GPS1_kevin projet c MPU9250
Dependencies: mbed ST_401_84MHZ
main.cpp@0:507d1a0c6655, 2019-12-12 (annotated)
- Committer:
- kekette
- Date:
- Thu Dec 12 15:34:50 2019 +0000
- Revision:
- 0:507d1a0c6655
test
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
kekette | 0:507d1a0c6655 | 1 | /* MPU9250 Basic Example Code |
kekette | 0:507d1a0c6655 | 2 | by: Kris Winer |
kekette | 0:507d1a0c6655 | 3 | date: April 1, 2014 |
kekette | 0:507d1a0c6655 | 4 | license: Beerware - Use this code however you'd like. If you |
kekette | 0:507d1a0c6655 | 5 | find it useful you can buy me a beer some time. |
kekette | 0:507d1a0c6655 | 6 | |
kekette | 0:507d1a0c6655 | 7 | Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, |
kekette | 0:507d1a0c6655 | 8 | getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to |
kekette | 0:507d1a0c6655 | 9 | allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and |
kekette | 0:507d1a0c6655 | 10 | Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. |
kekette | 0:507d1a0c6655 | 11 | |
kekette | 0:507d1a0c6655 | 12 | SDA and SCL should have external pull-up resistors (to 3.3V). |
kekette | 0:507d1a0c6655 | 13 | 10k resistors are on the EMSENSR-9250 breakout board. |
kekette | 0:507d1a0c6655 | 14 | |
kekette | 0:507d1a0c6655 | 15 | Hardware setup: |
kekette | 0:507d1a0c6655 | 16 | MPU9250 Breakout --------- Arduino |
kekette | 0:507d1a0c6655 | 17 | VDD ---------------------- 3.3V |
kekette | 0:507d1a0c6655 | 18 | VDDI --------------------- 3.3V |
kekette | 0:507d1a0c6655 | 19 | SDA ----------------------- A4 |
kekette | 0:507d1a0c6655 | 20 | SCL ----------------------- A5 |
kekette | 0:507d1a0c6655 | 21 | GND ---------------------- GND |
kekette | 0:507d1a0c6655 | 22 | |
kekette | 0:507d1a0c6655 | 23 | Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. |
kekette | 0:507d1a0c6655 | 24 | Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. |
kekette | 0:507d1a0c6655 | 25 | We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. |
kekette | 0:507d1a0c6655 | 26 | We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. |
kekette | 0:507d1a0c6655 | 27 | */ |
kekette | 0:507d1a0c6655 | 28 | |
kekette | 0:507d1a0c6655 | 29 | #include "ST_F401_84MHZ.h" |
kekette | 0:507d1a0c6655 | 30 | F401_init84 myinit(0); |
kekette | 0:507d1a0c6655 | 31 | #include "mbed.h" |
kekette | 0:507d1a0c6655 | 32 | #include "MPU9250.h" |
kekette | 0:507d1a0c6655 | 33 | #define M_PI 3.14159265358979323846264338327950288 |
kekette | 0:507d1a0c6655 | 34 | |
kekette | 0:507d1a0c6655 | 35 | //#include "N5110.h" |
kekette | 0:507d1a0c6655 | 36 | |
kekette | 0:507d1a0c6655 | 37 | // Using NOKIA 5110 monochrome 84 x 48 pixel display |
kekette | 0:507d1a0c6655 | 38 | // pin 9 - Serial clock out (SCLK) |
kekette | 0:507d1a0c6655 | 39 | // pin 8 - Serial data out (DIN) |
kekette | 0:507d1a0c6655 | 40 | // pin 7 - Data/Command select (D/C) |
kekette | 0:507d1a0c6655 | 41 | // pin 5 - LCD chip select (CS) |
kekette | 0:507d1a0c6655 | 42 | // pin 6 - LCD reset (RST) |
kekette | 0:507d1a0c6655 | 43 | //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); |
kekette | 0:507d1a0c6655 | 44 | |
kekette | 0:507d1a0c6655 | 45 | float sum = 0; |
kekette | 0:507d1a0c6655 | 46 | uint32_t sumCount = 0; |
kekette | 0:507d1a0c6655 | 47 | int clockstate = 1; |
kekette | 0:507d1a0c6655 | 48 | MPU9250 mpu9250; |
kekette | 0:507d1a0c6655 | 49 | |
kekette | 0:507d1a0c6655 | 50 | Timer t; |
kekette | 0:507d1a0c6655 | 51 | |
kekette | 0:507d1a0c6655 | 52 | Serial pc(USBTX, USBRX); // tx, rx |
kekette | 0:507d1a0c6655 | 53 | Serial nextion(PA_11, PA_12); |
