swing jump win code
Dependencies: ExperimentServer MotorShield QEI_pmw
Diff: main.cpp
- Revision:
- 0:f7e7848048d5
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Mon Nov 28 22:18:47 2022 +0000 @@ -0,0 +1,415 @@ +#include "mbed.h" +#include "rtos.h" +#include "EthernetInterface.h" +#include "ExperimentServer.h" +#include "QEI.h" +#include "BezierCurve.h" +#include "MotorShield.h" +#include "HardwareSetup.h" + +#define BEZIER_ORDER_FOOT 7 +#define NUM_INPUTS (12 + 2*(BEZIER_ORDER_FOOT+1)) +#define NUM_OUTPUTS 19 + +#define PULSE_TO_RAD (2.0f*3.14159f / 1200.0f) +# define PI 3.14159265358979323846 /* pi */ + +// Initializations +Serial pc(USBTX, USBRX); // USB Serial Terminal +ExperimentServer server; // Object that lets us communicate with MATLAB +Timer t; // Timer to measure elapsed time of experiment + +QEI encoderA(PE_9,PE_11, NC, 1200, QEI::X4_ENCODING); // MOTOR A ENCODER (no index, 1200 counts/rev, Quadrature encoding) +QEI encoderB(PA_5, PB_3, NC, 1200, QEI::X4_ENCODING); // MOTOR B ENCODER (no index, 1200 counts/rev, Quadrature encoding) +QEI encoderC(PC_6, PC_7, NC, 1200, QEI::X4_ENCODING); // MOTOR C ENCODER (no index, 1200 counts/rev, Quadrature encoding) +QEI encoderD(PD_12, PD_13, NC, 1200, QEI::X4_ENCODING);// MOTOR D ENCODER (no index, 1200 counts/rev, Quadrature encoding) + +MotorShield motorShield(24000); //initialize the motor shield with a period of 24000 ticks or ~10kHZ +Ticker currentLoop; + +// Variables for q1 +float current1; +float current_des1 = 0; +float prev_current_des1 = 0; +float current_int1 = 0; +float angle1; +float velocity1; +float duty_cycle1; +float angle1_init; + +// Variables for q2 +float current2; +float current_des2 = 0; +float prev_current_des2 = 0; +float current_int2 = 0; +float angle2; +float velocity2; +float duty_cycle2; +float angle2_init; + +// Fixed kinematic parameters +//const float l_OA=.011; +//const float l_OB=.042; +//const float l_AC=.096; +//const float l_DE=.091; +const float l_OA= 0.0; +const float l_OB=0.0; // our l3 +const float l_AC=.096; // our l2, same as l1 +const float l_DE=.091; // our l1 +const float ls= 0.0548; +const float l3 = 0.05584; + +// Timing parameters +float current_control_period_us = 200.0f; // 5kHz current control loop +float impedance_control_period_us = 1000.0f; // 1kHz impedance control loop +float start_period, traj_period, end_period; + +// Control parameters +float current_Kp = 4.0f; +float current_Ki = 0.4f; +float current_int_max = 3.0f; +float duty_max; +float K_xx; +float K_yy; +float K_xy; +float D_xx; +float D_xy; +float D_yy; +float tih; +float tis; +float tipre; +float thpre; +float th2_limu; +float tihend; +bool jumped = false; + +//float K_1; +//float D_1; + +// Model parameters +float supply_voltage = 12; // motor supply voltage +float R = 2.0f; // motor resistance +float k_t = 0.18f; // motor torque constant +float nu = 0.0005; // motor viscous friction + +float max_torque = 0.82; // Nm + +// Current control interrupt function +void CurrentLoop() +{ + // This loop sets the motor voltage commands using PI current controllers with feedforward terms. + + //use the motor shield as follows: + //motorShield.motorAWrite(DUTY CYCLE, DIRECTION), DIRECTION = 0 is forward, DIRECTION =1 is backwards. + + current1 = -(((float(motorShield.readCurrentA())/65536.0f)*30.0f)-15.0f); // measure current + velocity1 = encoderA.getVelocity() * PULSE_TO_RAD; // measure