->CR1    0x%08x:0x%08x\r\n",&TIM3->CR1, TIM3->CR1);
        PRINTF("TIM3->ARR    0x%08x:0x%08x\r\n",&TIM3->ARR, TIM3->ARR);
        PRINTF("TIM3->PSC    0x%08x:0x%08x\r\n",&TIM3->PSC, TIM3->PSC);
        PRINTF("TIM3->CCMR1  0x%08x:0x%08x\r\n",&TIM3->CCMR1, TIM3->CCMR1);
        PRINTF("TIM3->CCMR2  0x%08x:0x%08x\r\n",&TIM3->CCMR2, TIM3->CCMR2);
        PRINTF("TIM3->CCER   0x%08x:0x%08x\r\n",&TIM3->CCER, TIM3->CCER);
        PRINTF("TIM3->SMCR   0x%08x:0x%08x\r\n",&TIM3->SMCR, TIM3->SMCR);
        //  TIM4
        PRINTF("// none-> Timer4(16bit) for an slave counter\r\n");
        PRINTF("// PB6 -> Timer4 IC1\r\n");
        PRINTF("TIM4->CR1    0x%08x:0x%08x\r\n",&TIM4->CR1, TIM4->CR1);
        PRINTF("TIM4->ARR    0x%08x:0x%08x\r\n",&TIM4->ARR, TIM4->ARR);
        PRINTF("TIM4->PSC    0x%08x:0x%08x\r\n",&TIM4->PSC, TIM4->PSC);
        PRINTF("TIM4->CCMR1  0x%08x:0x%08x\r\n",&TIM4->CCMR1, TIM4->CCMR1);
        PRINTF("TIM4->CCMR2  0x%08x:0x%08x\r\n",&TIM4->CCMR2, TIM4->CCMR2);
        PRINTF("TIM4->CCER   0x%08x:0x%08x\r\n",&TIM4->CCER, TIM4->CCER);
        PRINTF("TIM4->SMCR   0x%08x:0x%08x\r\n\r\n",&TIM4->SMCR, TIM4->SMCR);
        PRINTF("RCC->APB1ENR 0x%08x:0x%08x\r\n\r\n",&RCC->APB1ENR, RCC->APB1ENR);
    #if defined(IRQ_DRIVE)
        // Interrupt Timer3 IC2
        tim3p4_ready_flg = 0;
        tim3p4_cnt_data = 0;
        tim3p4_old_cnt_data = 0;
        TIM3->SR &= ~TIM_SR_CC2IF;          // clear IC flag
        TIM4->SR &= ~TIM_SR_CC1IF;
        TIM3->DIER |= TIM_DIER_CC2IE;
        NVIC_SetVector(TIM3_IRQn, (uint32_t)irq_ic2_TIM3P4);
        NVIC_ClearPendingIRQ(TIM3_IRQn);
        NVIC_EnableIRQ(TIM3_IRQn);
    #endif
    }

}   // Frequency_counter