ads1115 only

Fork of mbed by mbed official

Committer:
Kojto
Date:
Wed Apr 27 12:10:56 2016 -0500
Revision:
119:aae6fcc7d9bb
Release 119 of the mbed library

Changes:
- new targets - EFM32PG_STK3401, NUCLEO_L031K6
- ST - hwflwctl support for NUCLEO_L476RG
- Update STM32CUBE_L0 from v1.2 to v1.5
- STM32F7 - bugfix - The weak function HAL_Delay is overwritten to use us ticker API.
- Maxim - Fixing the send break for the MAXWSNENV and MAX32600MBED

Who changed what in which revision?

UserRevisionLine numberNew contents of line
Kojto 119:aae6fcc7d9bb 1 /* ----------------------------------------------------------------------
Kojto 119:aae6fcc7d9bb 2 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
Kojto 119:aae6fcc7d9bb 3 *
Kojto 119:aae6fcc7d9bb 4 * $Date: 19. March 2015
Kojto 119:aae6fcc7d9bb 5 * $Revision: V.1.4.5
Kojto 119:aae6fcc7d9bb 6 *
Kojto 119:aae6fcc7d9bb 7 * Project: CMSIS DSP Library
Kojto 119:aae6fcc7d9bb 8 * Title: arm_math.h
Kojto 119:aae6fcc7d9bb 9 *
Kojto 119:aae6fcc7d9bb 10 * Description: Public header file for CMSIS DSP Library
Kojto 119:aae6fcc7d9bb 11 *
Kojto 119:aae6fcc7d9bb 12 * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
Kojto 119:aae6fcc7d9bb 13 *
Kojto 119:aae6fcc7d9bb 14 * Redistribution and use in source and binary forms, with or without
Kojto 119:aae6fcc7d9bb 15 * modification, are permitted provided that the following conditions
Kojto 119:aae6fcc7d9bb 16 * are met:
Kojto 119:aae6fcc7d9bb 17 * - Redistributions of source code must retain the above copyright
Kojto 119:aae6fcc7d9bb 18 * notice, this list of conditions and the following disclaimer.
Kojto 119:aae6fcc7d9bb 19 * - Redistributions in binary form must reproduce the above copyright
Kojto 119:aae6fcc7d9bb 20 * notice, this list of conditions and the following disclaimer in
Kojto 119:aae6fcc7d9bb 21 * the documentation and/or other materials provided with the
Kojto 119:aae6fcc7d9bb 22 * distribution.
Kojto 119:aae6fcc7d9bb 23 * - Neither the name of ARM LIMITED nor the names of its contributors
Kojto 119:aae6fcc7d9bb 24 * may be used to endorse or promote products derived from this
Kojto 119:aae6fcc7d9bb 25 * software without specific prior written permission.
Kojto 119:aae6fcc7d9bb 26 *
Kojto 119:aae6fcc7d9bb 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
Kojto 119:aae6fcc7d9bb 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
Kojto 119:aae6fcc7d9bb 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
Kojto 119:aae6fcc7d9bb 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
Kojto 119:aae6fcc7d9bb 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
Kojto 119:aae6fcc7d9bb 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
Kojto 119:aae6fcc7d9bb 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
Kojto 119:aae6fcc7d9bb 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
Kojto 119:aae6fcc7d9bb 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
Kojto 119:aae6fcc7d9bb 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
Kojto 119:aae6fcc7d9bb 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Kojto 119:aae6fcc7d9bb 38 * POSSIBILITY OF SUCH DAMAGE.
Kojto 119:aae6fcc7d9bb 39 * -------------------------------------------------------------------- */
Kojto 119:aae6fcc7d9bb 40
Kojto 119:aae6fcc7d9bb 41 /**
Kojto 119:aae6fcc7d9bb 42 \mainpage CMSIS DSP Software Library
Kojto 119:aae6fcc7d9bb 43 *
Kojto 119:aae6fcc7d9bb 44 * Introduction
Kojto 119:aae6fcc7d9bb 45 * ------------
Kojto 119:aae6fcc7d9bb 46 *
Kojto 119:aae6fcc7d9bb 47 * This user manual describes the CMSIS DSP software library,
Kojto 119:aae6fcc7d9bb 48 * a suite of common signal processing functions for use on Cortex-M processor based devices.
Kojto 119:aae6fcc7d9bb 49 *
Kojto 119:aae6fcc7d9bb 50 * The library is divided into a number of functions each covering a specific category:
Kojto 119:aae6fcc7d9bb 51 * - Basic math functions
Kojto 119:aae6fcc7d9bb 52 * - Fast math functions
Kojto 119:aae6fcc7d9bb 53 * - Complex math functions
Kojto 119:aae6fcc7d9bb 54 * - Filters
Kojto 119:aae6fcc7d9bb 55 * - Matrix functions
Kojto 119:aae6fcc7d9bb 56 * - Transforms
Kojto 119:aae6fcc7d9bb 57 * - Motor control functions
Kojto 119:aae6fcc7d9bb 58 * - Statistical functions
Kojto 119:aae6fcc7d9bb 59 * - Support functions
Kojto 119:aae6fcc7d9bb 60 * - Interpolation functions
Kojto 119:aae6fcc7d9bb 61 *
Kojto 119:aae6fcc7d9bb 62 * The library has separate functions for operating on 8-bit integers, 16-bit integers,
Kojto 119:aae6fcc7d9bb 63 * 32-bit integer and 32-bit floating-point values.
Kojto 119:aae6fcc7d9bb 64 *
Kojto 119:aae6fcc7d9bb 65 * Using the Library
Kojto 119:aae6fcc7d9bb 66 * ------------
Kojto 119:aae6fcc7d9bb 67 *
Kojto 119:aae6fcc7d9bb 68 * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
Kojto 119:aae6fcc7d9bb 69 * - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
Kojto 119:aae6fcc7d9bb 70 * - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
Kojto 119:aae6fcc7d9bb 71 * - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
Kojto 119:aae6fcc7d9bb 72 * - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
Kojto 119:aae6fcc7d9bb 73 * - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
Kojto 119:aae6fcc7d9bb 74 * - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
Kojto 119:aae6fcc7d9bb 75 * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
Kojto 119:aae6fcc7d9bb 76 * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
Kojto 119:aae6fcc7d9bb 77 * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
Kojto 119:aae6fcc7d9bb 78 * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
Kojto 119:aae6fcc7d9bb 79 * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
Kojto 119:aae6fcc7d9bb 80 * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
Kojto 119:aae6fcc7d9bb 81 * - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
Kojto 119:aae6fcc7d9bb 82 * - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
Kojto 119:aae6fcc7d9bb 83 *
Kojto 119:aae6fcc7d9bb 84 * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
Kojto 119:aae6fcc7d9bb 85 * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
Kojto 119:aae6fcc7d9bb 86 * public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
Kojto 119:aae6fcc7d9bb 87 * Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
Kojto 119:aae6fcc7d9bb 88 * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
Kojto 119:aae6fcc7d9bb 89 *
Kojto 119:aae6fcc7d9bb 90 * Examples
Kojto 119:aae6fcc7d9bb 91 * --------
Kojto 119:aae6fcc7d9bb 92 *
Kojto 119:aae6fcc7d9bb 93 * The library ships with a number of examples which demonstrate how to use the library functions.
Kojto 119:aae6fcc7d9bb 94 *
Kojto 119:aae6fcc7d9bb 95 * Toolchain Support
Kojto 119:aae6fcc7d9bb 96 * ------------
Kojto 119:aae6fcc7d9bb 97 *
Kojto 119:aae6fcc7d9bb 98 * The library has been developed and tested with MDK-ARM version 5.14.0.0
Kojto 119:aae6fcc7d9bb 99 * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
Kojto 119:aae6fcc7d9bb 100 *
Kojto 119:aae6fcc7d9bb 101 * Building the Library
Kojto 119:aae6fcc7d9bb 102 * ------------
Kojto 119:aae6fcc7d9bb 103 *
Kojto 119:aae6fcc7d9bb 104 * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
Kojto 119:aae6fcc7d9bb 105 * - arm_cortexM_math.uvprojx
Kojto 119:aae6fcc7d9bb 106 *
Kojto 119:aae6fcc7d9bb 107 *
Kojto 119:aae6fcc7d9bb 108 * The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
Kojto 119:aae6fcc7d9bb 109 *
Kojto 119:aae6fcc7d9bb 110 * Pre-processor Macros
Kojto 119:aae6fcc7d9bb 111 * ------------
Kojto 119:aae6fcc7d9bb 112 *
Kojto 119:aae6fcc7d9bb 113 * Each library project have differant pre-processor macros.
Kojto 119:aae6fcc7d9bb 114 *
Kojto 119:aae6fcc7d9bb 115 * - UNALIGNED_SUPPORT_DISABLE:
Kojto 119:aae6fcc7d9bb 116 *
Kojto 119:aae6fcc7d9bb 117 * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
Kojto 119:aae6fcc7d9bb 118 *
Kojto 119:aae6fcc7d9bb 119 * - ARM_MATH_BIG_ENDIAN:
Kojto 119:aae6fcc7d9bb 120 *
Kojto 119:aae6fcc7d9bb 121 * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
Kojto 119:aae6fcc7d9bb 122 *
Kojto 119:aae6fcc7d9bb 123 * - ARM_MATH_MATRIX_CHECK:
Kojto 119:aae6fcc7d9bb 124 *
Kojto 119:aae6fcc7d9bb 125 * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
Kojto 119:aae6fcc7d9bb 126 *
Kojto 119:aae6fcc7d9bb 127 * - ARM_MATH_ROUNDING:
Kojto 119:aae6fcc7d9bb 128 *
Kojto 119:aae6fcc7d9bb 129 * Define macro ARM_MATH_ROUNDING for rounding on support functions
Kojto 119:aae6fcc7d9bb 130 *
Kojto 119:aae6fcc7d9bb 131 * - ARM_MATH_CMx:
Kojto 119:aae6fcc7d9bb 132 *
Kojto 119:aae6fcc7d9bb 133 * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
Kojto 119:aae6fcc7d9bb 134 * and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
Kojto 119:aae6fcc7d9bb 135 * ARM_MATH_CM7 for building the library on cortex-M7.
Kojto 119:aae6fcc7d9bb 136 *
Kojto 119:aae6fcc7d9bb 137 * - __FPU_PRESENT:
Kojto 119:aae6fcc7d9bb 138 *
Kojto 119:aae6fcc7d9bb 139 * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
Kojto 119:aae6fcc7d9bb 140 *
Kojto 119:aae6fcc7d9bb 141 * <hr>
Kojto 119:aae6fcc7d9bb 142 * CMSIS-DSP in ARM::CMSIS Pack
Kojto 119:aae6fcc7d9bb 143 * -----------------------------
Kojto 119:aae6fcc7d9bb 144 *
Kojto 119:aae6fcc7d9bb 145 * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
Kojto 119:aae6fcc7d9bb 146 * |File/Folder |Content |
Kojto 119:aae6fcc7d9bb 147 * |------------------------------|------------------------------------------------------------------------|
Kojto 119:aae6fcc7d9bb 148 * |\b CMSIS\\Documentation\\DSP | This documentation |
Kojto 119:aae6fcc7d9bb 149 * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
Kojto 119:aae6fcc7d9bb 150 * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
Kojto 119:aae6fcc7d9bb 151 * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
Kojto 119:aae6fcc7d9bb 152 *
Kojto 119:aae6fcc7d9bb 153 * <hr>
Kojto 119:aae6fcc7d9bb 154 * Revision History of CMSIS-DSP
Kojto 119:aae6fcc7d9bb 155 * ------------
Kojto 119:aae6fcc7d9bb 156 * Please refer to \ref ChangeLog_pg.
Kojto 119:aae6fcc7d9bb 157 *
Kojto 119:aae6fcc7d9bb 158 * Copyright Notice
Kojto 119:aae6fcc7d9bb 159 * ------------
Kojto 119:aae6fcc7d9bb 160 *
Kojto 119:aae6fcc7d9bb 161 * Copyright (C) 2010-2015 ARM Limited. All rights reserved.
Kojto 119:aae6fcc7d9bb 162 */
Kojto 119:aae6fcc7d9bb 163
Kojto 119:aae6fcc7d9bb 164
Kojto 119:aae6fcc7d9bb 165 /**
Kojto 119:aae6fcc7d9bb 166 * @defgroup groupMath Basic Math Functions
Kojto 119:aae6fcc7d9bb 167 */
Kojto 119:aae6fcc7d9bb 168
Kojto 119:aae6fcc7d9bb 169 /**
Kojto 119:aae6fcc7d9bb 170 * @defgroup groupFastMath Fast Math Functions
Kojto 119:aae6fcc7d9bb 171 * This set of functions provides a fast approximation to sine, cosine, and square root.
Kojto 119:aae6fcc7d9bb 172 * As compared to most of the other functions in the CMSIS math library, the fast math functions
Kojto 119:aae6fcc7d9bb 173 * operate on individual values and not arrays.
Kojto 119:aae6fcc7d9bb 174 * There are separate functions for Q15, Q31, and floating-point data.
Kojto 119:aae6fcc7d9bb 175 *
Kojto 119:aae6fcc7d9bb 176 */
Kojto 119:aae6fcc7d9bb 177
Kojto 119:aae6fcc7d9bb 178 /**
Kojto 119:aae6fcc7d9bb 179 * @defgroup groupCmplxMath Complex Math Functions
Kojto 119:aae6fcc7d9bb 180 * This set of functions operates on complex data vectors.
Kojto 119:aae6fcc7d9bb 181 * The data in the complex arrays is stored in an interleaved fashion
Kojto 119:aae6fcc7d9bb 182 * (real, imag, real, imag, ...).
Kojto 119:aae6fcc7d9bb 183 * In the API functions, the number of samples in a complex array refers
Kojto 119:aae6fcc7d9bb 184 * to the number of complex values; the array contains twice this number of
Kojto 119:aae6fcc7d9bb 185 * real values.
Kojto 119:aae6fcc7d9bb 186 */
Kojto 119:aae6fcc7d9bb 187
Kojto 119:aae6fcc7d9bb 188 /**
Kojto 119:aae6fcc7d9bb 189 * @defgroup groupFilters Filtering Functions
Kojto 119:aae6fcc7d9bb 190 */
Kojto 119:aae6fcc7d9bb 191
Kojto 119:aae6fcc7d9bb 192 /**
Kojto 119:aae6fcc7d9bb 193 * @defgroup groupMatrix Matrix Functions
Kojto 119:aae6fcc7d9bb 194 *
Kojto 119:aae6fcc7d9bb 195 * This set of functions provides basic matrix math operations.
Kojto 119:aae6fcc7d9bb 196 * The functions operate on matrix data structures. For example,
Kojto 119:aae6fcc7d9bb 197 * the type
Kojto 119:aae6fcc7d9bb 198 * definition for the floating-point matrix structure is shown
Kojto 119:aae6fcc7d9bb 199 * below:
Kojto 119:aae6fcc7d9bb 200 * <pre>
Kojto 119:aae6fcc7d9bb 201 * typedef struct
Kojto 119:aae6fcc7d9bb 202 * {
Kojto 119:aae6fcc7d9bb 203 * uint16_t numRows; // number of rows of the matrix.
Kojto 119:aae6fcc7d9bb 204 * uint16_t numCols; // number of columns of the matrix.
Kojto 119:aae6fcc7d9bb 205 * float32_t *pData; // points to the data of the matrix.
Kojto 119:aae6fcc7d9bb 206 * } arm_matrix_instance_f32;
Kojto 119:aae6fcc7d9bb 207 * </pre>
Kojto 119:aae6fcc7d9bb 208 * There are similar definitions for Q15 and Q31 data types.
Kojto 119:aae6fcc7d9bb 209 *
Kojto 119:aae6fcc7d9bb 210 * The structure specifies the size of the matrix and then points to
Kojto 119:aae6fcc7d9bb 211 * an array of data. The array is of size <code>numRows X numCols</code>
Kojto 119:aae6fcc7d9bb 212 * and the values are arranged in row order. That is, the
Kojto 119:aae6fcc7d9bb 213 * matrix element (i, j) is stored at:
Kojto 119:aae6fcc7d9bb 214 * <pre>
Kojto 119:aae6fcc7d9bb 215 * pData[i*numCols + j]
Kojto 119:aae6fcc7d9bb 216 * </pre>
Kojto 119:aae6fcc7d9bb 217 *
Kojto 119:aae6fcc7d9bb 218 * \par Init Functions
Kojto 119:aae6fcc7d9bb 219 * There is an associated initialization function for each type of matrix
Kojto 119:aae6fcc7d9bb 220 * data structure.
Kojto 119:aae6fcc7d9bb 221 * The initialization function sets the values of the internal structure fields.
Kojto 119:aae6fcc7d9bb 222 * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
Kojto 119:aae6fcc7d9bb 223 * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
Kojto 119:aae6fcc7d9bb 224 *
Kojto 119:aae6fcc7d9bb 225 * \par
Kojto 119:aae6fcc7d9bb 226 * Use of the initialization function is optional. However, if initialization function is used
Kojto 119:aae6fcc7d9bb 227 * then the instance structure cannot be placed into a const data section.
Kojto 119:aae6fcc7d9bb 228 * To place the instance structure in a const data
Kojto 119:aae6fcc7d9bb 229 * section, manually initialize the data structure. For example:
Kojto 119:aae6fcc7d9bb 230 * <pre>
Kojto 119:aae6fcc7d9bb 231 * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
Kojto 119:aae6fcc7d9bb 232 * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
Kojto 119:aae6fcc7d9bb 233 * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
Kojto 119:aae6fcc7d9bb 234 * </pre>
Kojto 119:aae6fcc7d9bb 235 * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
Kojto 119:aae6fcc7d9bb 236 * specifies the number of columns, and <code>pData</code> points to the
Kojto 119:aae6fcc7d9bb 237 * data array.
Kojto 119:aae6fcc7d9bb 238 *
Kojto 119:aae6fcc7d9bb 239 * \par Size Checking
Kojto 119:aae6fcc7d9bb 240 * By default all of the matrix functions perform size checking on the input and
Kojto 119:aae6fcc7d9bb 241 * output matrices. For example, the matrix addition function verifies that the
Kojto 119:aae6fcc7d9bb 242 * two input matrices and the output matrix all have the same number of rows and
Kojto 119:aae6fcc7d9bb 243 * columns. If the size check fails the functions return:
Kojto 119:aae6fcc7d9bb 244 * <pre>
Kojto 119:aae6fcc7d9bb 245 * ARM_MATH_SIZE_MISMATCH
Kojto 119:aae6fcc7d9bb 246 * </pre>
Kojto 119:aae6fcc7d9bb 247 * Otherwise the functions return
Kojto 119:aae6fcc7d9bb 248 * <pre>
Kojto 119:aae6fcc7d9bb 249 * ARM_MATH_SUCCESS
Kojto 119:aae6fcc7d9bb 250 * </pre>
Kojto 119:aae6fcc7d9bb 251 * There is some overhead associated with this matrix size checking.
Kojto 119:aae6fcc7d9bb 252 * The matrix size checking is enabled via the \#define
Kojto 119:aae6fcc7d9bb 253 * <pre>
Kojto 119:aae6fcc7d9bb 254 * ARM_MATH_MATRIX_CHECK
Kojto 119:aae6fcc7d9bb 255 * </pre>
Kojto 119:aae6fcc7d9bb 256 * within the library project settings. By default this macro is defined
Kojto 119:aae6fcc7d9bb 257 * and size checking is enabled. By changing the project settings and
Kojto 119:aae6fcc7d9bb 258 * undefining this macro size checking is eliminated and the functions
Kojto 119:aae6fcc7d9bb 259 * run a bit faster. With size checking disabled the functions always
Kojto 119:aae6fcc7d9bb 260 * return <code>ARM_MATH_SUCCESS</code>.
