Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
BME280.cpp
- Committer:
- kenjiArai
- Date:
- 2018-12-29
- Revision:
- 6:f94ffb546799
- Parent:
- 5:c1f1647004c4
- Child:
- 7:d94871acb463
File content as of revision 6:f94ffb546799:
/**
******************************************************************************
* @file BME280.cpp
* @author Toyomasa Watarai
* @version V1.0.0
* @date 11 March 2017
* @brief BME280 class implementation
******************************************************************************
* @attention
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* Modified by Kenji Arai / JH1PJL
*
* http://www.page.sannet.ne.jp/kenjia/index.html
* http://mbed.org/users/kenjiArai/
* Created: November 21st, 2018
* Revised: December 29th, 2018
*/
#include "mbed.h"
#include "BME280.h"
BME280::BME280(PinName sda, PinName scl, char slave_adr)
:
i2c_p(new I2C(sda, scl)),
i2c(*i2c_p),
address(slave_adr),
t_fine(0)
{
initialize();
}
BME280::BME280(I2C &i2c_obj, char slave_adr)
:
i2c_p(NULL),
i2c(i2c_obj),
address(slave_adr),
t_fine(0)
{
initialize();
}
BME280::~BME280()
{
if (NULL != i2c_p)
delete i2c_p;
}
void BME280::initialize()
{
char cmd[18];
uint8_t id;
wait_ms(2);
id = getID();
if (id != 0x60){
if (address == DEFAULT_SLAVE_ADDRESS){
address = DEFAULT_SLAVE_ADDRESS;
} else if (address == ANOTHER_SLAVE_ADDRESS){
address = DEFAULT_SLAVE_ADDRESS;
}
id = getID();
if (id != 0x60){
cmd[0] = 0xe0; // reset addr
cmd[1] = 0xb6; // reset command
i2c.write(address, cmd, 2);
wait_ms(2);
}
}
cmd[0] = 0xf2; // ctrl_hum
cmd[1] = 0x01; // Humidity oversampling x1
i2c.write(address, cmd, 2);
cmd[0] = 0xf4; // ctrl_meas
// Temparature oversampling x1, Pressure oversampling x1, Normal mode
cmd[1] = 0x27;
i2c.write(address, cmd, 2);
cmd[0] = 0xf5; // config
cmd[1] = 0xa0; // Standby 1000ms, Filter off
i2c.write(address, cmd, 2);
cmd[0] = 0x88; // read dig_T regs
i2c.write(address, cmd, 1);
i2c.read(address, cmd, 6);
dig_T1 = (cmd[1] << 8) | cmd[0];
dig_T2 = (cmd[3] << 8) | cmd[2];
dig_T3 = (cmd[5] << 8) | cmd[4];
DEBUG_PRINT("dig_T = 0x%x, 0x%x, 0x%x\n", dig_T1, dig_T2, dig_T3);
cmd[0] = 0x8E; // read dig_P regs
i2c.write(address, cmd, 1);
i2c.read(address, cmd, 18);
dig_P1 = (cmd[ 1] << 8) | cmd[ 0];
dig_P2 = (cmd[ 3] << 8) | cmd[ 2];
dig_P3 = (cmd[ 5] << 8) | cmd[ 4];
dig_P4 = (cmd[ 7] << 8) | cmd[ 6];
dig_P5 = (cmd[ 9] << 8) | cmd[ 8];
dig_P6 = (cmd[11] << 8) | cmd[10];
dig_P7 = (cmd[13] << 8) | cmd[12];
dig_P8 = (cmd[15] << 8) | cmd[14];
dig_P9 = (cmd[17] << 8) | cmd[16];
DEBUG_PRINT(
"dig_P = 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
dig_P1, dig_P2, dig_P3, dig_P4, dig_P5, dig_P6, dig_P7, dig_P8, dig_P9
);
cmd[0] = 0xA1; // read dig_H regs
i2c.write(address, cmd, 1);
i2c.read(address, cmd, 1);
cmd[1] = 0xE1; // read dig_H regs
i2c.write(address, &cmd[1], 1);
i2c.read(address, &cmd[1], 7);
dig_H1 = cmd[0];
dig_H2 = (cmd[2] << 8) | cmd[1];
dig_H3 = cmd[3];
dig_H4 = (cmd[4] << 4) | (cmd[5] & 0x0f);
dig_H5 = (cmd[6] << 4) | ((cmd[5]>>4) & 0x0f);
dig_H6 = cmd[7];
DEBUG_PRINT("dig_H = 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
dig_H1, dig_H2, dig_H3, dig_H4, dig_H5, dig_H6
);
}
float BME280::getTemperature()
{
uint32_t temp_raw;
float tempf;
char cmd[4];