kekette | 0:507d1a0c6655 | 54 | // VCC, SCE, RST, D/C, MOSI,S CLK, LED |
kekette | 0:507d1a0c6655 | 55 | //N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); |
kekette | 0:507d1a0c6655 | 56 | |
kekette | 0:507d1a0c6655 | 57 | |
kekette | 0:507d1a0c6655 | 58 | |
kekette | 0:507d1a0c6655 | 59 | int main() |
kekette | 0:507d1a0c6655 | 60 | { |
kekette | 0:507d1a0c6655 | 61 | pc.baud(9600); |
kekette | 0:507d1a0c6655 | 62 | nextion.baud(9600); |
kekette | 0:507d1a0c6655 | 63 | //wait(1); |
kekette | 0:507d1a0c6655 | 64 | nextion.printf("page page0%c%c%c",0xff, 0xff, 0xff); |
kekette | 0:507d1a0c6655 | 65 | clockstate = 1; |
kekette | 0:507d1a0c6655 | 66 | pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); |
kekette | 0:507d1a0c6655 | 67 | i2c.frequency(400000); // use fast (400 kHz) I2C |
kekette | 0:507d1a0c6655 | 68 | //nextion.printf("systemclock.val=%c%c%c%c", "Looding...", 0xff, 0xff, 0xff); |
kekette | 0:507d1a0c6655 | 69 | //clockstate = 0; |
kekette | 0:507d1a0c6655 | 70 | nextion.printf("loading.val=%d%c%c%c", clockstate, 0xff, 0xff, 0xff); |
kekette | 0:507d1a0c6655 | 71 | |
kekette | 0:507d1a0c6655 | 72 | wait(2); |
kekette | 0:507d1a0c6655 | 73 | |
kekette | 0:507d1a0c6655 | 74 | //nextion.printf("systemclock.val=%d%c%c%c", SystemCoreClock/100000, 0xff, 0xff, 0xff); |
kekette | 0:507d1a0c6655 | 75 | if(SystemCoreClock>=840000) |
kekette | 0:507d1a0c6655 | 76 | { |
kekette | 0:507d1a0c6655 | 77 | clockstate = 2; |
kekette | 0:507d1a0c6655 | 78 | }else { |
kekette | 0:507d1a0c6655 | 79 | |
kekette | 0:507d1a0c6655 | 80 | clockstate = 3; |
kekette | 0:507d1a0c6655 | 81 | } |
kekette | 0:507d1a0c6655 | 82 | |
kekette | 0:507d1a0c6655 | 83 | nextion.printf("loading.val=%d%c%c%c", clockstate, 0xff, 0xff, 0xff); |
kekette | 0:507d1a0c6655 | 84 | // pc.printf("%x",0xff); |
kekette | 0:507d1a0c6655 | 85 | // pc.printf("%x",0xff); |
kekette | 0:507d1a0c6655 | 86 | // pc.printf("%x\n",0xff); |
kekette | 0:507d1a0c6655 | 87 | |
kekette | 0:507d1a0c6655 | 88 | |
kekette | 0:507d1a0c6655 | 89 | t.start(); |
kekette | 0:507d1a0c6655 | 90 | |
kekette | 0:507d1a0c6655 | 91 | //lcd.init(); |
kekette | 0:507d1a0c6655 | 92 | //lcd.setBrightness(0.05); |
kekette | 0:507d1a0c6655 | 93 | |
kekette | 0:507d1a0c6655 | 94 | |
kekette | 0:507d1a0c6655 | 95 | // Read the WHO_AM_I register, this is a good test of communication |
kekette | 0:507d1a0c6655 | 96 | uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 |
kekette | 0:507d1a0c6655 | 97 | pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r"); |
kekette | 0:507d1a0c6655 | 98 | |
kekette | 0:507d1a0c6655 | 99 | if (whoami == 0x71) // WHO_AM_I should always be 0x68 |
kekette | 0:507d1a0c6655 | 100 | { |
kekette | 0:507d1a0c6655 | 101 | pc.printf("MPU9250 is online...\n\r"); |
kekette | 0:507d1a0c6655 | 102 | wait(1); |
kekette | 0:507d1a0c6655 | 103 | // lcd.clear(); |
kekette | 0:507d1a0c6655 | 104 | //lcd.printString("MPU9250 OK", 0, 0); |
kekette | 0:507d1a0c6655 | 105 | |
kekette | 0:507d1a0c6655 | 106 | mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration |
kekette | 0:507d1a0c6655 | 107 | mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers |
kekette | 0:507d1a0c6655 | 108 | pc.printf("x gyro bias = %f\n\r", gyroBias[0]); |
kekette | 0:507d1a0c6655 | 109 | pc.printf("y gyro bias = %f\n\r", gyroBias[1]); |
kekette | 0:507d1a0c6655 | 110 | pc.printf("z gyro bias = %f\n\r", gyroBias[2]); |
kekette | 0:507d1a0c6655 | 111 | pc.printf("x accel bias = %f\n\r", accelBias[0]); |
kekette | 0:507d1a0c6655 | 112 | pc.printf("y accel bias = %f\n\r", accelBias[1]); |