Kojto 119:aae6fcc7d9bb 261 */
Kojto 119:aae6fcc7d9bb 262
Kojto 119:aae6fcc7d9bb 263 /**
Kojto 119:aae6fcc7d9bb 264 * @defgroup groupTransforms Transform Functions
Kojto 119:aae6fcc7d9bb 265 */
Kojto 119:aae6fcc7d9bb 266
Kojto 119:aae6fcc7d9bb 267 /**
Kojto 119:aae6fcc7d9bb 268 * @defgroup groupController Controller Functions
Kojto 119:aae6fcc7d9bb 269 */
Kojto 119:aae6fcc7d9bb 270
Kojto 119:aae6fcc7d9bb 271 /**
Kojto 119:aae6fcc7d9bb 272 * @defgroup groupStats Statistics Functions
Kojto 119:aae6fcc7d9bb 273 */
Kojto 119:aae6fcc7d9bb 274 /**
Kojto 119:aae6fcc7d9bb 275 * @defgroup groupSupport Support Functions
Kojto 119:aae6fcc7d9bb 276 */
Kojto 119:aae6fcc7d9bb 277
Kojto 119:aae6fcc7d9bb 278 /**
Kojto 119:aae6fcc7d9bb 279 * @defgroup groupInterpolation Interpolation Functions
Kojto 119:aae6fcc7d9bb 280 * These functions perform 1- and 2-dimensional interpolation of data.
Kojto 119:aae6fcc7d9bb 281 * Linear interpolation is used for 1-dimensional data and
Kojto 119:aae6fcc7d9bb 282 * bilinear interpolation is used for 2-dimensional data.
Kojto 119:aae6fcc7d9bb 283 */
Kojto 119:aae6fcc7d9bb 284
Kojto 119:aae6fcc7d9bb 285 /**
Kojto 119:aae6fcc7d9bb 286 * @defgroup groupExamples Examples
Kojto 119:aae6fcc7d9bb 287 */
Kojto 119:aae6fcc7d9bb 288 #ifndef _ARM_MATH_H
Kojto 119:aae6fcc7d9bb 289 #define _ARM_MATH_H
Kojto 119:aae6fcc7d9bb 290
Kojto 119:aae6fcc7d9bb 291 #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
Kojto 119:aae6fcc7d9bb 292
Kojto 119:aae6fcc7d9bb 293 #if defined(ARM_MATH_CM7)
Kojto 119:aae6fcc7d9bb 294 #include "core_cm7.h"
Kojto 119:aae6fcc7d9bb 295 #elif defined (ARM_MATH_CM4)
Kojto 119:aae6fcc7d9bb 296 #include "core_cm4.h"
Kojto 119:aae6fcc7d9bb 297 #elif defined (ARM_MATH_CM3)
Kojto 119:aae6fcc7d9bb 298 #include "core_cm3.h"
Kojto 119:aae6fcc7d9bb 299 #elif defined (ARM_MATH_CM0)
Kojto 119:aae6fcc7d9bb 300 #include "core_cm0.h"
Kojto 119:aae6fcc7d9bb 301 #define ARM_MATH_CM0_FAMILY
Kojto 119:aae6fcc7d9bb 302 #elif defined (ARM_MATH_CM0PLUS)
Kojto 119:aae6fcc7d9bb 303 #include "core_cm0plus.h"
Kojto 119:aae6fcc7d9bb 304 #define ARM_MATH_CM0_FAMILY
Kojto 119:aae6fcc7d9bb 305 #else
Kojto 119:aae6fcc7d9bb 306 #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
Kojto 119:aae6fcc7d9bb 307 #endif
Kojto 119:aae6fcc7d9bb 308
Kojto 119:aae6fcc7d9bb 309 #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
Kojto 119:aae6fcc7d9bb 310 #include "string.h"
Kojto 119:aae6fcc7d9bb 311 #include "math.h"
Kojto 119:aae6fcc7d9bb 312 #ifdef __cplusplus
Kojto 119:aae6fcc7d9bb 313 extern "C"
Kojto 119:aae6fcc7d9bb 314 {
Kojto 119:aae6fcc7d9bb 315 #endif
Kojto 119:aae6fcc7d9bb 316
Kojto 119:aae6fcc7d9bb 317
Kojto 119:aae6fcc7d9bb 318 /**
Kojto 119:aae6fcc7d9bb 319 * @brief Macros required for reciprocal calculation in Normalized LMS
Kojto 119:aae6fcc7d9bb 320 */
Kojto 119:aae6fcc7d9bb 321
Kojto 119:aae6fcc7d9bb 322 #define DELTA_Q31 (0x100)
Kojto 119:aae6fcc7d9bb 323 #define DELTA_Q15 0x5
Kojto 119:aae6fcc7d9bb 324 #define INDEX_MASK 0x0000003F
Kojto 119:aae6fcc7d9bb 325 #ifndef PI
Kojto 119:aae6fcc7d9bb 326 #define PI 3.14159265358979f
Kojto 119:aae6fcc7d9bb 327 #endif
Kojto 119:aae6fcc7d9bb 328
Kojto 119:aae6fcc7d9bb 329 /**
Kojto 119:aae6fcc7d9bb 330 * @brief Macros required for SINE and COSINE Fast math approximations
Kojto 119:aae6fcc7d9bb 331 */
Kojto 119:aae6fcc7d9bb 332
Kojto 119:aae6fcc7d9bb 333 #define FAST_MATH_TABLE_SIZE 512
Kojto 119:aae6fcc7d9bb 334 #define FAST_MATH_Q31_SHIFT (32 - 10)
Kojto 119:aae6fcc7d9bb 335 #define FAST_MATH_Q15_SHIFT (16 - 10)
Kojto 119:aae6fcc7d9bb 336 #define CONTROLLER_Q31_SHIFT (32 - 9)
Kojto 119:aae6fcc7d9bb 337 #define TABLE_SIZE 256
Kojto 119:aae6fcc7d9bb 338 #define TABLE_SPACING_Q31 0x400000
Kojto 119:aae6fcc7d9bb 339 #define TABLE_SPACING_Q15 0x80
Kojto 119:aae6fcc7d9bb 340
Kojto 119:aae6fcc7d9bb 341 /**
Kojto 119:aae6fcc7d9bb 342 * @brief Macros required for SINE and COSINE Controller functions
Kojto 119:aae6fcc7d9bb 343 */
Kojto 119:aae6fcc7d9bb 344 /* 1.31(q31) Fixed value of 2/360 */
Kojto 119:aae6fcc7d9bb 345 /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
Kojto 119:aae6fcc7d9bb 346 #define INPUT_SPACING 0xB60B61
Kojto 119:aae6fcc7d9bb 347
Kojto 119:aae6fcc7d9bb 348 /**
Kojto 119:aae6fcc7d9bb 349 * @brief Macro for Unaligned Support
Kojto 119:aae6fcc7d9bb 350 */
Kojto 119:aae6fcc7d9bb 351 #ifndef UNALIGNED_SUPPORT_DISABLE
Kojto 119:aae6fcc7d9bb 352 #define ALIGN4
Kojto 119:aae6fcc7d9bb 353 #else
Kojto 119:aae6fcc7d9bb 354 #if defined (__GNUC__)
Kojto 119:aae6fcc7d9bb 355 #define ALIGN4 __attribute__((aligned(4)))
Kojto 119:aae6fcc7d9bb 356 #else
Kojto 119:aae6fcc7d9bb 357 #define ALIGN4 __align(4)
Kojto 119:aae6fcc7d9bb 358 #endif
Kojto 119:aae6fcc7d9bb 359 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
Kojto 119:aae6fcc7d9bb 360
Kojto 119:aae6fcc7d9bb 361 /**
Kojto 119:aae6fcc7d9bb 362 * @brief Error status returned by some functions in the library.
Kojto 119:aae6fcc7d9bb 363 */
Kojto 119:aae6fcc7d9bb 364
Kojto 119:aae6fcc7d9bb 365 typedef enum
Kojto 119:aae6fcc7d9bb 366 {
Kojto 119:aae6fcc7d9bb 367 ARM_MATH_SUCCESS = 0, /**< No error */
Kojto 119:aae6fcc7d9bb 368 ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
Kojto 119:aae6fcc7d9bb 369 ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
Kojto 119:aae6fcc7d9bb 370 ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
Kojto 119:aae6fcc7d9bb 371 ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
Kojto 119:aae6fcc7d9bb 372 ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
Kojto 119:aae6fcc7d9bb 373 ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
Kojto 119:aae6fcc7d9bb 374 } arm_status;
Kojto 119:aae6fcc7d9bb 375
Kojto 119:aae6fcc7d9bb 376 /**
Kojto 119:aae6fcc7d9bb 377 * @brief 8-bit fractional data type in 1.7 format.
Kojto 119:aae6fcc7d9bb 378 */
Kojto 119:aae6fcc7d9bb 379 typedef int8_t q7_t;
Kojto 119:aae6fcc7d9bb 380
Kojto 119:aae6fcc7d9bb 381 /**
Kojto 119:aae6fcc7d9bb 382 * @brief 16-bit fractional data type in 1.15 format.
Kojto 119:aae6fcc7d9bb 383 */
Kojto 119:aae6fcc7d9bb 384 typedef int16_t q15_t;
Kojto 119:aae6fcc7d9bb 385
Kojto 119:aae6fcc7d9bb 386 /**
Kojto 119:aae6fcc7d9bb 387 * @brief 32-bit fractional data type in 1.31 format.
Kojto 119:aae6fcc7d9bb 388 */
Kojto 119:aae6fcc7d9bb 389 typedef int32_t q31_t;
Kojto 119:aae6fcc7d9bb 390
Kojto 119:aae6fcc7d9bb 391 /**
Kojto 119:aae6fcc7d9bb 392 * @brief 64-bit fractional data type in 1.63 format.
Kojto 119:aae6fcc7d9bb 393 */
Kojto 119:aae6fcc7d9bb 394 typedef int64_t q63_t;
Kojto 119:aae6fcc7d9bb 395
Kojto 119:aae6fcc7d9bb 396 /**
Kojto 119:aae6fcc7d9bb 397 * @brief 32-bit floating-point type definition.
Kojto 119:aae6fcc7d9bb 398 */
Kojto 119:aae6fcc7d9bb 399 typedef float float32_t;
Kojto 119:aae6fcc7d9bb 400
Kojto 119:aae6fcc7d9bb 401 /**
Kojto 119:aae6fcc7d9bb 402 * @brief 64-bit floating-point type definition.
Kojto 119:aae6fcc7d9bb 403 */
Kojto 119:aae6fcc7d9bb 404 typedef double float64_t;
Kojto 119:aae6fcc7d9bb 405
Kojto 119:aae6fcc7d9bb 406 /**
Kojto 119:aae6fcc7d9bb 407 * @brief definition to read/write two 16 bit values.
Kojto 119:aae6fcc7d9bb 408 */
Kojto 119:aae6fcc7d9bb 409 #if defined __CC_ARM
Kojto 119:aae6fcc7d9bb 410 #define __SIMD32_TYPE int32_t __packed
Kojto 119:aae6fcc7d9bb 411 #define CMSIS_UNUSED __attribute__((unused))
Kojto 119:aae6fcc7d9bb 412 #elif defined __ICCARM__
Kojto 119:aae6fcc7d9bb 413 #define __SIMD32_TYPE int32_t __packed
Kojto 119:aae6fcc7d9bb 414 #define CMSIS_UNUSED
Kojto 119:aae6fcc7d9bb 415 #elif defined __GNUC__
Kojto 119:aae6fcc7d9bb 416 #define __SIMD32_TYPE int32_t
Kojto 119:aae6fcc7d9bb 417 #define CMSIS_UNUSED __attribute__((unused))
Kojto 119:aae6fcc7d9bb 418 #elif defined __CSMC__ /* Cosmic */
Kojto 119:aae6fcc7d9bb 419 #define __SIMD32_TYPE int32_t
Kojto 119:aae6fcc7d9bb 420 #define CMSIS_UNUSED
Kojto 119:aae6fcc7d9bb 421 #elif defined __TASKING__
Kojto 119:aae6fcc7d9bb 422 #define __SIMD32_TYPE __unaligned int32_t
Kojto 119:aae6fcc7d9bb 423 #define CMSIS_UNUSED
Kojto 119:aae6fcc7d9bb 424 #else
Kojto 119:aae6fcc7d9bb 425 #error Unknown compiler
Kojto 119:aae6fcc7d9bb 426 #endif
Kojto 119:aae6fcc7d9bb 427
Kojto 119:aae6fcc7d9bb 428 #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
Kojto 119:aae6fcc7d9bb 429 #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
Kojto 119:aae6fcc7d9bb 430
Kojto 119:aae6fcc7d9bb 431 #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
Kojto 119:aae6fcc7d9bb 432
Kojto 119:aae6fcc7d9bb 433 #define __SIMD64(addr) (*(int64_t **) & (addr))
Kojto 119:aae6fcc7d9bb 434
Kojto 119:aae6fcc7d9bb 435 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
Kojto 119:aae6fcc7d9bb 436 /**
Kojto 119:aae6fcc7d9bb 437 * @brief definition to pack two 16 bit values.
Kojto 119:aae6fcc7d9bb 438 */
Kojto 119:aae6fcc7d9bb 439 #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
Kojto 119:aae6fcc7d9bb 440 (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
Kojto 119:aae6fcc7d9bb 441 #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
Kojto 119:aae6fcc7d9bb 442 (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
Kojto 119:aae6fcc7d9bb 443
Kojto 119:aae6fcc7d9bb 444 #endif
Kojto 119:aae6fcc7d9bb 445
Kojto 119:aae6fcc7d9bb 446
Kojto 119:aae6fcc7d9bb 447 /**
Kojto 119:aae6fcc7d9bb 448 * @brief definition to pack four 8 bit values.
Kojto 119:aae6fcc7d9bb 449 */
Kojto 119:aae6fcc7d9bb 450 #ifndef ARM_MATH_BIG_ENDIAN
Kojto 119:aae6fcc7d9bb 451
Kojto 119:aae6fcc7d9bb 452 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
Kojto 119:aae6fcc7d9bb 453 (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
Kojto 119:aae6fcc7d9bb 454 (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
Kojto 119:aae6fcc7d9bb 455 (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
Kojto 119:aae6fcc7d9bb 456 #else
Kojto 119:aae6fcc7d9bb 457
Kojto 119:aae6fcc7d9bb 458 #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
Kojto 119:aae6fcc7d9bb 459 (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
Kojto 119:aae6fcc7d9bb 460 (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
Kojto 119:aae6fcc7d9bb 461 (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
Kojto 119:aae6fcc7d9bb 462
Kojto 119:aae6fcc7d9bb 463 #endif
Kojto 119:aae6fcc7d9bb 464
Kojto 119:aae6fcc7d9bb 465
Kojto 119:aae6fcc7d9bb 466 /**
Kojto 119:aae6fcc7d9bb 467 * @brief Clips Q63 to Q31 values.
Kojto 119:aae6fcc7d9bb 468 */
Kojto 119:aae6fcc7d9bb 469 static __INLINE q31_t clip_q63_to_q31(
Kojto 119:aae6fcc7d9bb 470 q63_t x)
Kojto 119:aae6fcc7d9bb 471 {
Kojto 119:aae6fcc7d9bb 472 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
Kojto 119:aae6fcc7d9bb 473 ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
Kojto 119:aae6fcc7d9bb 474 }
Kojto 119:aae6fcc7d9bb 475
Kojto 119:aae6fcc7d9bb 476 /**
Kojto 119:aae6fcc7d9bb 477 * @brief Clips Q63 to Q15 values.
Kojto 119:aae6fcc7d9bb 478 */
Kojto 119:aae6fcc7d9bb 479 static __INLINE q15_t clip_q63_to_q15(
Kojto 119:aae6fcc7d9bb 480 q63_t x)
Kojto 119:aae6fcc7d9bb 481 {
Kojto 119:aae6fcc7d9bb 482 return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
Kojto 119:aae6fcc7d9bb 483 ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
Kojto 119:aae6fcc7d9bb 484 }
Kojto 119:aae6fcc7d9bb 485
Kojto 119:aae6fcc7d9bb 486 /**
Kojto 119:aae6fcc7d9bb 487 * @brief Clips Q31 to Q7 values.
Kojto 119:aae6fcc7d9bb 488 */
Kojto 119:aae6fcc7d9bb 489 static __INLINE q7_t clip_q31_to_q7(
Kojto 119:aae6fcc7d9bb 490 q31_t x)
Kojto 119:aae6fcc7d9bb 491 {
Kojto 119:aae6fcc7d9bb 492 return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
Kojto 119:aae6fcc7d9bb 493 ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
Kojto 119:aae6fcc7d9bb 494 }
Kojto 119:aae6fcc7d9bb 495
Kojto 119:aae6fcc7d9bb 496 /**
Kojto 119:aae6fcc7d9bb 497 * @brief Clips Q31 to Q15 values.