if(check_chip() == false){
return 100.0f;
}
cmd[0] = 0xfa; // temp_msb
i2c.write(address, cmd, 1);
i2c.read(address, &cmd[1], 3);
temp_raw = (cmd[1] << 12) | (cmd[2] << 4) | (cmd[3] >> 4);
int32_t temp;
temp =
(((((temp_raw >> 3) - (dig_T1 << 1))) * dig_T2) >> 11) +
((((((temp_raw >> 4) - dig_T1) * ((temp_raw >> 4) - dig_T1)) >> 12)
* dig_T3) >> 14);
t_fine = temp;
temp = (temp * 5 + 128) >> 8;
tempf = (float)temp;
return (tempf/100.0f);
}
float BME280::getPressure()
{
uint32_t press_raw;
float pressf;
char cmd[4];
if(check_chip() == false){
return 2000.0f;
}
cmd[0] = 0xf7; // press_msb
i2c.write(address, cmd, 1);
i2c.read(address, &cmd[1], 3);
press_raw = (cmd[1] << 12) | (cmd[2] << 4) | (cmd[3] >> 4);
int32_t var1, var2;
uint32_t press;
var1 = (t_fine >> 1) - 64000;
var2 = (((var1 >> 2) * (var1 >> 2)) >> 11) * dig_P6;
var2 = var2 + ((var1 * dig_P5) << 1);
var2 = (var2 >> 2) + (dig_P4 << 16);
var1 = (((dig_P3 * (((var1 >> 2)*(var1 >> 2)) >> 13)) >> 3)
+ ((dig_P2 * var1) >> 1)) >> 18;
var1 = ((32768 + var1) * dig_P1) >> 15;
if (var1 == 0) {
return 0;
}
press = (((1048576 - press_raw) - (var2 >> 12))) * 3125;
if(press < 0x80000000) {
press = (press << 1) / var1;
} else {
press = (press / var1) * 2;
}
var1 = ((int32_t)dig_P9 * ((int32_t)(((press >> 3)
* (press >> 3)) >> 13))) >> 12;
var2 = (((int32_t)(press >> 2)) * (int32_t)dig_P8) >> 13;
press = (press + ((var1 + var2 + dig_P7) >> 4));
pressf = (float)press;
return (pressf/100.0f);
}
float BME280::getHumidity()
{
uint32_t hum_raw;
float humf;
char cmd[4];
if(check_chip() == false){
return 0.0f;
}
cmd[0] = 0xfd; // hum_msb
i2c.write(address, cmd, 1);
i2c.read(address, &cmd[1], 2);
hum_raw = (cmd[1] << 8) | cmd[2];
int32_t v_x1;
v_x1 = t_fine - 76800;
v_x1 = (((((hum_raw << 14) -(((int32_t)dig_H4) << 20)
- (((int32_t)dig_H5) * v_x1)) + ((int32_t)16384)) >> 15)
* (((((((v_x1 * (int32_t)dig_H6) >> 10)
* (((v_x1 * ((int32_t)dig_H3)) >> 11) + 32768)) >> 10) + 2097152)
* (int32_t)dig_H2 + 8192) >> 14));
v_x1 = (v_x1 - (((((v_x1 >> 15) * (v_x1 >> 15)) >> 7)
* (int32_t)dig_H1) >> 4));
v_x1 = (v_x1 < 0 ? 0 : v_x1);
v_x1 = (v_x1 > 419430400 ? 419430400 : v_x1);
humf = (float)(v_x1 >> 12);
return (humf/1024.0f);
}
//------------------------------------------------------------------------------
// Added functions by JH1PJL
//------------------------------------------------------------------------------
// Read chip ID
uint8_t BME280::getID(void)
{
char cmd[4];
cmd[0] = 0xd0; // ID addr
i2c.write(address, cmd, 1, true);
i2c.read(address, cmd, 2, false);
return cmd[0];
}
bool BME280::check_chip(void)
{
uint8_t id;
id = getID();
if (id != 0x60){
if (address == DEFAULT_SLAVE_ADDRESS){
address = DEFAULT_SLAVE_ADDRESS;
} else if (address == ANOTHER_SLAVE_ADDRESS){
address = DEFAULT_SLAVE_ADDRESS;
}
id = getID();
if (id != 0x60){
return resetChip_by_sw();
}
}
return true;
}
// Reset the chip by software
bool BME280::resetChip_by_sw(void)
{
uint8_t id;
char cmd[4];
if (address == DEFAULT_SLAVE_ADDRESS){
;
} else if (address == ANOTHER_SLAVE_ADDRESS){
;
} else {
address = DEFAULT_SLAVE_ADDRESS;
}
// 1st try
cmd[0] = 0xe0; // reset addr
cmd[1] = 0xb6; // reset command
i2c.write(address, cmd, 2);
wait_ms(2);
id = getID();
if (id == 0x60){