velocity + float err_c1 = current_des1 - current1; // current errror + current_int1 += err_c1; // integrate error + current_int1 = fmaxf( fminf(current_int1, current_int_max), -current_int_max); // anti-windup + float ff1 = R*current_des1 + k_t*velocity1; // feedforward terms + duty_cycle1 = (ff1 + current_Kp*err_c1 + current_Ki*current_int1)/supply_voltage; // PI current controller + + float absDuty1 = abs(duty_cycle1); + if (absDuty1 > duty_max) { + duty_cycle1 *= duty_max / absDuty1; + absDuty1 = duty_max; + } + if (duty_cycle1 < 0) { // backwards + motorShield.motorAWrite(absDuty1, 1); + } else { // forwards + motorShield.motorAWrite(absDuty1, 0); + } + prev_current_des1 = current_des1; + + current2 = -(((float(motorShield.readCurrentB())/65536.0f)*30.0f)-15.0f); // measure current + velocity2 = encoderB.getVelocity() * PULSE_TO_RAD; // measure velocity + float err_c2 = current_des2 - current2; // current error + current_int2 += err_c2; // integrate error + current_int2 = fmaxf( fminf(current_int2, current_int_max), -current_int_max); // anti-windup + float ff2 = R*current_des2 + k_t*velocity2; // feedforward terms + duty_cycle2 = (ff2 + current_Kp*err_c2 + current_Ki*current_int2)/supply_voltage; // PI current controller + + float absDuty2 = abs(duty_cycle2); + if (absDuty2 > duty_max) { + duty_cycle2 *= duty_max / absDuty2; + absDuty2 = duty_max; + } + if (duty_cycle2 < 0) { // backwards + motorShield.motorBWrite(absDuty2, 1); + } else { // forwards + motorShield.motorBWrite(absDuty2, 0); + } + prev_current_des2 = current_des2; + +} + +int main (void) +{ + + // Object for 7th order Cartesian foot trajectory + BezierCurve rDesFoot_bez(2,BEZIER_ORDER_FOOT); + + // Link the terminal with our server and start it up + server.attachTerminal(pc); + server.init(); + + // Continually get input from MATLAB and run experiments + float input_params[NUM_INPUTS]; + pc.printf("%f",input_params[0]); + + while(1) { + + // If there are new inputs, this code will run + if (server.getParams(input_params,NUM_INPUTS)) { + + + // Get inputs from MATLAB + start_period = input_params[0]; // First buffer time, before trajectory + traj_period = input_params[1]; // Trajectory time/length + end_period = input_params[2]; // Second buffer time, after trajectory + + angle1_init = input_params[3]; // Initial angle for q1 (rad) + angle2_init = input_params[4]; // Initial angle for q2 (rad) + + K_xx = input_params[5]; // Foot stiffness N/m + K_yy = input_params[6]; // Foot stiffness N/m + K_xy = input_params[7]; // Foot stiffness N/m + D_xx = input_params[8]; // Foot damping N/(m/s) + D_yy = input_params[9]; // Foot damping N/(m/s) + D_xy = input_params[10]; // Foot damping N/(m/s) + duty_max = input_params[11]; // Maximum duty factor + + tis = input_params[12]; // Start of shoulder trajectory + tih = input_params[13]; // Start of hip trajectory + tipre = input_params[14]; // Start preload time + thpre = input_params[15]; // Preload angle + th2_limu = input_params[16]; // Hip max angle + tihend = input_params[17]; //hip end time + + + // Get foot trajectory points + float foot_pts[2*(BEZIER_ORDER_FOOT+1)]; + for(int i = 0; i<2*(BEZIER_ORDER_FOOT+1);i++) { + foot_pts[i] = input_params[18+i]; + } + rDesFoot_bez.setPoints(foot_pts); + + // Attach current loop interrupt + currentLoop.attach_us(CurrentLoop,current_control_period_us); + + // Setup experiment + t.reset(); + t.start(); + encoderA.reset(); + encoderB.reset(); + encoderC.reset(); + encoderD.reset(); + + motorShield.motorAWrite(0, 0); //turn motor A off + motorShield.motorBWrite(0, 0); //turn motor B off + + // Run experiment + while( t.read() < start_period + traj_period + end_period) { + + // Read encoders to get motor states + angle1 = encoderA.getPulses() *PULSE_TO_RAD + angle1_init; + velocity1 = encoderA.getVelocity() * PULSE_TO_RAD; + + angle2 = encoderB.getPulses() * PULSE_TO_RAD + angle2_init; + velocity2 = encoderB.getVelocity() * PULSE_TO_RAD; + + const float th1 = angle1; + const float th2 = angle2; + const float dth1= velocity1; + const float dth2= velocity2; + + // Calculate the Jacobian +// float Jx_th1 = l_AC*cos(th1 + th2) + l_DE*cos(th1) + l_OB*cos(th1); +// float Jx_th2 = l_AC*cos(th1 + th2); +// float Jy_th1 = l_AC*sin(th1 + th2) + l_DE*sin(th1) + l_OB*sin(th1); +// float Jy_th2 = l_AC*sin(th1 + th2); + + float Jx_th1 = ls*cos(th1); + float Jy_th1 = ls*sin(th1); + + // Calculate the forward kinematics (position and velocity) + //float xFoot = l_AC*sin(th1 + th2) + l_DE*sin(th1) + l_OB*sin(th1); +// float yFoot = -l_AC*cos(th1 + th2) - l_DE*cos(th1) - l_OB*cos(th1); +// float dxFoot = Jx_th1*dth1 + Jx_th2*dth2; +// float dyFoot = Jy_th1*dth1 + Jy_th2*dth2; + + float xFoot = ls*sin(th1); +// float yFinger = y + l3 - ls*cos(th1); // CHECK, how get y since not calculating + float dxFoot = Jx_th1*dth1; +// float dyFinger = Jy_th1*dth1; + + // Set gains based on buffer and traj times, then calculate desired x,y from Bezier trajectory at current time if necessary + float teff = 0; + float vMult = 0; + if( t < start_period) { + if (K_xx > 0 || K_yy > 0) { + K_xx = 1; // for joint space control, set this to 1; for Cartesian space control, set this to 50 + K_yy = 1; // for joint space control, set this to 1; for Cartesian space control, set this to 50 + D_xx = 0.1; // for joint space control, set this to 0.1; for Cartesian space control, set this to 2 + D_yy = 0.1; // for joint space control, set this to 0.1; for Cartesian space control, set this to 2 + K_xy = 0; + D_xy = 0; + } + teff = 0; + } + else if (t < start_period + traj_period) + { + K_xx = input_params[5]; // Foot stiffness N/m + K_yy = input_params[6]; // Foot stiffness N/m + K_xy = input_params[7]; // Foot stiffness N/m + D_xx = input_params[8]; // Foot damping N/(m/s) + D_yy = input_params[9]; // Foot damping N/(m/s) + D_xy = input_params[10]; // Foot damping N/(m/s) + teff = (t-start_period); + vMult = 1; + } + else + { + teff = traj_period; + vMult = 0; + } + + // Get desired foot positions and velocities + float rDesFoot[2] , vDesFoot[2]; + rDesFoot_bez.evaluate(teff/traj_period,rDesFoot); + rDesFoot_bez.evaluateDerivative(teff/traj_period,vDesFoot); + vDesFoot[0]/=traj_period; + vDesFoot[1]/=traj_period; + vDesFoot[0]*=vMult; + vDesFoot[1]*=vMult; + + // Calculate the inverse kinematics (joint positions and velocities) for desired joint angles + float xFoot_inv = -rDesFoot[0]; + float yFoot_inv = rDesFoot[1]; + float l_OE = sqrt( (pow(xFoot_inv,2) + pow(yFoot_inv,2)) ); + float alpha = abs(acos( (pow(l_OE,2) - pow(l_AC,2) - pow((l_OB+l_DE),2))/(-2.0f*l_AC*(l_OB+l_DE)) )); +// float th1_des = -((3.14159f/2.0f) + atan2(yFoot_inv,xFoot_inv) - abs(asin( (l_AC/l_OE)*sin(alpha) ))); +// float th2_des = -(3.14159f - alpha); + + float th1_des = acos(xFoot_inv/ls); + + + //float