Kojto 119:aae6fcc7d9bb 498 */
Kojto 119:aae6fcc7d9bb 499 static __INLINE q15_t clip_q31_to_q15(
Kojto 119:aae6fcc7d9bb 500 q31_t x)
Kojto 119:aae6fcc7d9bb 501 {
Kojto 119:aae6fcc7d9bb 502 return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
Kojto 119:aae6fcc7d9bb 503 ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
Kojto 119:aae6fcc7d9bb 504 }
Kojto 119:aae6fcc7d9bb 505
Kojto 119:aae6fcc7d9bb 506 /**
Kojto 119:aae6fcc7d9bb 507 * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
Kojto 119:aae6fcc7d9bb 508 */
Kojto 119:aae6fcc7d9bb 509
Kojto 119:aae6fcc7d9bb 510 static __INLINE q63_t mult32x64(
Kojto 119:aae6fcc7d9bb 511 q63_t x,
Kojto 119:aae6fcc7d9bb 512 q31_t y)
Kojto 119:aae6fcc7d9bb 513 {
Kojto 119:aae6fcc7d9bb 514 return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
Kojto 119:aae6fcc7d9bb 515 (((q63_t) (x >> 32) * y)));
Kojto 119:aae6fcc7d9bb 516 }
Kojto 119:aae6fcc7d9bb 517
Kojto 119:aae6fcc7d9bb 518
Kojto 119:aae6fcc7d9bb 519 //#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
Kojto 119:aae6fcc7d9bb 520 //#define __CLZ __clz
Kojto 119:aae6fcc7d9bb 521 //#endif
Kojto 119:aae6fcc7d9bb 522
Kojto 119:aae6fcc7d9bb 523 //note: function can be removed when all toolchain support __CLZ for Cortex-M0
Kojto 119:aae6fcc7d9bb 524 #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
Kojto 119:aae6fcc7d9bb 525
Kojto 119:aae6fcc7d9bb 526 static __INLINE uint32_t __CLZ(
Kojto 119:aae6fcc7d9bb 527 q31_t data);
Kojto 119:aae6fcc7d9bb 528
Kojto 119:aae6fcc7d9bb 529
Kojto 119:aae6fcc7d9bb 530 static __INLINE uint32_t __CLZ(
Kojto 119:aae6fcc7d9bb 531 q31_t data)
Kojto 119:aae6fcc7d9bb 532 {
Kojto 119:aae6fcc7d9bb 533 uint32_t count = 0;
Kojto 119:aae6fcc7d9bb 534 uint32_t mask = 0x80000000;
Kojto 119:aae6fcc7d9bb 535
Kojto 119:aae6fcc7d9bb 536 while((data & mask) == 0)
Kojto 119:aae6fcc7d9bb 537 {
Kojto 119:aae6fcc7d9bb 538 count += 1u;
Kojto 119:aae6fcc7d9bb 539 mask = mask >> 1u;
Kojto 119:aae6fcc7d9bb 540 }
Kojto 119:aae6fcc7d9bb 541
Kojto 119:aae6fcc7d9bb 542 return (count);
Kojto 119:aae6fcc7d9bb 543
Kojto 119:aae6fcc7d9bb 544 }
Kojto 119:aae6fcc7d9bb 545
Kojto 119:aae6fcc7d9bb 546 #endif
Kojto 119:aae6fcc7d9bb 547
Kojto 119:aae6fcc7d9bb 548 /**
Kojto 119:aae6fcc7d9bb 549 * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
Kojto 119:aae6fcc7d9bb 550 */
Kojto 119:aae6fcc7d9bb 551
Kojto 119:aae6fcc7d9bb 552 static __INLINE uint32_t arm_recip_q31(
Kojto 119:aae6fcc7d9bb 553 q31_t in,
Kojto 119:aae6fcc7d9bb 554 q31_t * dst,
Kojto 119:aae6fcc7d9bb 555 q31_t * pRecipTable)
Kojto 119:aae6fcc7d9bb 556 {
Kojto 119:aae6fcc7d9bb 557
Kojto 119:aae6fcc7d9bb 558 uint32_t out, tempVal;
Kojto 119:aae6fcc7d9bb 559 uint32_t index, i;
Kojto 119:aae6fcc7d9bb 560 uint32_t signBits;
Kojto 119:aae6fcc7d9bb 561
Kojto 119:aae6fcc7d9bb 562 if(in > 0)
Kojto 119:aae6fcc7d9bb 563 {
Kojto 119:aae6fcc7d9bb 564 signBits = __CLZ(in) - 1;
Kojto 119:aae6fcc7d9bb 565 }
Kojto 119:aae6fcc7d9bb 566 else
Kojto 119:aae6fcc7d9bb 567 {
Kojto 119:aae6fcc7d9bb 568 signBits = __CLZ(-in) - 1;
Kojto 119:aae6fcc7d9bb 569 }
Kojto 119:aae6fcc7d9bb 570
Kojto 119:aae6fcc7d9bb 571 /* Convert input sample to 1.31 format */
Kojto 119:aae6fcc7d9bb 572 in = in << signBits;
Kojto 119:aae6fcc7d9bb 573
Kojto 119:aae6fcc7d9bb 574 /* calculation of index for initial approximated Val */
Kojto 119:aae6fcc7d9bb 575 index = (uint32_t) (in >> 24u);
Kojto 119:aae6fcc7d9bb 576 index = (index & INDEX_MASK);
Kojto 119:aae6fcc7d9bb 577
Kojto 119:aae6fcc7d9bb 578 /* 1.31 with exp 1 */
Kojto 119:aae6fcc7d9bb 579 out = pRecipTable[index];
Kojto 119:aae6fcc7d9bb 580
Kojto 119:aae6fcc7d9bb 581 /* calculation of reciprocal value */
Kojto 119:aae6fcc7d9bb 582 /* running approximation for two iterations */
Kojto 119:aae6fcc7d9bb 583 for (i = 0u; i < 2u; i++)
Kojto 119:aae6fcc7d9bb 584 {
Kojto 119:aae6fcc7d9bb 585 tempVal = (q31_t) (((q63_t) in * out) >> 31u);
Kojto 119:aae6fcc7d9bb 586 tempVal = 0x7FFFFFFF - tempVal;
Kojto 119:aae6fcc7d9bb 587 /* 1.31 with exp 1 */
Kojto 119:aae6fcc7d9bb 588 //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
Kojto 119:aae6fcc7d9bb 589 out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
Kojto 119:aae6fcc7d9bb 590 }
Kojto 119:aae6fcc7d9bb 591
Kojto 119:aae6fcc7d9bb 592 /* write output */
Kojto 119:aae6fcc7d9bb 593 *dst = out;
Kojto 119:aae6fcc7d9bb 594
Kojto 119:aae6fcc7d9bb 595 /* return num of signbits of out = 1/in value */
Kojto 119:aae6fcc7d9bb 596 return (signBits + 1u);
Kojto 119:aae6fcc7d9bb 597
Kojto 119:aae6fcc7d9bb 598 }
Kojto 119:aae6fcc7d9bb 599
Kojto 119:aae6fcc7d9bb 600 /**
Kojto 119:aae6fcc7d9bb 601 * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
Kojto 119:aae6fcc7d9bb 602 */
Kojto 119:aae6fcc7d9bb 603 static __INLINE uint32_t arm_recip_q15(
Kojto 119:aae6fcc7d9bb 604 q15_t in,
Kojto 119:aae6fcc7d9bb 605 q15_t * dst,
Kojto 119:aae6fcc7d9bb 606 q15_t * pRecipTable)
Kojto 119:aae6fcc7d9bb 607 {
Kojto 119:aae6fcc7d9bb 608
Kojto 119:aae6fcc7d9bb 609 uint32_t out = 0, tempVal = 0;
Kojto 119:aae6fcc7d9bb 610 uint32_t index = 0, i = 0;
Kojto 119:aae6fcc7d9bb 611 uint32_t signBits = 0;
Kojto 119:aae6fcc7d9bb 612
Kojto 119:aae6fcc7d9bb 613 if(in > 0)
Kojto 119:aae6fcc7d9bb 614 {
Kojto 119:aae6fcc7d9bb 615 signBits = __CLZ(in) - 17;
Kojto 119:aae6fcc7d9bb 616 }
Kojto 119:aae6fcc7d9bb 617 else
Kojto 119:aae6fcc7d9bb 618 {
Kojto 119:aae6fcc7d9bb 619 signBits = __CLZ(-in) - 17;
Kojto 119:aae6fcc7d9bb 620 }
Kojto 119:aae6fcc7d9bb 621
Kojto 119:aae6fcc7d9bb 622 /* Convert input sample to 1.15 format */
Kojto 119:aae6fcc7d9bb 623 in = in << signBits;
Kojto 119:aae6fcc7d9bb 624
Kojto 119:aae6fcc7d9bb 625 /* calculation of index for initial approximated Val */
Kojto 119:aae6fcc7d9bb 626 index = in >> 8;
Kojto 119:aae6fcc7d9bb 627 index = (index & INDEX_MASK);
Kojto 119:aae6fcc7d9bb 628
Kojto 119:aae6fcc7d9bb 629 /* 1.15 with exp 1 */
Kojto 119:aae6fcc7d9bb 630 out = pRecipTable[index];
Kojto 119:aae6fcc7d9bb 631
Kojto 119:aae6fcc7d9bb 632 /* calculation of reciprocal value */
Kojto 119:aae6fcc7d9bb 633 /* running approximation for two iterations */
Kojto 119:aae6fcc7d9bb 634 for (i = 0; i < 2; i++)
Kojto 119:aae6fcc7d9bb 635 {
Kojto 119:aae6fcc7d9bb 636 tempVal = (q15_t) (((q31_t) in * out) >> 15);
Kojto 119:aae6fcc7d9bb 637 tempVal = 0x7FFF - tempVal;
Kojto 119:aae6fcc7d9bb 638 /* 1.15 with exp 1 */
Kojto 119:aae6fcc7d9bb 639 out = (q15_t) (((q31_t) out * tempVal) >> 14);
Kojto 119:aae6fcc7d9bb 640 }
Kojto 119:aae6fcc7d9bb 641
Kojto 119:aae6fcc7d9bb 642 /* write output */
Kojto 119:aae6fcc7d9bb 643 *dst = out;
Kojto 119:aae6fcc7d9bb 644
Kojto 119:aae6fcc7d9bb 645 /* return num of signbits of out = 1/in value */
Kojto 119:aae6fcc7d9bb 646 return (signBits + 1);
Kojto 119:aae6fcc7d9bb 647
Kojto 119:aae6fcc7d9bb 648 }
Kojto 119:aae6fcc7d9bb 649
Kojto 119:aae6fcc7d9bb 650
Kojto 119:aae6fcc7d9bb 651 /*
Kojto 119:aae6fcc7d9bb 652 * @brief C custom defined intrinisic function for only M0 processors
Kojto 119:aae6fcc7d9bb 653 */
Kojto 119:aae6fcc7d9bb 654 #if defined(ARM_MATH_CM0_FAMILY)
Kojto 119:aae6fcc7d9bb 655
Kojto 119:aae6fcc7d9bb 656 static __INLINE q31_t __SSAT(
Kojto 119:aae6fcc7d9bb 657 q31_t x,
Kojto 119:aae6fcc7d9bb 658 uint32_t y)
Kojto 119:aae6fcc7d9bb 659 {
Kojto 119:aae6fcc7d9bb 660 int32_t posMax, negMin;
Kojto 119:aae6fcc7d9bb 661 uint32_t i;
Kojto 119:aae6fcc7d9bb 662
Kojto 119:aae6fcc7d9bb 663 posMax = 1;
Kojto 119:aae6fcc7d9bb 664 for (i = 0; i < (y - 1); i++)
Kojto 119:aae6fcc7d9bb 665 {
Kojto 119:aae6fcc7d9bb 666 posMax = posMax * 2;
Kojto 119:aae6fcc7d9bb 667 }
Kojto 119:aae6fcc7d9bb 668
Kojto 119:aae6fcc7d9bb 669 if(x > 0)
Kojto 119:aae6fcc7d9bb 670 {
Kojto 119:aae6fcc7d9bb 671 posMax = (posMax - 1);
Kojto 119:aae6fcc7d9bb 672
Kojto 119:aae6fcc7d9bb 673 if(x > posMax)
Kojto 119:aae6fcc7d9bb 674 {
Kojto 119:aae6fcc7d9bb 675 x = posMax;
Kojto 119:aae6fcc7d9bb 676 }
Kojto 119:aae6fcc7d9bb 677 }
Kojto 119:aae6fcc7d9bb 678 else
Kojto 119:aae6fcc7d9bb 679 {
Kojto 119:aae6fcc7d9bb 680 negMin = -posMax;
Kojto 119:aae6fcc7d9bb 681
Kojto 119:aae6fcc7d9bb 682 if(x < negMin)
Kojto 119:aae6fcc7d9bb 683 {
Kojto 119:aae6fcc7d9bb 684 x = negMin;
Kojto 119:aae6fcc7d9bb 685 }
Kojto 119:aae6fcc7d9bb 686 }
Kojto 119:aae6fcc7d9bb 687 return (x);
Kojto 119:aae6fcc7d9bb 688
Kojto 119:aae6fcc7d9bb 689
Kojto 119:aae6fcc7d9bb 690 }
Kojto 119:aae6fcc7d9bb 691
Kojto 119:aae6fcc7d9bb 692 #endif /* end of ARM_MATH_CM0_FAMILY */
Kojto 119:aae6fcc7d9bb 693
Kojto 119:aae6fcc7d9bb 694
Kojto 119:aae6fcc7d9bb 695
Kojto 119:aae6fcc7d9bb 696 /*
Kojto 119:aae6fcc7d9bb 697 * @brief C custom defined intrinsic function for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 698 */
Kojto 119:aae6fcc7d9bb 699 #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
Kojto 119:aae6fcc7d9bb 700
Kojto 119:aae6fcc7d9bb 701 /*
Kojto 119:aae6fcc7d9bb 702 * @brief C custom defined QADD8 for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 703 */
Kojto 119:aae6fcc7d9bb 704 static __INLINE q31_t __QADD8(
Kojto 119:aae6fcc7d9bb 705 q31_t x,
Kojto 119:aae6fcc7d9bb 706 q31_t y)
Kojto 119:aae6fcc7d9bb 707 {
Kojto 119:aae6fcc7d9bb 708
Kojto 119:aae6fcc7d9bb 709 q31_t sum;
Kojto 119:aae6fcc7d9bb 710 q7_t r, s, t, u;
Kojto 119:aae6fcc7d9bb 711
Kojto 119:aae6fcc7d9bb 712 r = (q7_t) x;
Kojto 119:aae6fcc7d9bb 713 s = (q7_t) y;
Kojto 119:aae6fcc7d9bb 714
Kojto 119:aae6fcc7d9bb 715 r = __SSAT((q31_t) (r + s), 8);
Kojto 119:aae6fcc7d9bb 716 s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
Kojto 119:aae6fcc7d9bb 717 t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
Kojto 119:aae6fcc7d9bb 718 u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
Kojto 119:aae6fcc7d9bb 719
Kojto 119:aae6fcc7d9bb 720 sum =
Kojto 119:aae6fcc7d9bb 721 (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
Kojto 119:aae6fcc7d9bb 722 (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
Kojto 119:aae6fcc7d9bb 723
Kojto 119:aae6fcc7d9bb 724 return sum;
Kojto 119:aae6fcc7d9bb 725
Kojto 119:aae6fcc7d9bb 726 }
Kojto 119:aae6fcc7d9bb 727
Kojto 119:aae6fcc7d9bb 728 /*
Kojto 119:aae6fcc7d9bb 729 * @brief C custom defined QSUB8 for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 730 */
Kojto 119:aae6fcc7d9bb 731 static __INLINE q31_t __QSUB8(
Kojto 119:aae6fcc7d9bb 732 q31_t x,
Kojto 119:aae6fcc7d9bb 733 q31_t y)
Kojto 119:aae6fcc7d9bb 734 {
Kojto 119:aae6fcc7d9bb 735
Kojto 119:aae6fcc7d9bb 736 q31_t sum;
Kojto 119:aae6fcc7d9bb 737 q31_t r, s, t, u;
Kojto 119:aae6fcc7d9bb 738
Kojto 119:aae6fcc7d9bb 739 r = (q7_t) x;
Kojto 119:aae6fcc7d9bb 740 s = (q7_t) y;
Kojto 119:aae6fcc7d9bb 741
Kojto 119:aae6fcc7d9bb 742 r = __SSAT((r - s), 8);
Kojto 119:aae6fcc7d9bb 743 s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
Kojto 119:aae6fcc7d9bb 744 t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
Kojto 119:aae6fcc7d9bb 745 u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
Kojto 119:aae6fcc7d9bb 746
Kojto 119:aae6fcc7d9bb 747 sum =
Kojto 119:aae6fcc7d9bb 748 (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
Kojto 119:aae6fcc7d9bb 749 0x000000FF);
Kojto 119:aae6fcc7d9bb 750
Kojto 119:aae6fcc7d9bb 751 return sum;
Kojto 119:aae6fcc7d9bb 752 }
Kojto 119:aae6fcc7d9bb 753
Kojto 119:aae6fcc7d9bb 754 /*
Kojto 119:aae6fcc7d9bb 755 * @brief C custom defined QADD16 for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 756 */
Kojto 119:aae6fcc7d9bb 757
Kojto 119:aae6fcc7d9bb 758 /*
Kojto 119:aae6fcc7d9bb 759 * @brief C custom defined QADD16 for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 760 */
Kojto 119:aae6fcc7d9bb 761 static __INLINE q31_t __QADD16(
Kojto 119:aae6fcc7d9bb 762 q31_t x,
Kojto 119:aae6fcc7d9bb 763 q31_t y)
Kojto 119:aae6fcc7d9bb 764 {
Kojto 119:aae6fcc7d9bb 765
Kojto 119:aae6fcc7d9bb 766 q31_t sum;
Kojto 119:aae6fcc7d9bb 767 q31_t r, s;
Kojto 119:aae6fcc7d9bb 768
Kojto 119:aae6fcc7d9bb 769 r = (q15_t) x;
Kojto 119:aae6fcc7d9bb 770 s = (q15_t) y;
Kojto 119:aae6fcc7d9bb 771
Kojto 119:aae6fcc7d9bb 772 r = __SSAT(r + s, 16);
Kojto 119:aae6fcc7d9bb 773 s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
Kojto 119:aae6fcc7d9bb 774
Kojto 119:aae6fcc7d9bb 775 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 119:aae6fcc7d9bb 776
Kojto 119:aae6fcc7d9bb 777 return sum;
Kojto 119:aae6fcc7d9bb 778
Kojto 119:aae6fcc7d9bb 779 }
Kojto 119:aae6fcc7d9bb 780
Kojto 119:aae6fcc7d9bb 781 /*
Kojto 119:aae6fcc7d9bb 782 * @brief C custom defined SHADD16 for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 783 */
Kojto 119:aae6fcc7d9bb 784 static __INLINE q31_t __SHADD16(
Kojto 119:aae6fcc7d9bb 785 q31_t x,
Kojto 119:aae6fcc7d9bb 786 q31_t y)
Kojto 119:aae6fcc7d9bb 787 {
Kojto 119:aae6fcc7d9bb 788
Kojto 119:aae6fcc7d9bb 789 q31_t sum;
Kojto 119:aae6fcc7d9bb 790 q31_t r, s;
Kojto 119:aae6fcc7d9bb 791
Kojto 119:aae6fcc7d9bb 792 r = (q15_t) x;
Kojto 119:aae6fcc7d9bb 793 s = (q15_t) y;
Kojto 119:aae6fcc7d9bb 794
Kojto 119:aae6fcc7d9bb 795 r = ((r >> 1) + (s >> 1));
Kojto 119:aae6fcc7d9bb 796 s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
Kojto 119:aae6fcc7d9bb 797
Kojto 119:aae6fcc7d9bb 798 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 119:aae6fcc7d9bb 799
Kojto 119:aae6fcc7d9bb 800 return sum;
Kojto 119:aae6fcc7d9bb 801
Kojto 119:aae6fcc7d9bb 802 }
Kojto 119:aae6fcc7d9bb 803
Kojto 119:aae6fcc7d9bb 804 /*
Kojto 119:aae6fcc7d9bb 805 * @brief C custom defined QSUB16 for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 806 */
Kojto 119:aae6fcc7d9bb 807 static __INLINE q31_t __QSUB16(
Kojto 119:aae6fcc7d9bb 808 q31_t x,
Kojto 119:aae6fcc7d9bb 809 q31_t y)
Kojto 119:aae6fcc7d9bb 810 {
Kojto 119:aae6fcc7d9bb 811
Kojto 119:aae6fcc7d9bb 812 q31_t sum;
Kojto 119:aae6fcc7d9bb 813 q31_t r, s;
Kojto 119:aae6fcc7d9bb 814
Kojto 119:aae6fcc7d9bb 815 r = (q15_t) x;
Kojto 119:aae6fcc7d9bb 816 s = (q15_t) y;
Kojto 119:aae6fcc7d9bb 817
Kojto 119:aae6fcc7d9bb 818 r = __SSAT(r - s, 16);
Kojto 119:aae6fcc7d9bb 819 s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
Kojto 119:aae6fcc7d9bb 820
Kojto 119:aae6fcc7d9bb 821 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 119:aae6fcc7d9bb 822
Kojto 119:aae6fcc7d9bb 823 return sum;
Kojto 119:aae6fcc7d9bb 824 }
Kojto 119:aae6fcc7d9bb 825
Kojto 119:aae6fcc7d9bb 826 /*
Kojto 119:aae6fcc7d9bb 827 * @brief C custom defined SHSUB16 for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 828 */
Kojto 119:aae6fcc7d9bb 829 static __INLINE q31_t __SHSUB16(
Kojto 119:aae6fcc7d9bb 830 q31_t x,
Kojto 119:aae6fcc7d9bb 831 q31_t y)
Kojto 119:aae6fcc7d9bb 832 {
Kojto 119:aae6fcc7d9bb 833
Kojto 119:aae6fcc7d9bb 834 q31_t diff;