kekette | 0:507d1a0c6655 | 113 | pc.printf("z accel bias = %f\n\r", accelBias[2]); |
kekette | 0:507d1a0c6655 | 114 | wait(2); |
kekette | 0:507d1a0c6655 | 115 | mpu9250.initMPU9250(); |
kekette | 0:507d1a0c6655 | 116 | pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature |
kekette | 0:507d1a0c6655 | 117 | mpu9250.initAK8963(magCalibration); |
kekette | 0:507d1a0c6655 | 118 | pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer |
kekette | 0:507d1a0c6655 | 119 | pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); |
kekette | 0:507d1a0c6655 | 120 | pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); |
kekette | 0:507d1a0c6655 | 121 | if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); |
kekette | 0:507d1a0c6655 | 122 | if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); |
kekette | 0:507d1a0c6655 | 123 | if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); |
kekette | 0:507d1a0c6655 | 124 | if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); |
kekette | 0:507d1a0c6655 | 125 | wait(2); |
kekette | 0:507d1a0c6655 | 126 | } |
kekette | 0:507d1a0c6655 | 127 | else |
kekette | 0:507d1a0c6655 | 128 | { |
kekette | 0:507d1a0c6655 | 129 | pc.printf("Could not connect to MPU9250: \n\r"); |
kekette | 0:507d1a0c6655 | 130 | pc.printf("%#x \n", whoami); |
kekette | 0:507d1a0c6655 | 131 | |
kekette | 0:507d1a0c6655 | 132 | // lcd.clear(); |
kekette | 0:507d1a0c6655 | 133 | // lcd.printString("MPU9250", 0, 0); |
kekette | 0:507d1a0c6655 | 134 | // lcd.printString("no connection", 0, 1); |
kekette | 0:507d1a0c6655 | 135 | //lcd.printString("0x", 0, 2); lcd.setXYAddress(20, 2); lcd.printChar(whoami); |
kekette | 0:507d1a0c6655 | 136 | |
kekette | 0:507d1a0c6655 | 137 | while(1) ; // Loop forever if communication doesn't happen |
kekette | 0:507d1a0c6655 | 138 | } |
kekette | 0:507d1a0c6655 | 139 | |
kekette | 0:507d1a0c6655 | 140 | mpu9250.getAres(); // Get accelerometer sensitivity |
kekette | 0:507d1a0c6655 | 141 | mpu9250.getGres(); // Get gyro sensitivity |
kekette | 0:507d1a0c6655 | 142 | mpu9250.getMres(); // Get magnetometer sensitivity |
kekette | 0:507d1a0c6655 | 143 | pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); |
kekette | 0:507d1a0c6655 | 144 | pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); |
kekette | 0:507d1a0c6655 | 145 | pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); |
kekette | 0:507d1a0c6655 | 146 | magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated |
kekette | 0:507d1a0c6655 | 147 | magbias[1] = +120.; // User environmental x-axis correction in milliGauss |
kekette | 0:507d1a0c6655 | 148 | magbias[2] = +125.; // User environmental x-axis correction in milliGauss |
kekette | 0:507d1a0c6655 | 149 | |
kekette | 0:507d1a0c6655 | 150 | while(1) { |
kekette | 0:507d1a0c6655 | 151 | |
kekette | 0:507d1a0c6655 | 152 | // If intPin goes high, all data registers have new data |
kekette | 0:507d1a0c6655 | 153 | if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt |
kekette | 0:507d1a0c6655 | 154 | |
kekette | 0:507d1a0c6655 | 155 | mpu9250.readAccelData(accelCount); // Read the x/y/z adc values |
kekette | 0:507d1a0c6655 | 156 | // Now we'll calculate the accleration value into actual g's |
kekette | 0:507d1a0c6655 | 157 | ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set |
kekette | 0:507d1a0c6655 | 158 | ay = (float)accelCount[1]*aRes - accelBias[1]; |
kekette | 0:507d1a0c6655 | 159 | az = (float)accelCount[2]*aRes - accelBias[2]; |
kekette | 0:507d1a0c6655 | 160 | |