dd = (Jx_th1*Jy_th2 - Jx_th2*Jy_th1); +// float dth1_des = (1.0f/dd) * ( Jy_th2*vDesFoot[0] - Jx_th2*vDesFoot[1] ); +// float dth2_des = (1.0f/dd) * ( -Jy_th1*vDesFoot[0] + Jx_th1*vDesFoot[1] ); + +// float dd = (Jx_th1*Jy_th2 - Jx_th2*Jy_th1); + float dth1_des = vDesFoot[0]/Jx_th1; +// float dth2_des = (1.0f/dd) * ( -Jy_th1*vDesFoot[0] + Jx_th1*vDesFoot[1] ); + + // Calculate error variables + float e_x = rDesFoot[0] - xFoot; +// float e_y = rDesFoot[1] - yFoot; + float de_x = vDesFoot[0] - dxFoot; +// float de_y = vDesFoot[1] - dyFoot; + + // Calculate virtual force on foot + //float fx = K_xx*e_x + K_xy*e_y + D_xx*de_x + D_xy*de_y; +// float fy = K_xy*e_x + K_yy*e_y + D_xy*de_x + D_yy*de_y; + + // Set desired currents +// current_des1 = (-K_xx*th1 - D_xx*dth1)/k_t; +// current_des2 = 0; +// current_des1 = 0; +// current_des2 = (-K_yy*th2 - D_yy*dth2)/k_t; +// current_des1 = 0; +// current_des2 = 0; + + + // Joint impedance + // sub Kxx for K1, Dxx for D1, Kyy for K2, Dyy for D2 + // Note: Be careful with signs now that you have non-zero desired angles! + // Your equations should be of the form i_d = K1*(q1_d - q1) + D1*(dq1_d - dq1) + + + + th1_des = PI; + dth1_des = 0; + +// pc.printf("jumped %d \n\r", jumped); + + if (t.read() >= tis) { + current_des1 = (-K_xx*(th1 - th1_des) - D_xx*(dth1 - dth1_des))/k_t; + } else { + current_des1 = 0.0; + } +// current_des2 = (-K_yy*(th2 - th2_des) - D_yy*(dth2 - dth2_des))/k_t; + + + if (t.read() >= tipre && t.read() <= tih) { + + current_des2 = -1*(-K_yy*(th2 - thpre) - D_yy*(dth2))/k_t; // negative sign so goes clockwise + + } else if (t.read() >= tih && jumped == false) { //&& th2 > th2_limu + current_des2 = -max_torque/k_t; +// pc.printf("im here"); +// pc.printf("currentdes2: %f \n\r", current_des2); +// current_des2 = 0; + if (th2 <= th2_limu) { + jumped = true; +// pc.printf("got here"); + } +// pc.printf("th2: %f, th2_limu: %f \n\r", th2, th2_limu); + } else { + current_des2 = 0.0; + } + + if (t.read() >= tihend) { + current_des2 = 0.0; + } + + // Cartesian impedance + // Note: As with the joint space laws, be careful with signs! +// current_des1 = (Jx_th1*fx + Jy_th1*fy)/k_t; +// current_des2 = (Jx_th2*fx + Jy_th2*fy)/k_t; + + + // Form output to send to MATLAB + float output_data[NUM_OUTPUTS]; + // current time + output_data[0] = t.read(); + // motor 1 state + output_data[1] = angle1; + output_data[2] = velocity1; + output_data[3] = current1; + output_data[4] = current_des1; + output_data[5] = duty_cycle1; + // motor 2 state + output_data[6] = angle2; + output_data[7] = velocity2; + output_data[8] = current2; + output_data[9] = current_des2; + output_data[10]= duty_cycle2; + // foot state + output_data[11] = xFoot; + output_data[12] = 0.0; // CHECK - FIX LATER used to be yFoot + output_data[13] = dxFoot; + output_data[14] = 0.0; // CHECK - FIX LATER used to be dyFoot + output_data[15] = rDesFoot[0]; + output_data[16] = rDesFoot[1]; + output_data[17] = vDesFoot[0]; + output_data[18] = vDesFoot[1]; + + // Send data to MATLAB + server.sendData(output_data,NUM_OUTPUTS); + + wait_us(impedance_control_period_us); + } + + // Cleanup after experiment + server.setExperimentComplete(); + currentLoop.detach(); + motorShield.motorAWrite(0, 0); //turn motor A off + motorShield.motorBWrite(0, 0); //turn motor B off + + } // end if + + } // end while + +} // end main \ No newline at end of file