Kojto 119:aae6fcc7d9bb 835 q31_t r, s;
Kojto 119:aae6fcc7d9bb 836
Kojto 119:aae6fcc7d9bb 837 r = (q15_t) x;
Kojto 119:aae6fcc7d9bb 838 s = (q15_t) y;
Kojto 119:aae6fcc7d9bb 839
Kojto 119:aae6fcc7d9bb 840 r = ((r >> 1) - (s >> 1));
Kojto 119:aae6fcc7d9bb 841 s = (((x >> 17) - (y >> 17)) << 16);
Kojto 119:aae6fcc7d9bb 842
Kojto 119:aae6fcc7d9bb 843 diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 119:aae6fcc7d9bb 844
Kojto 119:aae6fcc7d9bb 845 return diff;
Kojto 119:aae6fcc7d9bb 846 }
Kojto 119:aae6fcc7d9bb 847
Kojto 119:aae6fcc7d9bb 848 /*
Kojto 119:aae6fcc7d9bb 849 * @brief C custom defined QASX for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 850 */
Kojto 119:aae6fcc7d9bb 851 static __INLINE q31_t __QASX(
Kojto 119:aae6fcc7d9bb 852 q31_t x,
Kojto 119:aae6fcc7d9bb 853 q31_t y)
Kojto 119:aae6fcc7d9bb 854 {
Kojto 119:aae6fcc7d9bb 855
Kojto 119:aae6fcc7d9bb 856 q31_t sum = 0;
Kojto 119:aae6fcc7d9bb 857
Kojto 119:aae6fcc7d9bb 858 sum =
Kojto 119:aae6fcc7d9bb 859 ((sum +
Kojto 119:aae6fcc7d9bb 860 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
Kojto 119:aae6fcc7d9bb 861 clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
Kojto 119:aae6fcc7d9bb 862
Kojto 119:aae6fcc7d9bb 863 return sum;
Kojto 119:aae6fcc7d9bb 864 }
Kojto 119:aae6fcc7d9bb 865
Kojto 119:aae6fcc7d9bb 866 /*
Kojto 119:aae6fcc7d9bb 867 * @brief C custom defined SHASX for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 868 */
Kojto 119:aae6fcc7d9bb 869 static __INLINE q31_t __SHASX(
Kojto 119:aae6fcc7d9bb 870 q31_t x,
Kojto 119:aae6fcc7d9bb 871 q31_t y)
Kojto 119:aae6fcc7d9bb 872 {
Kojto 119:aae6fcc7d9bb 873
Kojto 119:aae6fcc7d9bb 874 q31_t sum;
Kojto 119:aae6fcc7d9bb 875 q31_t r, s;
Kojto 119:aae6fcc7d9bb 876
Kojto 119:aae6fcc7d9bb 877 r = (q15_t) x;
Kojto 119:aae6fcc7d9bb 878 s = (q15_t) y;
Kojto 119:aae6fcc7d9bb 879
Kojto 119:aae6fcc7d9bb 880 r = ((r >> 1) - (y >> 17));
Kojto 119:aae6fcc7d9bb 881 s = (((x >> 17) + (s >> 1)) << 16);
Kojto 119:aae6fcc7d9bb 882
Kojto 119:aae6fcc7d9bb 883 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 119:aae6fcc7d9bb 884
Kojto 119:aae6fcc7d9bb 885 return sum;
Kojto 119:aae6fcc7d9bb 886 }
Kojto 119:aae6fcc7d9bb 887
Kojto 119:aae6fcc7d9bb 888
Kojto 119:aae6fcc7d9bb 889 /*
Kojto 119:aae6fcc7d9bb 890 * @brief C custom defined QSAX for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 891 */
Kojto 119:aae6fcc7d9bb 892 static __INLINE q31_t __QSAX(
Kojto 119:aae6fcc7d9bb 893 q31_t x,
Kojto 119:aae6fcc7d9bb 894 q31_t y)
Kojto 119:aae6fcc7d9bb 895 {
Kojto 119:aae6fcc7d9bb 896
Kojto 119:aae6fcc7d9bb 897 q31_t sum = 0;
Kojto 119:aae6fcc7d9bb 898
Kojto 119:aae6fcc7d9bb 899 sum =
Kojto 119:aae6fcc7d9bb 900 ((sum +
Kojto 119:aae6fcc7d9bb 901 clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
Kojto 119:aae6fcc7d9bb 902 clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
Kojto 119:aae6fcc7d9bb 903
Kojto 119:aae6fcc7d9bb 904 return sum;
Kojto 119:aae6fcc7d9bb 905 }
Kojto 119:aae6fcc7d9bb 906
Kojto 119:aae6fcc7d9bb 907 /*
Kojto 119:aae6fcc7d9bb 908 * @brief C custom defined SHSAX for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 909 */
Kojto 119:aae6fcc7d9bb 910 static __INLINE q31_t __SHSAX(
Kojto 119:aae6fcc7d9bb 911 q31_t x,
Kojto 119:aae6fcc7d9bb 912 q31_t y)
Kojto 119:aae6fcc7d9bb 913 {
Kojto 119:aae6fcc7d9bb 914
Kojto 119:aae6fcc7d9bb 915 q31_t sum;
Kojto 119:aae6fcc7d9bb 916 q31_t r, s;
Kojto 119:aae6fcc7d9bb 917
Kojto 119:aae6fcc7d9bb 918 r = (q15_t) x;
Kojto 119:aae6fcc7d9bb 919 s = (q15_t) y;
Kojto 119:aae6fcc7d9bb 920
Kojto 119:aae6fcc7d9bb 921 r = ((r >> 1) + (y >> 17));
Kojto 119:aae6fcc7d9bb 922 s = (((x >> 17) - (s >> 1)) << 16);
Kojto 119:aae6fcc7d9bb 923
Kojto 119:aae6fcc7d9bb 924 sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
Kojto 119:aae6fcc7d9bb 925
Kojto 119:aae6fcc7d9bb 926 return sum;
Kojto 119:aae6fcc7d9bb 927 }
Kojto 119:aae6fcc7d9bb 928
Kojto 119:aae6fcc7d9bb 929 /*
Kojto 119:aae6fcc7d9bb 930 * @brief C custom defined SMUSDX for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 931 */
Kojto 119:aae6fcc7d9bb 932 static __INLINE q31_t __SMUSDX(
Kojto 119:aae6fcc7d9bb 933 q31_t x,
Kojto 119:aae6fcc7d9bb 934 q31_t y)
Kojto 119:aae6fcc7d9bb 935 {
Kojto 119:aae6fcc7d9bb 936
Kojto 119:aae6fcc7d9bb 937 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
Kojto 119:aae6fcc7d9bb 938 ((q15_t) (x >> 16) * (q15_t) y)));
Kojto 119:aae6fcc7d9bb 939 }
Kojto 119:aae6fcc7d9bb 940
Kojto 119:aae6fcc7d9bb 941 /*
Kojto 119:aae6fcc7d9bb 942 * @brief C custom defined SMUADX for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 943 */
Kojto 119:aae6fcc7d9bb 944 static __INLINE q31_t __SMUADX(
Kojto 119:aae6fcc7d9bb 945 q31_t x,
Kojto 119:aae6fcc7d9bb 946 q31_t y)
Kojto 119:aae6fcc7d9bb 947 {
Kojto 119:aae6fcc7d9bb 948
Kojto 119:aae6fcc7d9bb 949 return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
Kojto 119:aae6fcc7d9bb 950 ((q15_t) (x >> 16) * (q15_t) y)));
Kojto 119:aae6fcc7d9bb 951 }
Kojto 119:aae6fcc7d9bb 952
Kojto 119:aae6fcc7d9bb 953 /*
Kojto 119:aae6fcc7d9bb 954 * @brief C custom defined QADD for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 955 */
Kojto 119:aae6fcc7d9bb 956 static __INLINE q31_t __QADD(
Kojto 119:aae6fcc7d9bb 957 q31_t x,
Kojto 119:aae6fcc7d9bb 958 q31_t y)
Kojto 119:aae6fcc7d9bb 959 {
Kojto 119:aae6fcc7d9bb 960 return clip_q63_to_q31((q63_t) x + y);
Kojto 119:aae6fcc7d9bb 961 }
Kojto 119:aae6fcc7d9bb 962
Kojto 119:aae6fcc7d9bb 963 /*
Kojto 119:aae6fcc7d9bb 964 * @brief C custom defined QSUB for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 965 */
Kojto 119:aae6fcc7d9bb 966 static __INLINE q31_t __QSUB(
Kojto 119:aae6fcc7d9bb 967 q31_t x,
Kojto 119:aae6fcc7d9bb 968 q31_t y)
Kojto 119:aae6fcc7d9bb 969 {
Kojto 119:aae6fcc7d9bb 970 return clip_q63_to_q31((q63_t) x - y);
Kojto 119:aae6fcc7d9bb 971 }
Kojto 119:aae6fcc7d9bb 972
Kojto 119:aae6fcc7d9bb 973 /*
Kojto 119:aae6fcc7d9bb 974 * @brief C custom defined SMLAD for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 975 */
Kojto 119:aae6fcc7d9bb 976 static __INLINE q31_t __SMLAD(
Kojto 119:aae6fcc7d9bb 977 q31_t x,
Kojto 119:aae6fcc7d9bb 978 q31_t y,
Kojto 119:aae6fcc7d9bb 979 q31_t sum)
Kojto 119:aae6fcc7d9bb 980 {
Kojto 119:aae6fcc7d9bb 981
Kojto 119:aae6fcc7d9bb 982 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
Kojto 119:aae6fcc7d9bb 983 ((q15_t) x * (q15_t) y));
Kojto 119:aae6fcc7d9bb 984 }
Kojto 119:aae6fcc7d9bb 985
Kojto 119:aae6fcc7d9bb 986 /*
Kojto 119:aae6fcc7d9bb 987 * @brief C custom defined SMLADX for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 988 */
Kojto 119:aae6fcc7d9bb 989 static __INLINE q31_t __SMLADX(
Kojto 119:aae6fcc7d9bb 990 q31_t x,
Kojto 119:aae6fcc7d9bb 991 q31_t y,
Kojto 119:aae6fcc7d9bb 992 q31_t sum)
Kojto 119:aae6fcc7d9bb 993 {
Kojto 119:aae6fcc7d9bb 994
Kojto 119:aae6fcc7d9bb 995 return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
Kojto 119:aae6fcc7d9bb 996 ((q15_t) x * (q15_t) (y >> 16)));
Kojto 119:aae6fcc7d9bb 997 }
Kojto 119:aae6fcc7d9bb 998
Kojto 119:aae6fcc7d9bb 999 /*
Kojto 119:aae6fcc7d9bb 1000 * @brief C custom defined SMLSDX for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 1001 */
Kojto 119:aae6fcc7d9bb 1002 static __INLINE q31_t __SMLSDX(
Kojto 119:aae6fcc7d9bb 1003 q31_t x,
Kojto 119:aae6fcc7d9bb 1004 q31_t y,
Kojto 119:aae6fcc7d9bb 1005 q31_t sum)
Kojto 119:aae6fcc7d9bb 1006 {
Kojto 119:aae6fcc7d9bb 1007
Kojto 119:aae6fcc7d9bb 1008 return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
Kojto 119:aae6fcc7d9bb 1009 ((q15_t) x * (q15_t) (y >> 16)));
Kojto 119:aae6fcc7d9bb 1010 }
Kojto 119:aae6fcc7d9bb 1011
Kojto 119:aae6fcc7d9bb 1012 /*
Kojto 119:aae6fcc7d9bb 1013 * @brief C custom defined SMLALD for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 1014 */
Kojto 119:aae6fcc7d9bb 1015 static __INLINE q63_t __SMLALD(
Kojto 119:aae6fcc7d9bb 1016 q31_t x,
Kojto 119:aae6fcc7d9bb 1017 q31_t y,
Kojto 119:aae6fcc7d9bb 1018 q63_t sum)
Kojto 119:aae6fcc7d9bb 1019 {
Kojto 119:aae6fcc7d9bb 1020
Kojto 119:aae6fcc7d9bb 1021 return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
Kojto 119:aae6fcc7d9bb 1022 ((q15_t) x * (q15_t) y));
Kojto 119:aae6fcc7d9bb 1023 }
Kojto 119:aae6fcc7d9bb 1024
Kojto 119:aae6fcc7d9bb 1025 /*
Kojto 119:aae6fcc7d9bb 1026 * @brief C custom defined SMLALDX for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 1027 */
Kojto 119:aae6fcc7d9bb 1028 static __INLINE q63_t __SMLALDX(
Kojto 119:aae6fcc7d9bb 1029 q31_t x,
Kojto 119:aae6fcc7d9bb 1030 q31_t y,
Kojto 119:aae6fcc7d9bb 1031 q63_t sum)
Kojto 119:aae6fcc7d9bb 1032 {
Kojto 119:aae6fcc7d9bb 1033
Kojto 119:aae6fcc7d9bb 1034 return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
Kojto 119:aae6fcc7d9bb 1035 ((q15_t) x * (q15_t) (y >> 16));
Kojto 119:aae6fcc7d9bb 1036 }
Kojto 119:aae6fcc7d9bb 1037
Kojto 119:aae6fcc7d9bb 1038 /*
Kojto 119:aae6fcc7d9bb 1039 * @brief C custom defined SMUAD for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 1040 */
Kojto 119:aae6fcc7d9bb 1041 static __INLINE q31_t __SMUAD(
Kojto 119:aae6fcc7d9bb 1042 q31_t x,
Kojto 119:aae6fcc7d9bb 1043 q31_t y)
Kojto 119:aae6fcc7d9bb 1044 {
Kojto 119:aae6fcc7d9bb 1045
Kojto 119:aae6fcc7d9bb 1046 return (((x >> 16) * (y >> 16)) +
Kojto 119:aae6fcc7d9bb 1047 (((x << 16) >> 16) * ((y << 16) >> 16)));
Kojto 119:aae6fcc7d9bb 1048 }
Kojto 119:aae6fcc7d9bb 1049
Kojto 119:aae6fcc7d9bb 1050 /*
Kojto 119:aae6fcc7d9bb 1051 * @brief C custom defined SMUSD for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 1052 */
Kojto 119:aae6fcc7d9bb 1053 static __INLINE q31_t __SMUSD(
Kojto 119:aae6fcc7d9bb 1054 q31_t x,
Kojto 119:aae6fcc7d9bb 1055 q31_t y)
Kojto 119:aae6fcc7d9bb 1056 {
Kojto 119:aae6fcc7d9bb 1057
Kojto 119:aae6fcc7d9bb 1058 return (-((x >> 16) * (y >> 16)) +
Kojto 119:aae6fcc7d9bb 1059 (((x << 16) >> 16) * ((y << 16) >> 16)));
Kojto 119:aae6fcc7d9bb 1060 }
Kojto 119:aae6fcc7d9bb 1061
Kojto 119:aae6fcc7d9bb 1062
Kojto 119:aae6fcc7d9bb 1063 /*
Kojto 119:aae6fcc7d9bb 1064 * @brief C custom defined SXTB16 for M3 and M0 processors
Kojto 119:aae6fcc7d9bb 1065 */
Kojto 119:aae6fcc7d9bb 1066 static __INLINE q31_t __SXTB16(
Kojto 119:aae6fcc7d9bb 1067 q31_t x)
Kojto 119:aae6fcc7d9bb 1068 {
Kojto 119:aae6fcc7d9bb 1069
Kojto 119:aae6fcc7d9bb 1070 return ((((x << 24) >> 24) & 0x0000FFFF) |
Kojto 119:aae6fcc7d9bb 1071 (((x << 8) >> 8) & 0xFFFF0000));
Kojto 119:aae6fcc7d9bb 1072 }
Kojto 119:aae6fcc7d9bb 1073
Kojto 119:aae6fcc7d9bb 1074
Kojto 119:aae6fcc7d9bb 1075 #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
Kojto 119:aae6fcc7d9bb 1076
Kojto 119:aae6fcc7d9bb 1077
Kojto 119:aae6fcc7d9bb 1078 /**
Kojto 119:aae6fcc7d9bb 1079 * @brief Instance structure for the Q7 FIR filter.
Kojto 119:aae6fcc7d9bb 1080 */
Kojto 119:aae6fcc7d9bb 1081 typedef struct
Kojto 119:aae6fcc7d9bb 1082 {
Kojto 119:aae6fcc7d9bb 1083 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 1084 q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 1085 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 119:aae6fcc7d9bb 1086 } arm_fir_instance_q7;
Kojto 119:aae6fcc7d9bb 1087
Kojto 119:aae6fcc7d9bb 1088 /**
Kojto 119:aae6fcc7d9bb 1089 * @brief Instance structure for the Q15 FIR filter.
Kojto 119:aae6fcc7d9bb 1090 */
Kojto 119:aae6fcc7d9bb 1091 typedef struct
Kojto 119:aae6fcc7d9bb 1092 {
Kojto 119:aae6fcc7d9bb 1093 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 1094 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 1095 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 119:aae6fcc7d9bb 1096 } arm_fir_instance_q15;
Kojto 119:aae6fcc7d9bb 1097
Kojto 119:aae6fcc7d9bb 1098 /**
Kojto 119:aae6fcc7d9bb 1099 * @brief Instance structure for the Q31 FIR filter.
Kojto 119:aae6fcc7d9bb 1100 */
Kojto 119:aae6fcc7d9bb 1101 typedef struct
Kojto 119:aae6fcc7d9bb 1102 {
Kojto 119:aae6fcc7d9bb 1103 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 1104 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 1105 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 1106 } arm_fir_instance_q31;
Kojto 119:aae6fcc7d9bb 1107
Kojto 119:aae6fcc7d9bb 1108 /**
Kojto 119:aae6fcc7d9bb 1109 * @brief Instance structure for the floating-point FIR filter.
Kojto 119:aae6fcc7d9bb 1110 */
Kojto 119:aae6fcc7d9bb 1111 typedef struct
Kojto 119:aae6fcc7d9bb 1112 {
Kojto 119:aae6fcc7d9bb 1113 uint16_t numTaps; /**< number of filter coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 1114 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 1115 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 1116 } arm_fir_instance_f32;
Kojto 119:aae6fcc7d9bb 1117
Kojto 119:aae6fcc7d9bb 1118
Kojto 119:aae6fcc7d9bb 1119 /**
Kojto 119:aae6fcc7d9bb 1120 * @brief Processing function for the Q7 FIR filter.
Kojto 119:aae6fcc7d9bb 1121 * @param[in] *S points to an instance of the Q7 FIR filter structure.
Kojto 119:aae6fcc7d9bb 1122 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1123 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1124 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1125 * @return none.
Kojto 119:aae6fcc7d9bb 1126 */
Kojto 119:aae6fcc7d9bb 1127 void arm_fir_q7(
Kojto 119:aae6fcc7d9bb 1128 const arm_fir_instance_q7 * S,
Kojto 119:aae6fcc7d9bb 1129 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 1130 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 1131 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1132
Kojto 119:aae6fcc7d9bb 1133
Kojto 119:aae6fcc7d9bb 1134 /**
Kojto 119:aae6fcc7d9bb 1135 * @brief Initialization function for the Q7 FIR filter.
Kojto 119:aae6fcc7d9bb 1136 * @param[in,out] *S points to an instance of the Q7 FIR structure.
Kojto 119:aae6fcc7d9bb 1137 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 119:aae6fcc7d9bb 1138 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 1139 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 1140 * @param[in] blockSize number of samples that are processed.
Kojto 119:aae6fcc7d9bb 1141 * @return none
Kojto 119:aae6fcc7d9bb 1142 */
Kojto 119:aae6fcc7d9bb 1143 void arm_fir_init_q7(
Kojto 119:aae6fcc7d9bb 1144 arm_fir_instance_q7 * S,
Kojto 119:aae6fcc7d9bb 1145 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 1146 q7_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 1147 q7_t * pState,
Kojto 119:aae6fcc7d9bb 1148 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1149
Kojto 119:aae6fcc7d9bb 1150
Kojto 119:aae6fcc7d9bb 1151 /**
Kojto 119:aae6fcc7d9bb 1152 * @brief Processing function for the Q15 FIR filter.
Kojto 119:aae6fcc7d9bb 1153 * @param[in] *S points to an instance of the Q15 FIR structure.