kekette | 0:507d1a0c6655 | 161 | mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values |
kekette | 0:507d1a0c6655 | 162 | // Calculate the gyro value into actual degrees per second |
kekette | 0:507d1a0c6655 | 163 | gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set |
kekette | 0:507d1a0c6655 | 164 | gy = (float)gyroCount[1]*gRes - gyroBias[1]; |
kekette | 0:507d1a0c6655 | 165 | gz = (float)gyroCount[2]*gRes - gyroBias[2]; |
kekette | 0:507d1a0c6655 | 166 | |
kekette | 0:507d1a0c6655 | 167 | mpu9250.readMagData(magCount); // Read the x/y/z adc values |
kekette | 0:507d1a0c6655 | 168 | // Calculate the magnetometer values in milliGauss |
kekette | 0:507d1a0c6655 | 169 | // Include factory calibration per data sheet and user environmental corrections |
kekette | 0:507d1a0c6655 | 170 | mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set |
kekette | 0:507d1a0c6655 | 171 | my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; |
kekette | 0:507d1a0c6655 | 172 | mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; |
kekette | 0:507d1a0c6655 | 173 | } |
kekette | 0:507d1a0c6655 | 174 | |
kekette | 0:507d1a0c6655 | 175 | Now = t.read_us(); |
kekette | 0:507d1a0c6655 | 176 | deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update |
kekette | 0:507d1a0c6655 | 177 | lastUpdate = Now; |
kekette | 0:507d1a0c6655 | 178 | |
kekette | 0:507d1a0c6655 | 179 | sum += deltat; |
kekette | 0:507d1a0c6655 | 180 | sumCount++; |
kekette | 0:507d1a0c6655 | 181 | |
kekette | 0:507d1a0c6655 | 182 | // if(lastUpdate - firstUpdate > 10000000.0f) { |
kekette | 0:507d1a0c6655 | 183 | // beta = 0.04; // decrease filter gain after stabilized |
kekette | 0:507d1a0c6655 | 184 | // zeta = 0.015; // increasey bias drift gain after stabilized |
kekette | 0:507d1a0c6655 | 185 | // } |
kekette | 0:507d1a0c6655 | 186 | |
kekette | 0:507d1a0c6655 | 187 | // Pass gyro rate as rad/s |
kekette | 0:507d1a0c6655 | 188 | mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
kekette | 0:507d1a0c6655 | 189 | // mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
kekette | 0:507d1a0c6655 | 190 | |
kekette | 0:507d1a0c6655 | 191 | // Serial print and/or display at 0.5 s rate independent of data rates |
kekette | 0:507d1a0c6655 | 192 | delt_t = t.read_ms() - count; |
kekette | 0:507d1a0c6655 | 193 | if (delt_t > 100) { // update LCD once per half-second independent of read rate |
kekette | 0:507d1a0c6655 | 194 | /* |
kekette | 0:507d1a0c6655 | 195 | pc.printf("ax = %f", 1000*ax); |
kekette | 0:507d1a0c6655 | 196 | pc.printf(" ay = %f", 1000*ay); |
kekette | 0:507d1a0c6655 | 197 | pc.printf(" az = %f\n", 1000*az); |
kekette | 0:507d1a0c6655 | 198 | */ |
kekette | 0:507d1a0c6655 | 199 | |
kekette | 0:507d1a0c6655 | 200 | /* |
kekette | 0:507d1a0c6655 | 201 | pc.printf("gx = %f", gx); |
kekette | 0:507d1a0c6655 | 202 | pc.printf(" gy = %f", gy); |
kekette | 0:507d1a0c6655 | 203 | pc.printf(" gz = %f deg/s", gz); |
kekette | 0:507d1a0c6655 | 204 | */ |
kekette | 0:507d1a0c6655 | 205 | /* |
kekette | 0:507d1a0c6655 | 206 | pc.printf("gx = %f", mx); |
kekette | 0:507d1a0c6655 | 207 | pc.printf(" gy = %f", my); |
kekette | 0:507d1a0c6655 | 208 | pc.printf(" gz = %f mG\n\r", mz); |
kekette | 0:507d1a0c6655 | 209 | */ |
kekette | 0:507d1a0c6655 | 210 | /* |
kekette | 0:507d1a0c6655 | 211 | tempCount = mpu9250.readTempData(); // Read the adc values |
kekette | 0:507d1a0c6655 | 212 | temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade |
kekette | 0:507d1a0c6655 | 213 | pc.printf(" temperature = %f C\n\r", temperature); |
kekette | 0:507d1a0c6655 | 214 | */ |