initialize();
return true;
}
// 2nd retry (reset again and read again)
cmd[0] = 0xe0; // reset addr
cmd[1] = 0xb6; // reset command
i2c.write(address, cmd, 2);
wait_ms(2);
id = getID();
if (id == 0x60){
initialize();
return true;
}
// 3rd retry (reaset again and another chip addr)
if (address == DEFAULT_SLAVE_ADDRESS){
address = DEFAULT_SLAVE_ADDRESS;
} else if (address == ANOTHER_SLAVE_ADDRESS){
address = DEFAULT_SLAVE_ADDRESS;
} else {
return false;
}
cmd[0] = 0xe0; // reset addr
cmd[1] = 0xb6; // reset command
i2c.write(address, cmd, 2);
wait_ms(2);
id = getID();
if (id == 0x60){
initialize();
return true;
}
return false;
}
// Get compensated data
void BME280::getAll_compensated_data(BME280_Data_TypeDef *dt) {
uint32_t raw_data;
char cmd[8];
// Temperatue
cmd[0] = 0xfa; // temp_msb
i2c.write(address, cmd, 1);
i2c.read(address, &cmd[1], 3);
raw_data = (cmd[1] << 12) | (cmd[2] << 4) | (cmd[3] >> 4);
double var1, var2;
var1 = ((( double)raw_data) / 16384.0 - ((double)dig_T1) / 1024.0) *
((double)dig_T2);
var2 = ((((double)raw_data) / 131072.0 - ((double)dig_T1) / 8192.0) *
(((double)raw_data) / 131072.0 - ((double)dig_T1) / 8192.0))
* ((double)dig_T3);
int32_t t_fine = (int32_t)(var1 + var2);
dt->temperatue = (var1 + var2) / 5120.0;
// Pressue
cmd[0] = 0xf7; // press_msb
i2c.write(address, cmd, 1);
i2c.read(address, &cmd[1], 3);
raw_data = (cmd[1] << 12) | (cmd[2] << 4) | (cmd[3] >> 4);
double p;
var1 = ((double)t_fine / 2.0) - 64000.0;
var2 = var1 * var1 * ((double)dig_P6) / 32768.0;
var2 = var2 + var1 * ((double)dig_P5) * 2.0;
var2 = (var2 / 4.0)+(((double)dig_P4) * 65536.0);
var1 = (((double)dig_P3) * var1 * var1 / 524288.0 +
((double)dig_P2) * var1) / 524288.0;
var1 = (1.0 + var1 / 32768.0)*((double)dig_P1);
if (var1 == 0.0) {
dt->pressue = 0.0;
return; //avoid exception caused by division by zero
}
p = 1048576.0 - (double)raw_data;
p = (p - (var2 / 4096.0)) * 6250.0 / var1;
var1 = ((double)dig_P9) * p * p / 2147483648.0;
var2 = p * ((double)dig_P8) / 32768.0;
p = p + (var1 + var2 + ((double)dig_P7)) / 16.0;
dt->pressue = p / 100.0;
// Humidity
cmd[0] = 0xfd; // hum_msb
i2c.write(address, cmd, 1);
i2c.read(address, &cmd[1], 2);
raw_data = (cmd[1] << 8) | cmd[2];
double var_H;
var_H = (((double)t_fine) - 76800.0);
var_H = (raw_data - (((double)dig_H4) * 64.0 +
((double)dig_H5) / 16384.0 * var_H)) *
(((double)dig_H2) / 65536.0 * (1.0 +
((double)dig_H6) / 67108864.0 * var_H *
(1.0 + ((double)dig_H3) / 67108864.0 * var_H)));
var_H = var_H * (1.0 - ((double)dig_H1) * var_H / 524288.0);
if (var_H > 100.0) {
var_H = 100.0;
} else if (var_H < 0.0) {
var_H = 0.0;
}
dt->humidity = var_H;
}
#if 0
double calcAltitude(float pressure,float temperature)
{
// Equation taken from BMP180 datasheet (page 16):
// http://www.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
// Note that using the equation from wikipedia can give bad results
// at high altitude. See this thread for more information:
// http://forums.adafruit.com/viewtopic.php?f=22&t=58064
/*
double altitude = (temperature + 273.15)
* (pow(MEAN_SEA_LEVEL_PRESSURE/pressure, 0.190294957)-1.0) / 0.0065;
*/
double altitude =
44330.0 * (1.0 - pow(pressure / MEAN_SEA_LEVEL_PRESSURE, 0.190294957));
return altitude;
}
#endif