Kojto 119:aae6fcc7d9bb 1154 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1155 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1156 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1157 * @return none.
Kojto 119:aae6fcc7d9bb 1158 */
Kojto 119:aae6fcc7d9bb 1159 void arm_fir_q15(
Kojto 119:aae6fcc7d9bb 1160 const arm_fir_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 1161 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 1162 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 1163 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1164
Kojto 119:aae6fcc7d9bb 1165 /**
Kojto 119:aae6fcc7d9bb 1166 * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
Kojto 119:aae6fcc7d9bb 1167 * @param[in] *S points to an instance of the Q15 FIR filter structure.
Kojto 119:aae6fcc7d9bb 1168 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1169 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1170 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1171 * @return none.
Kojto 119:aae6fcc7d9bb 1172 */
Kojto 119:aae6fcc7d9bb 1173 void arm_fir_fast_q15(
Kojto 119:aae6fcc7d9bb 1174 const arm_fir_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 1175 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 1176 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 1177 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1178
Kojto 119:aae6fcc7d9bb 1179 /**
Kojto 119:aae6fcc7d9bb 1180 * @brief Initialization function for the Q15 FIR filter.
Kojto 119:aae6fcc7d9bb 1181 * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
Kojto 119:aae6fcc7d9bb 1182 * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
Kojto 119:aae6fcc7d9bb 1183 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 1184 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 1185 * @param[in] blockSize number of samples that are processed at a time.
Kojto 119:aae6fcc7d9bb 1186 * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
Kojto 119:aae6fcc7d9bb 1187 * <code>numTaps</code> is not a supported value.
Kojto 119:aae6fcc7d9bb 1188 */
Kojto 119:aae6fcc7d9bb 1189
Kojto 119:aae6fcc7d9bb 1190 arm_status arm_fir_init_q15(
Kojto 119:aae6fcc7d9bb 1191 arm_fir_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 1192 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 1193 q15_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 1194 q15_t * pState,
Kojto 119:aae6fcc7d9bb 1195 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1196
Kojto 119:aae6fcc7d9bb 1197 /**
Kojto 119:aae6fcc7d9bb 1198 * @brief Processing function for the Q31 FIR filter.
Kojto 119:aae6fcc7d9bb 1199 * @param[in] *S points to an instance of the Q31 FIR filter structure.
Kojto 119:aae6fcc7d9bb 1200 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1201 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1202 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1203 * @return none.
Kojto 119:aae6fcc7d9bb 1204 */
Kojto 119:aae6fcc7d9bb 1205 void arm_fir_q31(
Kojto 119:aae6fcc7d9bb 1206 const arm_fir_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 1207 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 1208 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 1209 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1210
Kojto 119:aae6fcc7d9bb 1211 /**
Kojto 119:aae6fcc7d9bb 1212 * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
Kojto 119:aae6fcc7d9bb 1213 * @param[in] *S points to an instance of the Q31 FIR structure.
Kojto 119:aae6fcc7d9bb 1214 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1215 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1216 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1217 * @return none.
Kojto 119:aae6fcc7d9bb 1218 */
Kojto 119:aae6fcc7d9bb 1219 void arm_fir_fast_q31(
Kojto 119:aae6fcc7d9bb 1220 const arm_fir_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 1221 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 1222 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 1223 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1224
Kojto 119:aae6fcc7d9bb 1225 /**
Kojto 119:aae6fcc7d9bb 1226 * @brief Initialization function for the Q31 FIR filter.
Kojto 119:aae6fcc7d9bb 1227 * @param[in,out] *S points to an instance of the Q31 FIR structure.
Kojto 119:aae6fcc7d9bb 1228 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 119:aae6fcc7d9bb 1229 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 1230 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 1231 * @param[in] blockSize number of samples that are processed at a time.
Kojto 119:aae6fcc7d9bb 1232 * @return none.
Kojto 119:aae6fcc7d9bb 1233 */
Kojto 119:aae6fcc7d9bb 1234 void arm_fir_init_q31(
Kojto 119:aae6fcc7d9bb 1235 arm_fir_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 1236 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 1237 q31_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 1238 q31_t * pState,
Kojto 119:aae6fcc7d9bb 1239 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1240
Kojto 119:aae6fcc7d9bb 1241 /**
Kojto 119:aae6fcc7d9bb 1242 * @brief Processing function for the floating-point FIR filter.
Kojto 119:aae6fcc7d9bb 1243 * @param[in] *S points to an instance of the floating-point FIR structure.
Kojto 119:aae6fcc7d9bb 1244 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1245 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1246 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1247 * @return none.
Kojto 119:aae6fcc7d9bb 1248 */
Kojto 119:aae6fcc7d9bb 1249 void arm_fir_f32(
Kojto 119:aae6fcc7d9bb 1250 const arm_fir_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 1251 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 1252 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 1253 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1254
Kojto 119:aae6fcc7d9bb 1255 /**
Kojto 119:aae6fcc7d9bb 1256 * @brief Initialization function for the floating-point FIR filter.
Kojto 119:aae6fcc7d9bb 1257 * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
Kojto 119:aae6fcc7d9bb 1258 * @param[in] numTaps Number of filter coefficients in the filter.
Kojto 119:aae6fcc7d9bb 1259 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 1260 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 1261 * @param[in] blockSize number of samples that are processed at a time.
Kojto 119:aae6fcc7d9bb 1262 * @return none.
Kojto 119:aae6fcc7d9bb 1263 */
Kojto 119:aae6fcc7d9bb 1264 void arm_fir_init_f32(
Kojto 119:aae6fcc7d9bb 1265 arm_fir_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 1266 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 1267 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 1268 float32_t * pState,
Kojto 119:aae6fcc7d9bb 1269 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1270
Kojto 119:aae6fcc7d9bb 1271
Kojto 119:aae6fcc7d9bb 1272 /**
Kojto 119:aae6fcc7d9bb 1273 * @brief Instance structure for the Q15 Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 1274 */
Kojto 119:aae6fcc7d9bb 1275 typedef struct
Kojto 119:aae6fcc7d9bb 1276 {
Kojto 119:aae6fcc7d9bb 1277 int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 119:aae6fcc7d9bb 1278 q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 119:aae6fcc7d9bb 1279 q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 119:aae6fcc7d9bb 1280 int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
Kojto 119:aae6fcc7d9bb 1281
Kojto 119:aae6fcc7d9bb 1282 } arm_biquad_casd_df1_inst_q15;
Kojto 119:aae6fcc7d9bb 1283
Kojto 119:aae6fcc7d9bb 1284
Kojto 119:aae6fcc7d9bb 1285 /**
Kojto 119:aae6fcc7d9bb 1286 * @brief Instance structure for the Q31 Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 1287 */
Kojto 119:aae6fcc7d9bb 1288 typedef struct
Kojto 119:aae6fcc7d9bb 1289 {
Kojto 119:aae6fcc7d9bb 1290 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 119:aae6fcc7d9bb 1291 q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 119:aae6fcc7d9bb 1292 q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 119:aae6fcc7d9bb 1293 uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
Kojto 119:aae6fcc7d9bb 1294
Kojto 119:aae6fcc7d9bb 1295 } arm_biquad_casd_df1_inst_q31;
Kojto 119:aae6fcc7d9bb 1296
Kojto 119:aae6fcc7d9bb 1297 /**
Kojto 119:aae6fcc7d9bb 1298 * @brief Instance structure for the floating-point Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 1299 */
Kojto 119:aae6fcc7d9bb 1300 typedef struct
Kojto 119:aae6fcc7d9bb 1301 {
Kojto 119:aae6fcc7d9bb 1302 uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 119:aae6fcc7d9bb 1303 float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 119:aae6fcc7d9bb 1304 float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
Kojto 119:aae6fcc7d9bb 1305
Kojto 119:aae6fcc7d9bb 1306
Kojto 119:aae6fcc7d9bb 1307 } arm_biquad_casd_df1_inst_f32;
Kojto 119:aae6fcc7d9bb 1308
Kojto 119:aae6fcc7d9bb 1309
Kojto 119:aae6fcc7d9bb 1310
Kojto 119:aae6fcc7d9bb 1311 /**
Kojto 119:aae6fcc7d9bb 1312 * @brief Processing function for the Q15 Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 1313 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
Kojto 119:aae6fcc7d9bb 1314 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1315 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1316 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1317 * @return none.
Kojto 119:aae6fcc7d9bb 1318 */
Kojto 119:aae6fcc7d9bb 1319
Kojto 119:aae6fcc7d9bb 1320 void arm_biquad_cascade_df1_q15(
Kojto 119:aae6fcc7d9bb 1321 const arm_biquad_casd_df1_inst_q15 * S,
Kojto 119:aae6fcc7d9bb 1322 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 1323 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 1324 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1325
Kojto 119:aae6fcc7d9bb 1326 /**
Kojto 119:aae6fcc7d9bb 1327 * @brief Initialization function for the Q15 Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 1328 * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
Kojto 119:aae6fcc7d9bb 1329 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 119:aae6fcc7d9bb 1330 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 1331 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 1332 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
Kojto 119:aae6fcc7d9bb 1333 * @return none
Kojto 119:aae6fcc7d9bb 1334 */
Kojto 119:aae6fcc7d9bb 1335
Kojto 119:aae6fcc7d9bb 1336 void arm_biquad_cascade_df1_init_q15(
Kojto 119:aae6fcc7d9bb 1337 arm_biquad_casd_df1_inst_q15 * S,
Kojto 119:aae6fcc7d9bb 1338 uint8_t numStages,
Kojto 119:aae6fcc7d9bb 1339 q15_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 1340 q15_t * pState,
Kojto 119:aae6fcc7d9bb 1341 int8_t postShift);
Kojto 119:aae6fcc7d9bb 1342
Kojto 119:aae6fcc7d9bb 1343
Kojto 119:aae6fcc7d9bb 1344 /**
Kojto 119:aae6fcc7d9bb 1345 * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
Kojto 119:aae6fcc7d9bb 1346 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
Kojto 119:aae6fcc7d9bb 1347 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1348 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1349 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1350 * @return none.
Kojto 119:aae6fcc7d9bb 1351 */
Kojto 119:aae6fcc7d9bb 1352
Kojto 119:aae6fcc7d9bb 1353 void arm_biquad_cascade_df1_fast_q15(
Kojto 119:aae6fcc7d9bb 1354 const arm_biquad_casd_df1_inst_q15 * S,
Kojto 119:aae6fcc7d9bb 1355 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 1356 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 1357 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1358
Kojto 119:aae6fcc7d9bb 1359
Kojto 119:aae6fcc7d9bb 1360 /**
Kojto 119:aae6fcc7d9bb 1361 * @brief Processing function for the Q31 Biquad cascade filter
Kojto 119:aae6fcc7d9bb 1362 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
Kojto 119:aae6fcc7d9bb 1363 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1364 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1365 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1366 * @return none.
Kojto 119:aae6fcc7d9bb 1367 */
Kojto 119:aae6fcc7d9bb 1368
Kojto 119:aae6fcc7d9bb 1369 void arm_biquad_cascade_df1_q31(
Kojto 119:aae6fcc7d9bb 1370 const arm_biquad_casd_df1_inst_q31 * S,
Kojto 119:aae6fcc7d9bb 1371 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 1372 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 1373 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1374
Kojto 119:aae6fcc7d9bb 1375 /**
Kojto 119:aae6fcc7d9bb 1376 * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
Kojto 119:aae6fcc7d9bb 1377 * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
Kojto 119:aae6fcc7d9bb 1378 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1379 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1380 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1381 * @return none.
Kojto 119:aae6fcc7d9bb 1382 */
Kojto 119:aae6fcc7d9bb 1383
Kojto 119:aae6fcc7d9bb 1384 void arm_biquad_cascade_df1_fast_q31(
Kojto 119:aae6fcc7d9bb 1385 const arm_biquad_casd_df1_inst_q31 * S,
Kojto 119:aae6fcc7d9bb 1386 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 1387 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 1388 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1389
Kojto 119:aae6fcc7d9bb 1390 /**
Kojto 119:aae6fcc7d9bb 1391 * @brief Initialization function for the Q31 Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 1392 * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
Kojto 119:aae6fcc7d9bb 1393 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 119:aae6fcc7d9bb 1394 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 1395 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 1396 * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
Kojto 119:aae6fcc7d9bb 1397 * @return none
Kojto 119:aae6fcc7d9bb 1398 */
Kojto 119:aae6fcc7d9bb 1399
Kojto 119:aae6fcc7d9bb 1400 void arm_biquad_cascade_df1_init_q31(
Kojto 119:aae6fcc7d9bb 1401 arm_biquad_casd_df1_inst_q31 * S,
Kojto 119:aae6fcc7d9bb 1402 uint8_t numStages,
Kojto 119:aae6fcc7d9bb 1403 q31_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 1404 q31_t * pState,
Kojto 119:aae6fcc7d9bb 1405 int8_t postShift);
Kojto 119:aae6fcc7d9bb 1406
Kojto 119:aae6fcc7d9bb 1407 /**
Kojto 119:aae6fcc7d9bb 1408 * @brief Processing function for the floating-point Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 1409 * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
Kojto 119:aae6fcc7d9bb 1410 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 1411 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 1412 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 1413 * @return none.
Kojto 119:aae6fcc7d9bb 1414 */
Kojto 119:aae6fcc7d9bb 1415
Kojto 119:aae6fcc7d9bb 1416 void arm_biquad_cascade_df1_f32(
Kojto 119:aae6fcc7d9bb 1417 const arm_biquad_casd_df1_inst_f32 * S,
Kojto 119:aae6fcc7d9bb 1418 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 1419 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 1420 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1421
Kojto 119:aae6fcc7d9bb 1422 /**
Kojto 119:aae6fcc7d9bb 1423 * @brief Initialization function for the floating-point Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 1424 * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
Kojto 119:aae6fcc7d9bb 1425 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 119:aae6fcc7d9bb 1426 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 1427 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 1428 * @return none
Kojto 119:aae6fcc7d9bb 1429 */
Kojto 119:aae6fcc7d9bb 1430
Kojto 119:aae6fcc7d9bb 1431 void arm_biquad_cascade_df1_init_f32(
Kojto 119:aae6fcc7d9bb 1432 arm_biquad_casd_df1_inst_f32 * S,
Kojto 119:aae6fcc7d9bb 1433 uint8_t numStages,
Kojto 119:aae6fcc7d9bb 1434 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 1435 float32_t * pState);
Kojto 119:aae6fcc7d9bb 1436
Kojto 119:aae6fcc7d9bb 1437
Kojto 119:aae6fcc7d9bb 1438 /**
Kojto 119:aae6fcc7d9bb 1439 * @brief Instance structure for the floating-point matrix structure.
Kojto 119:aae6fcc7d9bb 1440 */
Kojto 119:aae6fcc7d9bb 1441
Kojto 119:aae6fcc7d9bb 1442 typedef struct
Kojto 119:aae6fcc7d9bb 1443 {
Kojto 119:aae6fcc7d9bb 1444 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 119:aae6fcc7d9bb 1445 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 119:aae6fcc7d9bb 1446 float32_t *pData; /**< points to the data of the matrix. */
Kojto 119:aae6fcc7d9bb 1447 } arm_matrix_instance_f32;
Kojto 119:aae6fcc7d9bb 1448
Kojto 119:aae6fcc7d9bb 1449
Kojto 119:aae6fcc7d9bb 1450 /**
Kojto 119:aae6fcc7d9bb 1451 * @brief Instance structure for the floating-point matrix structure.
Kojto 119:aae6fcc7d9bb 1452 */
Kojto 119:aae6fcc7d9bb 1453
Kojto 119:aae6fcc7d9bb 1454 typedef struct
Kojto 119:aae6fcc7d9bb 1455 {
Kojto 119:aae6fcc7d9bb 1456 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 119:aae6fcc7d9bb 1457 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 119:aae6fcc7d9bb 1458 float64_t *pData; /**< points to the data of the matrix. */
Kojto 119:aae6fcc7d9bb 1459 } arm_matrix_instance_f64;
Kojto 119:aae6fcc7d9bb 1460
Kojto 119:aae6fcc7d9bb 1461 /**
Kojto 119:aae6fcc7d9bb 1462 * @brief Instance structure for the Q15 matrix structure.
Kojto 119:aae6fcc7d9bb 1463 */
Kojto 119:aae6fcc7d9bb 1464
Kojto 119:aae6fcc7d9bb 1465 typedef struct
Kojto 119:aae6fcc7d9bb 1466 {
Kojto 119:aae6fcc7d9bb 1467 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 119:aae6fcc7d9bb 1468 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 119:aae6fcc7d9bb 1469 q15_t *pData; /**< points to the data of the matrix. */
Kojto 119:aae6fcc7d9bb 1470
Kojto 119:aae6fcc7d9bb 1471 } arm_matrix_instance_q15;
Kojto 119:aae6fcc7d9bb 1472
Kojto 119:aae6fcc7d9bb 1473 /**
Kojto 119:aae6fcc7d9bb 1474 * @brief Instance structure for the Q31 matrix structure.
Kojto 119:aae6fcc7d9bb 1475 */
Kojto 119:aae6fcc7d9bb 1476
Kojto 119:aae6fcc7d9bb 1477 typedef struct
Kojto 119:aae6fcc7d9bb 1478 {
Kojto 119:aae6fcc7d9bb 1479 uint16_t numRows; /**< number of rows of the matrix. */
Kojto 119:aae6fcc7d9bb 1480 uint16_t numCols; /**< number of columns of the matrix. */
Kojto 119:aae6fcc7d9bb 1481 q31_t *pData; /**< points to the data of the matrix. */
Kojto 119:aae6fcc7d9bb 1482
Kojto 119:aae6fcc7d9bb 1483 } arm_matrix_instance_q31;
Kojto 119:aae6fcc7d9bb 1484
Kojto 119:aae6fcc7d9bb 1485
Kojto 119:aae6fcc7d9bb 1486
Kojto 119:aae6fcc7d9bb 1487 /**
Kojto 119:aae6fcc7d9bb 1488 * @brief Floating-point matrix addition.
Kojto 119:aae6fcc7d9bb 1489 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1490 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1491 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1492 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1493 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1494 */
Kojto 119:aae6fcc7d9bb 1495
Kojto 119:aae6fcc7d9bb 1496 arm_status arm_mat_add_f32(
Kojto 119:aae6fcc7d9bb 1497 const arm_matrix_instance_f32 * pSrcA,
Kojto 119:aae6fcc7d9bb 1498 const arm_matrix_instance_f32 * pSrcB,
Kojto 119:aae6fcc7d9bb 1499 arm_matrix_instance_f32 * pDst);
Kojto 119:aae6fcc7d9bb 1500
Kojto 119:aae6fcc7d9bb 1501 /**
Kojto 119:aae6fcc7d9bb 1502 * @brief Q15 matrix addition.
Kojto 119:aae6fcc7d9bb 1503 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1504 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1505 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1506 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1507 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1508 */
Kojto 119:aae6fcc7d9bb 1509
Kojto 119:aae6fcc7d9bb 1510 arm_status arm_mat_add_q15(
Kojto 119:aae6fcc7d9bb 1511 const arm_matrix_instance_q15 * pSrcA,
Kojto 119:aae6fcc7d9bb 1512 const arm_matrix_instance_q15 * pSrcB,
Kojto 119:aae6fcc7d9bb 1513 arm_matrix_instance_q15 * pDst);
Kojto 119:aae6fcc7d9bb 1514
Kojto 119:aae6fcc7d9bb 1515 /**
Kojto 119:aae6fcc7d9bb 1516 * @brief Q31 matrix addition.