kekette | 0:507d1a0c6655 | 215 | /* |
kekette | 0:507d1a0c6655 | 216 | pc.printf("q0 = %f\n\r", q[0]); |
kekette | 0:507d1a0c6655 | 217 | pc.printf("q1 = %f\n\r", q[1]); |
kekette | 0:507d1a0c6655 | 218 | pc.printf("q2 = %f\n\r", q[2]); |
kekette | 0:507d1a0c6655 | 219 | pc.printf("q3 = %f\n\r", q[3]); |
kekette | 0:507d1a0c6655 | 220 | */ |
kekette | 0:507d1a0c6655 | 221 | //lcd.clear(); |
kekette | 0:507d1a0c6655 | 222 | // lcd.printString("MPU9250", 0, 0); |
kekette | 0:507d1a0c6655 | 223 | // lcd.printString("x y z", 0, 1); |
kekette | 0:507d1a0c6655 | 224 | //lcd.setXYAddress(0, 2); lcd.printChar((char)(1000*ax)); |
kekette | 0:507d1a0c6655 | 225 | //lcd.setXYAddress(20, 2); lcd.printChar((char)(1000*ay)); |
kekette | 0:507d1a0c6655 | 226 | //lcd.setXYAddress(40, 2); lcd.printChar((char)(1000*az)); lcd.printString("mg", 66, 2); |
kekette | 0:507d1a0c6655 | 227 | |
kekette | 0:507d1a0c6655 | 228 | |
kekette | 0:507d1a0c6655 | 229 | // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. |
kekette | 0:507d1a0c6655 | 230 | // In this coordinate system, the positive z-axis is down toward Earth. |
kekette | 0:507d1a0c6655 | 231 | // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. |
kekette | 0:507d1a0c6655 | 232 | // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. |
kekette | 0:507d1a0c6655 | 233 | // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. |
kekette | 0:507d1a0c6655 | 234 | // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. |
kekette | 0:507d1a0c6655 | 235 | // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be |
kekette | 0:507d1a0c6655 | 236 | // applied in the correct order which for this configuration is yaw, pitch, and then roll. |
kekette | 0:507d1a0c6655 | 237 | // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. |
kekette | 0:507d1a0c6655 | 238 | yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); |
kekette | 0:507d1a0c6655 | 239 | pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); |
kekette | 0:507d1a0c6655 | 240 | roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); |
kekette | 0:507d1a0c6655 | 241 | pitch *= 180.0f / PI; |
kekette | 0:507d1a0c6655 | 242 | yaw *= 180.0f / PI; |
kekette | 0:507d1a0c6655 | 243 | yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 |
kekette | 0:507d1a0c6655 | 244 | roll *= 180.0f / PI; |
kekette | 0:507d1a0c6655 | 245 | |
kekette | 0:507d1a0c6655 | 246 | //pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); |
kekette | 0:507d1a0c6655 | 247 | |
kekette | 0:507d1a0c6655 | 248 | // pc.printf("Phi: "); |
kekette | 0:507d1a0c6655 | 249 | pc.printf("%f",yaw*0.5); |
kekette | 0:507d1a0c6655 | 250 | //pc.printf("\t Theta: "); |
kekette | 0:507d1a0c6655 | 251 | pc.printf(" "); |
kekette | 0:507d1a0c6655 | 252 | pc.printf("%f",pitch*0.5); |
kekette | 0:507d1a0c6655 | 253 | //pc.printf("\t Psi: "); |
kekette | 0:507d1a0c6655 | 254 | pc.printf(" "); |
kekette | 0:507d1a0c6655 | 255 | pc.printf("%f\n",roll*0.5); |
kekette | 0:507d1a0c6655 | 256 | // pc.printf("\n "); |
kekette | 0:507d1a0c6655 | 257 | // pc.printf("average rate = %f\n\r", (float) sumCount/sum); |
kekette | 0:507d1a0c6655 | 258 | |
kekette | 0:507d1a0c6655 | 259 | myled= !myled; |
kekette | 0:507d1a0c6655 | 260 | count = t.read_ms(); |
kekette | 0:507d1a0c6655 | 261 | sum = 0; |
kekette | 0:507d1a0c6655 | 262 | sumCount = 0; |
kekette | 0:507d1a0c6655 | 263 | |
kekette | 0:507d1a0c6655 | 264 | } |
kekette | 0:507d1a0c6655 | 265 | } |
kekette | 0:507d1a0c6655 | 266 | |
kekette | 0:507d1a0c6655 | 267 | } |
kekette | 0:507d1a0c6655 | 268 |