Kojto 119:aae6fcc7d9bb 1517 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1518 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1519 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1520 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1521 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1522 */
Kojto 119:aae6fcc7d9bb 1523
Kojto 119:aae6fcc7d9bb 1524 arm_status arm_mat_add_q31(
Kojto 119:aae6fcc7d9bb 1525 const arm_matrix_instance_q31 * pSrcA,
Kojto 119:aae6fcc7d9bb 1526 const arm_matrix_instance_q31 * pSrcB,
Kojto 119:aae6fcc7d9bb 1527 arm_matrix_instance_q31 * pDst);
Kojto 119:aae6fcc7d9bb 1528
Kojto 119:aae6fcc7d9bb 1529 /**
Kojto 119:aae6fcc7d9bb 1530 * @brief Floating-point, complex, matrix multiplication.
Kojto 119:aae6fcc7d9bb 1531 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1532 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1533 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1534 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1535 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1536 */
Kojto 119:aae6fcc7d9bb 1537
Kojto 119:aae6fcc7d9bb 1538 arm_status arm_mat_cmplx_mult_f32(
Kojto 119:aae6fcc7d9bb 1539 const arm_matrix_instance_f32 * pSrcA,
Kojto 119:aae6fcc7d9bb 1540 const arm_matrix_instance_f32 * pSrcB,
Kojto 119:aae6fcc7d9bb 1541 arm_matrix_instance_f32 * pDst);
Kojto 119:aae6fcc7d9bb 1542
Kojto 119:aae6fcc7d9bb 1543 /**
Kojto 119:aae6fcc7d9bb 1544 * @brief Q15, complex, matrix multiplication.
Kojto 119:aae6fcc7d9bb 1545 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1546 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1547 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1548 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1549 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1550 */
Kojto 119:aae6fcc7d9bb 1551
Kojto 119:aae6fcc7d9bb 1552 arm_status arm_mat_cmplx_mult_q15(
Kojto 119:aae6fcc7d9bb 1553 const arm_matrix_instance_q15 * pSrcA,
Kojto 119:aae6fcc7d9bb 1554 const arm_matrix_instance_q15 * pSrcB,
Kojto 119:aae6fcc7d9bb 1555 arm_matrix_instance_q15 * pDst,
Kojto 119:aae6fcc7d9bb 1556 q15_t * pScratch);
Kojto 119:aae6fcc7d9bb 1557
Kojto 119:aae6fcc7d9bb 1558 /**
Kojto 119:aae6fcc7d9bb 1559 * @brief Q31, complex, matrix multiplication.
Kojto 119:aae6fcc7d9bb 1560 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1561 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1562 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1563 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1564 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1565 */
Kojto 119:aae6fcc7d9bb 1566
Kojto 119:aae6fcc7d9bb 1567 arm_status arm_mat_cmplx_mult_q31(
Kojto 119:aae6fcc7d9bb 1568 const arm_matrix_instance_q31 * pSrcA,
Kojto 119:aae6fcc7d9bb 1569 const arm_matrix_instance_q31 * pSrcB,
Kojto 119:aae6fcc7d9bb 1570 arm_matrix_instance_q31 * pDst);
Kojto 119:aae6fcc7d9bb 1571
Kojto 119:aae6fcc7d9bb 1572
Kojto 119:aae6fcc7d9bb 1573 /**
Kojto 119:aae6fcc7d9bb 1574 * @brief Floating-point matrix transpose.
Kojto 119:aae6fcc7d9bb 1575 * @param[in] *pSrc points to the input matrix
Kojto 119:aae6fcc7d9bb 1576 * @param[out] *pDst points to the output matrix
Kojto 119:aae6fcc7d9bb 1577 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 119:aae6fcc7d9bb 1578 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1579 */
Kojto 119:aae6fcc7d9bb 1580
Kojto 119:aae6fcc7d9bb 1581 arm_status arm_mat_trans_f32(
Kojto 119:aae6fcc7d9bb 1582 const arm_matrix_instance_f32 * pSrc,
Kojto 119:aae6fcc7d9bb 1583 arm_matrix_instance_f32 * pDst);
Kojto 119:aae6fcc7d9bb 1584
Kojto 119:aae6fcc7d9bb 1585
Kojto 119:aae6fcc7d9bb 1586 /**
Kojto 119:aae6fcc7d9bb 1587 * @brief Q15 matrix transpose.
Kojto 119:aae6fcc7d9bb 1588 * @param[in] *pSrc points to the input matrix
Kojto 119:aae6fcc7d9bb 1589 * @param[out] *pDst points to the output matrix
Kojto 119:aae6fcc7d9bb 1590 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 119:aae6fcc7d9bb 1591 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1592 */
Kojto 119:aae6fcc7d9bb 1593
Kojto 119:aae6fcc7d9bb 1594 arm_status arm_mat_trans_q15(
Kojto 119:aae6fcc7d9bb 1595 const arm_matrix_instance_q15 * pSrc,
Kojto 119:aae6fcc7d9bb 1596 arm_matrix_instance_q15 * pDst);
Kojto 119:aae6fcc7d9bb 1597
Kojto 119:aae6fcc7d9bb 1598 /**
Kojto 119:aae6fcc7d9bb 1599 * @brief Q31 matrix transpose.
Kojto 119:aae6fcc7d9bb 1600 * @param[in] *pSrc points to the input matrix
Kojto 119:aae6fcc7d9bb 1601 * @param[out] *pDst points to the output matrix
Kojto 119:aae6fcc7d9bb 1602 * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
Kojto 119:aae6fcc7d9bb 1603 * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1604 */
Kojto 119:aae6fcc7d9bb 1605
Kojto 119:aae6fcc7d9bb 1606 arm_status arm_mat_trans_q31(
Kojto 119:aae6fcc7d9bb 1607 const arm_matrix_instance_q31 * pSrc,
Kojto 119:aae6fcc7d9bb 1608 arm_matrix_instance_q31 * pDst);
Kojto 119:aae6fcc7d9bb 1609
Kojto 119:aae6fcc7d9bb 1610
Kojto 119:aae6fcc7d9bb 1611 /**
Kojto 119:aae6fcc7d9bb 1612 * @brief Floating-point matrix multiplication
Kojto 119:aae6fcc7d9bb 1613 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1614 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1615 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1616 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1617 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1618 */
Kojto 119:aae6fcc7d9bb 1619
Kojto 119:aae6fcc7d9bb 1620 arm_status arm_mat_mult_f32(
Kojto 119:aae6fcc7d9bb 1621 const arm_matrix_instance_f32 * pSrcA,
Kojto 119:aae6fcc7d9bb 1622 const arm_matrix_instance_f32 * pSrcB,
Kojto 119:aae6fcc7d9bb 1623 arm_matrix_instance_f32 * pDst);
Kojto 119:aae6fcc7d9bb 1624
Kojto 119:aae6fcc7d9bb 1625 /**
Kojto 119:aae6fcc7d9bb 1626 * @brief Q15 matrix multiplication
Kojto 119:aae6fcc7d9bb 1627 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1628 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1629 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1630 * @param[in] *pState points to the array for storing intermediate results
Kojto 119:aae6fcc7d9bb 1631 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1632 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1633 */
Kojto 119:aae6fcc7d9bb 1634
Kojto 119:aae6fcc7d9bb 1635 arm_status arm_mat_mult_q15(
Kojto 119:aae6fcc7d9bb 1636 const arm_matrix_instance_q15 * pSrcA,
Kojto 119:aae6fcc7d9bb 1637 const arm_matrix_instance_q15 * pSrcB,
Kojto 119:aae6fcc7d9bb 1638 arm_matrix_instance_q15 * pDst,
Kojto 119:aae6fcc7d9bb 1639 q15_t * pState);
Kojto 119:aae6fcc7d9bb 1640
Kojto 119:aae6fcc7d9bb 1641 /**
Kojto 119:aae6fcc7d9bb 1642 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
Kojto 119:aae6fcc7d9bb 1643 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1644 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1645 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1646 * @param[in] *pState points to the array for storing intermediate results
Kojto 119:aae6fcc7d9bb 1647 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1648 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1649 */
Kojto 119:aae6fcc7d9bb 1650
Kojto 119:aae6fcc7d9bb 1651 arm_status arm_mat_mult_fast_q15(
Kojto 119:aae6fcc7d9bb 1652 const arm_matrix_instance_q15 * pSrcA,
Kojto 119:aae6fcc7d9bb 1653 const arm_matrix_instance_q15 * pSrcB,
Kojto 119:aae6fcc7d9bb 1654 arm_matrix_instance_q15 * pDst,
Kojto 119:aae6fcc7d9bb 1655 q15_t * pState);
Kojto 119:aae6fcc7d9bb 1656
Kojto 119:aae6fcc7d9bb 1657 /**
Kojto 119:aae6fcc7d9bb 1658 * @brief Q31 matrix multiplication
Kojto 119:aae6fcc7d9bb 1659 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1660 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1661 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1662 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1663 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1664 */
Kojto 119:aae6fcc7d9bb 1665
Kojto 119:aae6fcc7d9bb 1666 arm_status arm_mat_mult_q31(
Kojto 119:aae6fcc7d9bb 1667 const arm_matrix_instance_q31 * pSrcA,
Kojto 119:aae6fcc7d9bb 1668 const arm_matrix_instance_q31 * pSrcB,
Kojto 119:aae6fcc7d9bb 1669 arm_matrix_instance_q31 * pDst);
Kojto 119:aae6fcc7d9bb 1670
Kojto 119:aae6fcc7d9bb 1671 /**
Kojto 119:aae6fcc7d9bb 1672 * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
Kojto 119:aae6fcc7d9bb 1673 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1674 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1675 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1676 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1677 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1678 */
Kojto 119:aae6fcc7d9bb 1679
Kojto 119:aae6fcc7d9bb 1680 arm_status arm_mat_mult_fast_q31(
Kojto 119:aae6fcc7d9bb 1681 const arm_matrix_instance_q31 * pSrcA,
Kojto 119:aae6fcc7d9bb 1682 const arm_matrix_instance_q31 * pSrcB,
Kojto 119:aae6fcc7d9bb 1683 arm_matrix_instance_q31 * pDst);
Kojto 119:aae6fcc7d9bb 1684
Kojto 119:aae6fcc7d9bb 1685
Kojto 119:aae6fcc7d9bb 1686 /**
Kojto 119:aae6fcc7d9bb 1687 * @brief Floating-point matrix subtraction
Kojto 119:aae6fcc7d9bb 1688 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1689 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1690 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1691 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1692 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1693 */
Kojto 119:aae6fcc7d9bb 1694
Kojto 119:aae6fcc7d9bb 1695 arm_status arm_mat_sub_f32(
Kojto 119:aae6fcc7d9bb 1696 const arm_matrix_instance_f32 * pSrcA,
Kojto 119:aae6fcc7d9bb 1697 const arm_matrix_instance_f32 * pSrcB,
Kojto 119:aae6fcc7d9bb 1698 arm_matrix_instance_f32 * pDst);
Kojto 119:aae6fcc7d9bb 1699
Kojto 119:aae6fcc7d9bb 1700 /**
Kojto 119:aae6fcc7d9bb 1701 * @brief Q15 matrix subtraction
Kojto 119:aae6fcc7d9bb 1702 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1703 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1704 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1705 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1706 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1707 */
Kojto 119:aae6fcc7d9bb 1708
Kojto 119:aae6fcc7d9bb 1709 arm_status arm_mat_sub_q15(
Kojto 119:aae6fcc7d9bb 1710 const arm_matrix_instance_q15 * pSrcA,
Kojto 119:aae6fcc7d9bb 1711 const arm_matrix_instance_q15 * pSrcB,
Kojto 119:aae6fcc7d9bb 1712 arm_matrix_instance_q15 * pDst);
Kojto 119:aae6fcc7d9bb 1713
Kojto 119:aae6fcc7d9bb 1714 /**
Kojto 119:aae6fcc7d9bb 1715 * @brief Q31 matrix subtraction
Kojto 119:aae6fcc7d9bb 1716 * @param[in] *pSrcA points to the first input matrix structure
Kojto 119:aae6fcc7d9bb 1717 * @param[in] *pSrcB points to the second input matrix structure
Kojto 119:aae6fcc7d9bb 1718 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1719 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1720 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1721 */
Kojto 119:aae6fcc7d9bb 1722
Kojto 119:aae6fcc7d9bb 1723 arm_status arm_mat_sub_q31(
Kojto 119:aae6fcc7d9bb 1724 const arm_matrix_instance_q31 * pSrcA,
Kojto 119:aae6fcc7d9bb 1725 const arm_matrix_instance_q31 * pSrcB,
Kojto 119:aae6fcc7d9bb 1726 arm_matrix_instance_q31 * pDst);
Kojto 119:aae6fcc7d9bb 1727
Kojto 119:aae6fcc7d9bb 1728 /**
Kojto 119:aae6fcc7d9bb 1729 * @brief Floating-point matrix scaling.
Kojto 119:aae6fcc7d9bb 1730 * @param[in] *pSrc points to the input matrix
Kojto 119:aae6fcc7d9bb 1731 * @param[in] scale scale factor
Kojto 119:aae6fcc7d9bb 1732 * @param[out] *pDst points to the output matrix
Kojto 119:aae6fcc7d9bb 1733 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1734 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1735 */
Kojto 119:aae6fcc7d9bb 1736
Kojto 119:aae6fcc7d9bb 1737 arm_status arm_mat_scale_f32(
Kojto 119:aae6fcc7d9bb 1738 const arm_matrix_instance_f32 * pSrc,
Kojto 119:aae6fcc7d9bb 1739 float32_t scale,
Kojto 119:aae6fcc7d9bb 1740 arm_matrix_instance_f32 * pDst);
Kojto 119:aae6fcc7d9bb 1741
Kojto 119:aae6fcc7d9bb 1742 /**
Kojto 119:aae6fcc7d9bb 1743 * @brief Q15 matrix scaling.
Kojto 119:aae6fcc7d9bb 1744 * @param[in] *pSrc points to input matrix
Kojto 119:aae6fcc7d9bb 1745 * @param[in] scaleFract fractional portion of the scale factor
Kojto 119:aae6fcc7d9bb 1746 * @param[in] shift number of bits to shift the result by
Kojto 119:aae6fcc7d9bb 1747 * @param[out] *pDst points to output matrix
Kojto 119:aae6fcc7d9bb 1748 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1749 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1750 */
Kojto 119:aae6fcc7d9bb 1751
Kojto 119:aae6fcc7d9bb 1752 arm_status arm_mat_scale_q15(
Kojto 119:aae6fcc7d9bb 1753 const arm_matrix_instance_q15 * pSrc,
Kojto 119:aae6fcc7d9bb 1754 q15_t scaleFract,
Kojto 119:aae6fcc7d9bb 1755 int32_t shift,
Kojto 119:aae6fcc7d9bb 1756 arm_matrix_instance_q15 * pDst);
Kojto 119:aae6fcc7d9bb 1757
Kojto 119:aae6fcc7d9bb 1758 /**
Kojto 119:aae6fcc7d9bb 1759 * @brief Q31 matrix scaling.
Kojto 119:aae6fcc7d9bb 1760 * @param[in] *pSrc points to input matrix
Kojto 119:aae6fcc7d9bb 1761 * @param[in] scaleFract fractional portion of the scale factor
Kojto 119:aae6fcc7d9bb 1762 * @param[in] shift number of bits to shift the result by
Kojto 119:aae6fcc7d9bb 1763 * @param[out] *pDst points to output matrix structure
Kojto 119:aae6fcc7d9bb 1764 * @return The function returns either
Kojto 119:aae6fcc7d9bb 1765 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
Kojto 119:aae6fcc7d9bb 1766 */
Kojto 119:aae6fcc7d9bb 1767
Kojto 119:aae6fcc7d9bb 1768 arm_status arm_mat_scale_q31(
Kojto 119:aae6fcc7d9bb 1769 const arm_matrix_instance_q31 * pSrc,
Kojto 119:aae6fcc7d9bb 1770 q31_t scaleFract,
Kojto 119:aae6fcc7d9bb 1771 int32_t shift,
Kojto 119:aae6fcc7d9bb 1772 arm_matrix_instance_q31 * pDst);
Kojto 119:aae6fcc7d9bb 1773
Kojto 119:aae6fcc7d9bb 1774
Kojto 119:aae6fcc7d9bb 1775 /**
Kojto 119:aae6fcc7d9bb 1776 * @brief Q31 matrix initialization.
Kojto 119:aae6fcc7d9bb 1777 * @param[in,out] *S points to an instance of the floating-point matrix structure.
Kojto 119:aae6fcc7d9bb 1778 * @param[in] nRows number of rows in the matrix.
Kojto 119:aae6fcc7d9bb 1779 * @param[in] nColumns number of columns in the matrix.
Kojto 119:aae6fcc7d9bb 1780 * @param[in] *pData points to the matrix data array.
Kojto 119:aae6fcc7d9bb 1781 * @return none
Kojto 119:aae6fcc7d9bb 1782 */
Kojto 119:aae6fcc7d9bb 1783
Kojto 119:aae6fcc7d9bb 1784 void arm_mat_init_q31(
Kojto 119:aae6fcc7d9bb 1785 arm_matrix_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 1786 uint16_t nRows,
Kojto 119:aae6fcc7d9bb 1787 uint16_t nColumns,
Kojto 119:aae6fcc7d9bb 1788 q31_t * pData);
Kojto 119:aae6fcc7d9bb 1789
Kojto 119:aae6fcc7d9bb 1790 /**
Kojto 119:aae6fcc7d9bb 1791 * @brief Q15 matrix initialization.
Kojto 119:aae6fcc7d9bb 1792 * @param[in,out] *S points to an instance of the floating-point matrix structure.
Kojto 119:aae6fcc7d9bb 1793 * @param[in] nRows number of rows in the matrix.
Kojto 119:aae6fcc7d9bb 1794 * @param[in] nColumns number of columns in the matrix.
Kojto 119:aae6fcc7d9bb 1795 * @param[in] *pData points to the matrix data array.
Kojto 119:aae6fcc7d9bb 1796 * @return none
Kojto 119:aae6fcc7d9bb 1797 */
Kojto 119:aae6fcc7d9bb 1798
Kojto 119:aae6fcc7d9bb 1799 void arm_mat_init_q15(
Kojto 119:aae6fcc7d9bb 1800 arm_matrix_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 1801 uint16_t nRows,
Kojto 119:aae6fcc7d9bb 1802 uint16_t nColumns,
Kojto 119:aae6fcc7d9bb 1803 q15_t * pData);
Kojto 119:aae6fcc7d9bb 1804
Kojto 119:aae6fcc7d9bb 1805 /**
Kojto 119:aae6fcc7d9bb 1806 * @brief Floating-point matrix initialization.
Kojto 119:aae6fcc7d9bb 1807 * @param[in,out] *S points to an instance of the floating-point matrix structure.
Kojto 119:aae6fcc7d9bb 1808 * @param[in] nRows number of rows in the matrix.
Kojto 119:aae6fcc7d9bb 1809 * @param[in] nColumns number of columns in the matrix.
Kojto 119:aae6fcc7d9bb 1810 * @param[in] *pData points to the matrix data array.
Kojto 119:aae6fcc7d9bb 1811 * @return none
Kojto 119:aae6fcc7d9bb 1812 */
Kojto 119:aae6fcc7d9bb 1813
Kojto 119:aae6fcc7d9bb 1814 void arm_mat_init_f32(
Kojto 119:aae6fcc7d9bb 1815 arm_matrix_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 1816 uint16_t nRows,
Kojto 119:aae6fcc7d9bb 1817 uint16_t nColumns,
Kojto 119:aae6fcc7d9bb 1818 float32_t * pData);
Kojto 119:aae6fcc7d9bb 1819
Kojto 119:aae6fcc7d9bb 1820
Kojto 119:aae6fcc7d9bb 1821
Kojto 119:aae6fcc7d9bb 1822 /**
Kojto 119:aae6fcc7d9bb 1823 * @brief Instance structure for the Q15 PID Control.
Kojto 119:aae6fcc7d9bb 1824 */
Kojto 119:aae6fcc7d9bb 1825 typedef struct
Kojto 119:aae6fcc7d9bb 1826 {
Kojto 119:aae6fcc7d9bb 1827 q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 119:aae6fcc7d9bb 1828 #ifdef ARM_MATH_CM0_FAMILY
Kojto 119:aae6fcc7d9bb 1829 q15_t A1;
Kojto 119:aae6fcc7d9bb 1830 q15_t A2;
Kojto 119:aae6fcc7d9bb 1831 #else
Kojto 119:aae6fcc7d9bb 1832 q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
Kojto 119:aae6fcc7d9bb 1833 #endif
Kojto 119:aae6fcc7d9bb 1834 q15_t state[3]; /**< The state array of length 3. */
Kojto 119:aae6fcc7d9bb 1835 q15_t Kp; /**< The proportional gain. */
Kojto 119:aae6fcc7d9bb 1836 q15_t Ki; /**< The integral gain. */
Kojto 119:aae6fcc7d9bb 1837 q15_t Kd; /**< The derivative gain. */
Kojto 119:aae6fcc7d9bb 1838 } arm_pid_instance_q15;
Kojto 119:aae6fcc7d9bb 1839
Kojto 119:aae6fcc7d9bb 1840 /**
Kojto 119:aae6fcc7d9bb 1841 * @brief Instance structure for the Q31 PID Control.
Kojto 119:aae6fcc7d9bb 1842 */
Kojto 119:aae6fcc7d9bb 1843 typedef struct
Kojto 119:aae6fcc7d9bb 1844 {
Kojto 119:aae6fcc7d9bb 1845 q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 119:aae6fcc7d9bb 1846 q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
Kojto 119:aae6fcc7d9bb 1847 q31_t A2; /**< The derived gain, A2 = Kd . */
Kojto 119:aae6fcc7d9bb 1848 q31_t state[3]; /**< The state array of length 3. */
Kojto 119:aae6fcc7d9bb 1849 q31_t Kp; /**< The proportional gain. */
Kojto 119:aae6fcc7d9bb 1850 q31_t Ki; /**< The integral gain. */
Kojto 119:aae6fcc7d9bb 1851 q31_t Kd; /**< The derivative gain. */
Kojto 119:aae6fcc7d9bb 1852
Kojto 119:aae6fcc7d9bb 1853 } arm_pid_instance_q31;
Kojto 119:aae6fcc7d9bb 1854
Kojto 119:aae6fcc7d9bb 1855 /**
Kojto 119:aae6fcc7d9bb 1856 * @brief Instance structure for the floating-point PID Control.
Kojto 119:aae6fcc7d9bb 1857 */
Kojto 119:aae6fcc7d9bb 1858 typedef struct
Kojto 119:aae6fcc7d9bb 1859 {
Kojto 119:aae6fcc7d9bb 1860 float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
Kojto 119:aae6fcc7d9bb 1861 float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
Kojto 119:aae6fcc7d9bb 1862 float32_t A2; /**< The derived gain, A2 = Kd . */
Kojto 119:aae6fcc7d9bb 1863 float32_t state[3]; /**< The state array of length 3. */
Kojto 119:aae6fcc7d9bb 1864 float32_t Kp; /**< The proportional gain. */
Kojto 119:aae6fcc7d9bb 1865 float32_t Ki; /**< The integral gain. */
Kojto 119:aae6fcc7d9bb 1866 float32_t Kd; /**< The derivative gain. */
Kojto 119:aae6fcc7d9bb 1867 } arm_pid_instance_f32;
Kojto 119:aae6fcc7d9bb 1868
Kojto 119:aae6fcc7d9bb 1869
Kojto 119:aae6fcc7d9bb 1870
Kojto 119:aae6fcc7d9bb 1871 /**
Kojto 119:aae6fcc7d9bb 1872 * @brief Initialization function for the floating-point PID Control.
Kojto 119:aae6fcc7d9bb 1873 * @param[in,out] *S points to an instance of the PID structure.
Kojto 119:aae6fcc7d9bb 1874 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 119:aae6fcc7d9bb 1875 * @return none.
Kojto 119:aae6fcc7d9bb 1876 */
Kojto 119:aae6fcc7d9bb 1877 void arm_pid_init_f32(
Kojto 119:aae6fcc7d9bb 1878 arm_pid_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 1879 int32_t resetStateFlag);
Kojto 119:aae6fcc7d9bb 1880
Kojto 119:aae6fcc7d9bb 1881 /**
Kojto 119:aae6fcc7d9bb 1882 * @brief Reset function for the floating-point PID Control.
Kojto 119:aae6fcc7d9bb 1883 * @param[in,out] *S is an instance of the floating-point PID Control structure
Kojto 119:aae6fcc7d9bb 1884 * @return none
Kojto 119:aae6fcc7d9bb 1885 */
Kojto 119:aae6fcc7d9bb 1886 void arm_pid_reset_f32(
Kojto 119:aae6fcc7d9bb 1887 arm_pid_instance_f32 * S);
Kojto 119:aae6fcc7d9bb 1888
Kojto 119:aae6fcc7d9bb 1889
Kojto 119:aae6fcc7d9bb 1890 /**
Kojto 119:aae6fcc7d9bb 1891 * @brief Initialization function for the Q31 PID Control.
Kojto 119:aae6fcc7d9bb 1892 * @param[in,out] *S points to an instance of the Q15 PID structure.
Kojto 119:aae6fcc7d9bb 1893 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 119:aae6fcc7d9bb 1894 * @return none.
Kojto 119:aae6fcc7d9bb 1895 */
Kojto 119:aae6fcc7d9bb 1896 void arm_pid_init_q31(
Kojto 119:aae6fcc7d9bb 1897 arm_pid_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 1898 int32_t resetStateFlag);
Kojto 119:aae6fcc7d9bb 1899
Kojto 119:aae6fcc7d9bb 1900
Kojto 119:aae6fcc7d9bb 1901 /**
Kojto 119:aae6fcc7d9bb 1902 * @brief Reset function for the Q31 PID Control.
Kojto 119:aae6fcc7d9bb 1903 * @param[in,out] *S points to an instance of the Q31 PID Control structure
Kojto 119:aae6fcc7d9bb 1904 * @return none
Kojto 119:aae6fcc7d9bb 1905 */
Kojto 119:aae6fcc7d9bb 1906
Kojto 119:aae6fcc7d9bb 1907 void arm_pid_reset_q31(
Kojto 119:aae6fcc7d9bb 1908 arm_pid_instance_q31 * S);
Kojto 119:aae6fcc7d9bb 1909
Kojto 119:aae6fcc7d9bb 1910 /**
Kojto 119:aae6fcc7d9bb 1911 * @brief Initialization function for the Q15 PID Control.
Kojto 119:aae6fcc7d9bb 1912 * @param[in,out] *S points to an instance of the Q15 PID structure.
Kojto 119:aae6fcc7d9bb 1913 * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
Kojto 119:aae6fcc7d9bb 1914 * @return none.
Kojto 119:aae6fcc7d9bb 1915 */
Kojto 119:aae6fcc7d9bb 1916 void arm_pid_init_q15(
Kojto 119:aae6fcc7d9bb 1917 arm_pid_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 1918 int32_t resetStateFlag);
Kojto 119:aae6fcc7d9bb 1919
Kojto 119:aae6fcc7d9bb 1920 /**
Kojto 119:aae6fcc7d9bb 1921 * @brief Reset function for the Q15 PID Control.
Kojto 119:aae6fcc7d9bb 1922 * @param[in,out] *S points to an instance of the q15 PID Control structure
Kojto 119:aae6fcc7d9bb 1923 * @return none
Kojto 119:aae6fcc7d9bb 1924 */
Kojto 119:aae6fcc7d9bb 1925 void arm_pid_reset_q15(
Kojto 119:aae6fcc7d9bb 1926 arm_pid_instance_q15 * S);
Kojto 119:aae6fcc7d9bb 1927
Kojto 119:aae6fcc7d9bb 1928
Kojto 119:aae6fcc7d9bb 1929 /**
Kojto 119:aae6fcc7d9bb 1930 * @brief Instance structure for the floating-point Linear Interpolate function.
Kojto 119:aae6fcc7d9bb 1931 */
Kojto 119:aae6fcc7d9bb 1932 typedef struct
Kojto 119:aae6fcc7d9bb 1933 {
Kojto 119:aae6fcc7d9bb 1934 uint32_t nValues; /**< nValues */
Kojto 119:aae6fcc7d9bb 1935 float32_t x1; /**< x1 */
Kojto 119:aae6fcc7d9bb 1936 float32_t xSpacing; /**< xSpacing */
Kojto 119:aae6fcc7d9bb 1937 float32_t *pYData; /**< pointer to the table of Y values */
Kojto 119:aae6fcc7d9bb 1938 } arm_linear_interp_instance_f32;
Kojto 119:aae6fcc7d9bb 1939
Kojto 119:aae6fcc7d9bb 1940 /**
Kojto 119:aae6fcc7d9bb 1941 * @brief Instance structure for the floating-point bilinear interpolation function.
Kojto 119:aae6fcc7d9bb 1942 */
Kojto 119:aae6fcc7d9bb 1943
Kojto 119:aae6fcc7d9bb 1944 typedef struct
Kojto 119:aae6fcc7d9bb 1945 {
Kojto 119:aae6fcc7d9bb 1946 uint16_t numRows; /**< number of rows in the data table. */
Kojto 119:aae6fcc7d9bb 1947 uint16_t numCols; /**< number of columns in the data table. */
Kojto 119:aae6fcc7d9bb 1948 float32_t *pData; /**< points to the data table. */
Kojto 119:aae6fcc7d9bb 1949 } arm_bilinear_interp_instance_f32;
Kojto 119:aae6fcc7d9bb 1950
Kojto 119:aae6fcc7d9bb 1951 /**
Kojto 119:aae6fcc7d9bb 1952 * @brief Instance structure for the Q31 bilinear interpolation function.
Kojto 119:aae6fcc7d9bb 1953 */
Kojto 119:aae6fcc7d9bb 1954
Kojto 119:aae6fcc7d9bb 1955 typedef struct
Kojto 119:aae6fcc7d9bb 1956 {
Kojto 119:aae6fcc7d9bb 1957 uint16_t numRows; /**< number of rows in the data table. */
Kojto 119:aae6fcc7d9bb 1958 uint16_t numCols; /**< number of columns in the data table. */
Kojto 119:aae6fcc7d9bb 1959 q31_t *pData; /**< points to the data table. */
Kojto 119:aae6fcc7d9bb 1960 } arm_bilinear_interp_instance_q31;
Kojto 119:aae6fcc7d9bb 1961
Kojto 119:aae6fcc7d9bb 1962 /**
Kojto 119:aae6fcc7d9bb 1963 * @brief Instance structure for the Q15 bilinear interpolation function.
Kojto 119:aae6fcc7d9bb 1964 */
Kojto 119:aae6fcc7d9bb 1965
Kojto 119:aae6fcc7d9bb 1966 typedef struct
Kojto 119:aae6fcc7d9bb 1967 {
Kojto 119:aae6fcc7d9bb 1968 uint16_t numRows; /**< number of rows in the data table. */
Kojto 119:aae6fcc7d9bb 1969 uint16_t numCols; /**< number of columns in the data table. */
Kojto 119:aae6fcc7d9bb 1970 q15_t *pData; /**< points to the data table. */
Kojto 119:aae6fcc7d9bb 1971 } arm_bilinear_interp_instance_q15;
Kojto 119:aae6fcc7d9bb 1972
Kojto 119:aae6fcc7d9bb 1973 /**
Kojto 119:aae6fcc7d9bb 1974 * @brief Instance structure for the Q15 bilinear interpolation function.
Kojto 119:aae6fcc7d9bb 1975 */
Kojto 119:aae6fcc7d9bb 1976
Kojto 119:aae6fcc7d9bb 1977 typedef struct
Kojto 119:aae6fcc7d9bb 1978 {
Kojto 119:aae6fcc7d9bb 1979 uint16_t numRows; /**< number of rows in the data table. */
Kojto 119:aae6fcc7d9bb 1980 uint16_t numCols; /**< number of columns in the data table. */
Kojto 119:aae6fcc7d9bb 1981 q7_t *pData; /**< points to the data table. */
Kojto 119:aae6fcc7d9bb 1982 } arm_bilinear_interp_instance_q7;
Kojto 119:aae6fcc7d9bb 1983
Kojto 119:aae6fcc7d9bb 1984
Kojto 119:aae6fcc7d9bb 1985 /**
Kojto 119:aae6fcc7d9bb 1986 * @brief Q7 vector multiplication.
Kojto 119:aae6fcc7d9bb 1987 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 1988 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 1989 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 1990 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 1991 * @return none.
Kojto 119:aae6fcc7d9bb 1992 */
Kojto 119:aae6fcc7d9bb 1993
Kojto 119:aae6fcc7d9bb 1994 void arm_mult_q7(
Kojto 119:aae6fcc7d9bb 1995 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 1996 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 1997 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 1998 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 1999
Kojto 119:aae6fcc7d9bb 2000 /**
Kojto 119:aae6fcc7d9bb 2001 * @brief Q15 vector multiplication.
Kojto 119:aae6fcc7d9bb 2002 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2003 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2004 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2005 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2006 * @return none.
Kojto 119:aae6fcc7d9bb 2007 */
Kojto 119:aae6fcc7d9bb 2008
Kojto 119:aae6fcc7d9bb 2009 void arm_mult_q15(
Kojto 119:aae6fcc7d9bb 2010 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2011 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2012 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 2013 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2014
Kojto 119:aae6fcc7d9bb 2015 /**
Kojto 119:aae6fcc7d9bb 2016 * @brief Q31 vector multiplication.
Kojto 119:aae6fcc7d9bb 2017 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2018 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2019 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2020 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2021 * @return none.
Kojto 119:aae6fcc7d9bb 2022 */
Kojto 119:aae6fcc7d9bb 2023
Kojto 119:aae6fcc7d9bb 2024 void arm_mult_q31(
Kojto 119:aae6fcc7d9bb 2025 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2026 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2027 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 2028 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2029
Kojto 119:aae6fcc7d9bb 2030 /**
Kojto 119:aae6fcc7d9bb 2031 * @brief Floating-point vector multiplication.
Kojto 119:aae6fcc7d9bb 2032 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2033 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2034 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2035 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2036 * @return none.
Kojto 119:aae6fcc7d9bb 2037 */
Kojto 119:aae6fcc7d9bb 2038
Kojto 119:aae6fcc7d9bb 2039 void arm_mult_f32(
Kojto 119:aae6fcc7d9bb 2040 float32_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2041 float32_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2042 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 2043 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2044
Kojto 119:aae6fcc7d9bb 2045
Kojto 119:aae6fcc7d9bb 2046
Kojto 119:aae6fcc7d9bb 2047
Kojto 119:aae6fcc7d9bb 2048
Kojto 119:aae6fcc7d9bb 2049
Kojto 119:aae6fcc7d9bb 2050 /**
Kojto 119:aae6fcc7d9bb 2051 * @brief Instance structure for the Q15 CFFT/CIFFT function.
Kojto 119:aae6fcc7d9bb 2052 */
Kojto 119:aae6fcc7d9bb 2053
Kojto 119:aae6fcc7d9bb 2054 typedef struct
Kojto 119:aae6fcc7d9bb 2055 {
Kojto 119:aae6fcc7d9bb 2056 uint16_t fftLen; /**< length of the FFT. */
Kojto 119:aae6fcc7d9bb 2057 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 119:aae6fcc7d9bb 2058 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 119:aae6fcc7d9bb 2059 q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2060 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 119:aae6fcc7d9bb 2061 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2062 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 119:aae6fcc7d9bb 2063 } arm_cfft_radix2_instance_q15;
Kojto 119:aae6fcc7d9bb 2064
Kojto 119:aae6fcc7d9bb 2065 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2066 arm_status arm_cfft_radix2_init_q15(
Kojto 119:aae6fcc7d9bb 2067 arm_cfft_radix2_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 2068 uint16_t fftLen,
Kojto 119:aae6fcc7d9bb 2069 uint8_t ifftFlag,
Kojto 119:aae6fcc7d9bb 2070 uint8_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2071
Kojto 119:aae6fcc7d9bb 2072 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2073 void arm_cfft_radix2_q15(
Kojto 119:aae6fcc7d9bb 2074 const arm_cfft_radix2_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 2075 q15_t * pSrc);
Kojto 119:aae6fcc7d9bb 2076
Kojto 119:aae6fcc7d9bb 2077
Kojto 119:aae6fcc7d9bb 2078
Kojto 119:aae6fcc7d9bb 2079 /**
Kojto 119:aae6fcc7d9bb 2080 * @brief Instance structure for the Q15 CFFT/CIFFT function.
Kojto 119:aae6fcc7d9bb 2081 */
Kojto 119:aae6fcc7d9bb 2082
Kojto 119:aae6fcc7d9bb 2083 typedef struct
Kojto 119:aae6fcc7d9bb 2084 {
Kojto 119:aae6fcc7d9bb 2085 uint16_t fftLen; /**< length of the FFT. */
Kojto 119:aae6fcc7d9bb 2086 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 119:aae6fcc7d9bb 2087 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 119:aae6fcc7d9bb 2088 q15_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2089 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 119:aae6fcc7d9bb 2090 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2091 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 119:aae6fcc7d9bb 2092 } arm_cfft_radix4_instance_q15;
Kojto 119:aae6fcc7d9bb 2093
Kojto 119:aae6fcc7d9bb 2094 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2095 arm_status arm_cfft_radix4_init_q15(
Kojto 119:aae6fcc7d9bb 2096 arm_cfft_radix4_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 2097 uint16_t fftLen,
Kojto 119:aae6fcc7d9bb 2098 uint8_t ifftFlag,
Kojto 119:aae6fcc7d9bb 2099 uint8_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2100
Kojto 119:aae6fcc7d9bb 2101 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2102 void arm_cfft_radix4_q15(
Kojto 119:aae6fcc7d9bb 2103 const arm_cfft_radix4_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 2104 q15_t * pSrc);
Kojto 119:aae6fcc7d9bb 2105
Kojto 119:aae6fcc7d9bb 2106 /**
Kojto 119:aae6fcc7d9bb 2107 * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
Kojto 119:aae6fcc7d9bb 2108 */
Kojto 119:aae6fcc7d9bb 2109
Kojto 119:aae6fcc7d9bb 2110 typedef struct
Kojto 119:aae6fcc7d9bb 2111 {
Kojto 119:aae6fcc7d9bb 2112 uint16_t fftLen; /**< length of the FFT. */
Kojto 119:aae6fcc7d9bb 2113 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 119:aae6fcc7d9bb 2114 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 119:aae6fcc7d9bb 2115 q31_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2116 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 119:aae6fcc7d9bb 2117 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2118 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 119:aae6fcc7d9bb 2119 } arm_cfft_radix2_instance_q31;
Kojto 119:aae6fcc7d9bb 2120
Kojto 119:aae6fcc7d9bb 2121 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2122 arm_status arm_cfft_radix2_init_q31(
Kojto 119:aae6fcc7d9bb 2123 arm_cfft_radix2_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 2124 uint16_t fftLen,
Kojto 119:aae6fcc7d9bb 2125 uint8_t ifftFlag,
Kojto 119:aae6fcc7d9bb 2126 uint8_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2127
Kojto 119:aae6fcc7d9bb 2128 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2129 void arm_cfft_radix2_q31(
Kojto 119:aae6fcc7d9bb 2130 const arm_cfft_radix2_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 2131 q31_t * pSrc);
Kojto 119:aae6fcc7d9bb 2132
Kojto 119:aae6fcc7d9bb 2133 /**
Kojto 119:aae6fcc7d9bb 2134 * @brief Instance structure for the Q31 CFFT/CIFFT function.
Kojto 119:aae6fcc7d9bb 2135 */
Kojto 119:aae6fcc7d9bb 2136
Kojto 119:aae6fcc7d9bb 2137 typedef struct
Kojto 119:aae6fcc7d9bb 2138 {
Kojto 119:aae6fcc7d9bb 2139 uint16_t fftLen; /**< length of the FFT. */
Kojto 119:aae6fcc7d9bb 2140 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 119:aae6fcc7d9bb 2141 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 119:aae6fcc7d9bb 2142 q31_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2143 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 119:aae6fcc7d9bb 2144 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2145 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 119:aae6fcc7d9bb 2146 } arm_cfft_radix4_instance_q31;
Kojto 119:aae6fcc7d9bb 2147
Kojto 119:aae6fcc7d9bb 2148 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2149 void arm_cfft_radix4_q31(
Kojto 119:aae6fcc7d9bb 2150 const arm_cfft_radix4_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 2151 q31_t * pSrc);
Kojto 119:aae6fcc7d9bb 2152
Kojto 119:aae6fcc7d9bb 2153 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2154 arm_status arm_cfft_radix4_init_q31(
Kojto 119:aae6fcc7d9bb 2155 arm_cfft_radix4_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 2156 uint16_t fftLen,
Kojto 119:aae6fcc7d9bb 2157 uint8_t ifftFlag,
Kojto 119:aae6fcc7d9bb 2158 uint8_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2159
Kojto 119:aae6fcc7d9bb 2160 /**
Kojto 119:aae6fcc7d9bb 2161 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 119:aae6fcc7d9bb 2162 */
Kojto 119:aae6fcc7d9bb 2163
Kojto 119:aae6fcc7d9bb 2164 typedef struct
Kojto 119:aae6fcc7d9bb 2165 {
Kojto 119:aae6fcc7d9bb 2166 uint16_t fftLen; /**< length of the FFT. */
Kojto 119:aae6fcc7d9bb 2167 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 119:aae6fcc7d9bb 2168 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 119:aae6fcc7d9bb 2169 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2170 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 119:aae6fcc7d9bb 2171 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2172 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 119:aae6fcc7d9bb 2173 float32_t onebyfftLen; /**< value of 1/fftLen. */
Kojto 119:aae6fcc7d9bb 2174 } arm_cfft_radix2_instance_f32;
Kojto 119:aae6fcc7d9bb 2175
Kojto 119:aae6fcc7d9bb 2176 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2177 arm_status arm_cfft_radix2_init_f32(
Kojto 119:aae6fcc7d9bb 2178 arm_cfft_radix2_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2179 uint16_t fftLen,
Kojto 119:aae6fcc7d9bb 2180 uint8_t ifftFlag,
Kojto 119:aae6fcc7d9bb 2181 uint8_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2182
Kojto 119:aae6fcc7d9bb 2183 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2184 void arm_cfft_radix2_f32(
Kojto 119:aae6fcc7d9bb 2185 const arm_cfft_radix2_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2186 float32_t * pSrc);
Kojto 119:aae6fcc7d9bb 2187
Kojto 119:aae6fcc7d9bb 2188 /**
Kojto 119:aae6fcc7d9bb 2189 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 119:aae6fcc7d9bb 2190 */
Kojto 119:aae6fcc7d9bb 2191
Kojto 119:aae6fcc7d9bb 2192 typedef struct
Kojto 119:aae6fcc7d9bb 2193 {
Kojto 119:aae6fcc7d9bb 2194 uint16_t fftLen; /**< length of the FFT. */
Kojto 119:aae6fcc7d9bb 2195 uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
Kojto 119:aae6fcc7d9bb 2196 uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
Kojto 119:aae6fcc7d9bb 2197 float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2198 uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 119:aae6fcc7d9bb 2199 uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2200 uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
Kojto 119:aae6fcc7d9bb 2201 float32_t onebyfftLen; /**< value of 1/fftLen. */
Kojto 119:aae6fcc7d9bb 2202 } arm_cfft_radix4_instance_f32;
Kojto 119:aae6fcc7d9bb 2203
Kojto 119:aae6fcc7d9bb 2204 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2205 arm_status arm_cfft_radix4_init_f32(
Kojto 119:aae6fcc7d9bb 2206 arm_cfft_radix4_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2207 uint16_t fftLen,
Kojto 119:aae6fcc7d9bb 2208 uint8_t ifftFlag,
Kojto 119:aae6fcc7d9bb 2209 uint8_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2210
Kojto 119:aae6fcc7d9bb 2211 /* Deprecated */
Kojto 119:aae6fcc7d9bb 2212 void arm_cfft_radix4_f32(
Kojto 119:aae6fcc7d9bb 2213 const arm_cfft_radix4_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2214 float32_t * pSrc);
Kojto 119:aae6fcc7d9bb 2215
Kojto 119:aae6fcc7d9bb 2216 /**
Kojto 119:aae6fcc7d9bb 2217 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
Kojto 119:aae6fcc7d9bb 2218 */
Kojto 119:aae6fcc7d9bb 2219
Kojto 119:aae6fcc7d9bb 2220 typedef struct
Kojto 119:aae6fcc7d9bb 2221 {
Kojto 119:aae6fcc7d9bb 2222 uint16_t fftLen; /**< length of the FFT. */
Kojto 119:aae6fcc7d9bb 2223 const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2224 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 119:aae6fcc7d9bb 2225 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 119:aae6fcc7d9bb 2226 } arm_cfft_instance_q15;
Kojto 119:aae6fcc7d9bb 2227
Kojto 119:aae6fcc7d9bb 2228 void arm_cfft_q15(
Kojto 119:aae6fcc7d9bb 2229 const arm_cfft_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 2230 q15_t * p1,
Kojto 119:aae6fcc7d9bb 2231 uint8_t ifftFlag,
Kojto 119:aae6fcc7d9bb 2232 uint8_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2233
Kojto 119:aae6fcc7d9bb 2234 /**
Kojto 119:aae6fcc7d9bb 2235 * @brief Instance structure for the fixed-point CFFT/CIFFT function.
Kojto 119:aae6fcc7d9bb 2236 */
Kojto 119:aae6fcc7d9bb 2237
Kojto 119:aae6fcc7d9bb 2238 typedef struct
Kojto 119:aae6fcc7d9bb 2239 {
Kojto 119:aae6fcc7d9bb 2240 uint16_t fftLen; /**< length of the FFT. */
Kojto 119:aae6fcc7d9bb 2241 const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2242 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 119:aae6fcc7d9bb 2243 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 119:aae6fcc7d9bb 2244 } arm_cfft_instance_q31;
Kojto 119:aae6fcc7d9bb 2245
Kojto 119:aae6fcc7d9bb 2246 void arm_cfft_q31(
Kojto 119:aae6fcc7d9bb 2247 const arm_cfft_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 2248 q31_t * p1,
Kojto 119:aae6fcc7d9bb 2249 uint8_t ifftFlag,
Kojto 119:aae6fcc7d9bb 2250 uint8_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2251
Kojto 119:aae6fcc7d9bb 2252 /**
Kojto 119:aae6fcc7d9bb 2253 * @brief Instance structure for the floating-point CFFT/CIFFT function.
Kojto 119:aae6fcc7d9bb 2254 */
Kojto 119:aae6fcc7d9bb 2255
Kojto 119:aae6fcc7d9bb 2256 typedef struct
Kojto 119:aae6fcc7d9bb 2257 {
Kojto 119:aae6fcc7d9bb 2258 uint16_t fftLen; /**< length of the FFT. */
Kojto 119:aae6fcc7d9bb 2259 const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2260 const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
Kojto 119:aae6fcc7d9bb 2261 uint16_t bitRevLength; /**< bit reversal table length. */
Kojto 119:aae6fcc7d9bb 2262 } arm_cfft_instance_f32;
Kojto 119:aae6fcc7d9bb 2263
Kojto 119:aae6fcc7d9bb 2264 void arm_cfft_f32(
Kojto 119:aae6fcc7d9bb 2265 const arm_cfft_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2266 float32_t * p1,
Kojto 119:aae6fcc7d9bb 2267 uint8_t ifftFlag,
Kojto 119:aae6fcc7d9bb 2268 uint8_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2269
Kojto 119:aae6fcc7d9bb 2270 /**
Kojto 119:aae6fcc7d9bb 2271 * @brief Instance structure for the Q15 RFFT/RIFFT function.
Kojto 119:aae6fcc7d9bb 2272 */
Kojto 119:aae6fcc7d9bb 2273
Kojto 119:aae6fcc7d9bb 2274 typedef struct
Kojto 119:aae6fcc7d9bb 2275 {
Kojto 119:aae6fcc7d9bb 2276 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 119:aae6fcc7d9bb 2277 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 119:aae6fcc7d9bb 2278 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 119:aae6fcc7d9bb 2279 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2280 q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2281 q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2282 const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
Kojto 119:aae6fcc7d9bb 2283 } arm_rfft_instance_q15;
Kojto 119:aae6fcc7d9bb 2284
Kojto 119:aae6fcc7d9bb 2285 arm_status arm_rfft_init_q15(
Kojto 119:aae6fcc7d9bb 2286 arm_rfft_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 2287 uint32_t fftLenReal,
Kojto 119:aae6fcc7d9bb 2288 uint32_t ifftFlagR,
Kojto 119:aae6fcc7d9bb 2289 uint32_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2290
Kojto 119:aae6fcc7d9bb 2291 void arm_rfft_q15(
Kojto 119:aae6fcc7d9bb 2292 const arm_rfft_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 2293 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 2294 q15_t * pDst);
Kojto 119:aae6fcc7d9bb 2295
Kojto 119:aae6fcc7d9bb 2296 /**
Kojto 119:aae6fcc7d9bb 2297 * @brief Instance structure for the Q31 RFFT/RIFFT function.
Kojto 119:aae6fcc7d9bb 2298 */
Kojto 119:aae6fcc7d9bb 2299
Kojto 119:aae6fcc7d9bb 2300 typedef struct
Kojto 119:aae6fcc7d9bb 2301 {
Kojto 119:aae6fcc7d9bb 2302 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 119:aae6fcc7d9bb 2303 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 119:aae6fcc7d9bb 2304 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 119:aae6fcc7d9bb 2305 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2306 q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2307 q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2308 const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
Kojto 119:aae6fcc7d9bb 2309 } arm_rfft_instance_q31;
Kojto 119:aae6fcc7d9bb 2310
Kojto 119:aae6fcc7d9bb 2311 arm_status arm_rfft_init_q31(
Kojto 119:aae6fcc7d9bb 2312 arm_rfft_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 2313 uint32_t fftLenReal,
Kojto 119:aae6fcc7d9bb 2314 uint32_t ifftFlagR,
Kojto 119:aae6fcc7d9bb 2315 uint32_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2316
Kojto 119:aae6fcc7d9bb 2317 void arm_rfft_q31(
Kojto 119:aae6fcc7d9bb 2318 const arm_rfft_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 2319 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 2320 q31_t * pDst);
Kojto 119:aae6fcc7d9bb 2321
Kojto 119:aae6fcc7d9bb 2322 /**
Kojto 119:aae6fcc7d9bb 2323 * @brief Instance structure for the floating-point RFFT/RIFFT function.
Kojto 119:aae6fcc7d9bb 2324 */
Kojto 119:aae6fcc7d9bb 2325
Kojto 119:aae6fcc7d9bb 2326 typedef struct
Kojto 119:aae6fcc7d9bb 2327 {
Kojto 119:aae6fcc7d9bb 2328 uint32_t fftLenReal; /**< length of the real FFT. */
Kojto 119:aae6fcc7d9bb 2329 uint16_t fftLenBy2; /**< length of the complex FFT. */
Kojto 119:aae6fcc7d9bb 2330 uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
Kojto 119:aae6fcc7d9bb 2331 uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
Kojto 119:aae6fcc7d9bb 2332 uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2333 float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2334 float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2335 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
Kojto 119:aae6fcc7d9bb 2336 } arm_rfft_instance_f32;
Kojto 119:aae6fcc7d9bb 2337
Kojto 119:aae6fcc7d9bb 2338 arm_status arm_rfft_init_f32(
Kojto 119:aae6fcc7d9bb 2339 arm_rfft_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2340 arm_cfft_radix4_instance_f32 * S_CFFT,
Kojto 119:aae6fcc7d9bb 2341 uint32_t fftLenReal,
Kojto 119:aae6fcc7d9bb 2342 uint32_t ifftFlagR,
Kojto 119:aae6fcc7d9bb 2343 uint32_t bitReverseFlag);
Kojto 119:aae6fcc7d9bb 2344
Kojto 119:aae6fcc7d9bb 2345 void arm_rfft_f32(
Kojto 119:aae6fcc7d9bb 2346 const arm_rfft_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2347 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 2348 float32_t * pDst);
Kojto 119:aae6fcc7d9bb 2349
Kojto 119:aae6fcc7d9bb 2350 /**
Kojto 119:aae6fcc7d9bb 2351 * @brief Instance structure for the floating-point RFFT/RIFFT function.
Kojto 119:aae6fcc7d9bb 2352 */
Kojto 119:aae6fcc7d9bb 2353
Kojto 119:aae6fcc7d9bb 2354 typedef struct
Kojto 119:aae6fcc7d9bb 2355 {
Kojto 119:aae6fcc7d9bb 2356 arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
Kojto 119:aae6fcc7d9bb 2357 uint16_t fftLenRFFT; /**< length of the real sequence */
Kojto 119:aae6fcc7d9bb 2358 float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
Kojto 119:aae6fcc7d9bb 2359 } arm_rfft_fast_instance_f32 ;
Kojto 119:aae6fcc7d9bb 2360
Kojto 119:aae6fcc7d9bb 2361 arm_status arm_rfft_fast_init_f32 (
Kojto 119:aae6fcc7d9bb 2362 arm_rfft_fast_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2363 uint16_t fftLen);
Kojto 119:aae6fcc7d9bb 2364
Kojto 119:aae6fcc7d9bb 2365 void arm_rfft_fast_f32(
Kojto 119:aae6fcc7d9bb 2366 arm_rfft_fast_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2367 float32_t * p, float32_t * pOut,
Kojto 119:aae6fcc7d9bb 2368 uint8_t ifftFlag);
Kojto 119:aae6fcc7d9bb 2369
Kojto 119:aae6fcc7d9bb 2370 /**
Kojto 119:aae6fcc7d9bb 2371 * @brief Instance structure for the floating-point DCT4/IDCT4 function.
Kojto 119:aae6fcc7d9bb 2372 */
Kojto 119:aae6fcc7d9bb 2373
Kojto 119:aae6fcc7d9bb 2374 typedef struct
Kojto 119:aae6fcc7d9bb 2375 {
Kojto 119:aae6fcc7d9bb 2376 uint16_t N; /**< length of the DCT4. */
Kojto 119:aae6fcc7d9bb 2377 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 119:aae6fcc7d9bb 2378 float32_t normalize; /**< normalizing factor. */
Kojto 119:aae6fcc7d9bb 2379 float32_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2380 float32_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 119:aae6fcc7d9bb 2381 arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
Kojto 119:aae6fcc7d9bb 2382 arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
Kojto 119:aae6fcc7d9bb 2383 } arm_dct4_instance_f32;
Kojto 119:aae6fcc7d9bb 2384
Kojto 119:aae6fcc7d9bb 2385 /**
Kojto 119:aae6fcc7d9bb 2386 * @brief Initialization function for the floating-point DCT4/IDCT4.
Kojto 119:aae6fcc7d9bb 2387 * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
Kojto 119:aae6fcc7d9bb 2388 * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
Kojto 119:aae6fcc7d9bb 2389 * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
Kojto 119:aae6fcc7d9bb 2390 * @param[in] N length of the DCT4.
Kojto 119:aae6fcc7d9bb 2391 * @param[in] Nby2 half of the length of the DCT4.
Kojto 119:aae6fcc7d9bb 2392 * @param[in] normalize normalizing factor.
Kojto 119:aae6fcc7d9bb 2393 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
Kojto 119:aae6fcc7d9bb 2394 */
Kojto 119:aae6fcc7d9bb 2395
Kojto 119:aae6fcc7d9bb 2396 arm_status arm_dct4_init_f32(
Kojto 119:aae6fcc7d9bb 2397 arm_dct4_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2398 arm_rfft_instance_f32 * S_RFFT,
Kojto 119:aae6fcc7d9bb 2399 arm_cfft_radix4_instance_f32 * S_CFFT,
Kojto 119:aae6fcc7d9bb 2400 uint16_t N,
Kojto 119:aae6fcc7d9bb 2401 uint16_t Nby2,
Kojto 119:aae6fcc7d9bb 2402 float32_t normalize);
Kojto 119:aae6fcc7d9bb 2403
Kojto 119:aae6fcc7d9bb 2404 /**
Kojto 119:aae6fcc7d9bb 2405 * @brief Processing function for the floating-point DCT4/IDCT4.
Kojto 119:aae6fcc7d9bb 2406 * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
Kojto 119:aae6fcc7d9bb 2407 * @param[in] *pState points to state buffer.
Kojto 119:aae6fcc7d9bb 2408 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
Kojto 119:aae6fcc7d9bb 2409 * @return none.
Kojto 119:aae6fcc7d9bb 2410 */
Kojto 119:aae6fcc7d9bb 2411
Kojto 119:aae6fcc7d9bb 2412 void arm_dct4_f32(
Kojto 119:aae6fcc7d9bb 2413 const arm_dct4_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 2414 float32_t * pState,
Kojto 119:aae6fcc7d9bb 2415 float32_t * pInlineBuffer);
Kojto 119:aae6fcc7d9bb 2416
Kojto 119:aae6fcc7d9bb 2417 /**
Kojto 119:aae6fcc7d9bb 2418 * @brief Instance structure for the Q31 DCT4/IDCT4 function.
Kojto 119:aae6fcc7d9bb 2419 */
Kojto 119:aae6fcc7d9bb 2420
Kojto 119:aae6fcc7d9bb 2421 typedef struct
Kojto 119:aae6fcc7d9bb 2422 {
Kojto 119:aae6fcc7d9bb 2423 uint16_t N; /**< length of the DCT4. */
Kojto 119:aae6fcc7d9bb 2424 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 119:aae6fcc7d9bb 2425 q31_t normalize; /**< normalizing factor. */
Kojto 119:aae6fcc7d9bb 2426 q31_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2427 q31_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 119:aae6fcc7d9bb 2428 arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
Kojto 119:aae6fcc7d9bb 2429 arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
Kojto 119:aae6fcc7d9bb 2430 } arm_dct4_instance_q31;
Kojto 119:aae6fcc7d9bb 2431
Kojto 119:aae6fcc7d9bb 2432 /**
Kojto 119:aae6fcc7d9bb 2433 * @brief Initialization function for the Q31 DCT4/IDCT4.
Kojto 119:aae6fcc7d9bb 2434 * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
Kojto 119:aae6fcc7d9bb 2435 * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
Kojto 119:aae6fcc7d9bb 2436 * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
Kojto 119:aae6fcc7d9bb 2437 * @param[in] N length of the DCT4.
Kojto 119:aae6fcc7d9bb 2438 * @param[in] Nby2 half of the length of the DCT4.
Kojto 119:aae6fcc7d9bb 2439 * @param[in] normalize normalizing factor.
Kojto 119:aae6fcc7d9bb 2440 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
Kojto 119:aae6fcc7d9bb 2441 */
Kojto 119:aae6fcc7d9bb 2442
Kojto 119:aae6fcc7d9bb 2443 arm_status arm_dct4_init_q31(
Kojto 119:aae6fcc7d9bb 2444 arm_dct4_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 2445 arm_rfft_instance_q31 * S_RFFT,
Kojto 119:aae6fcc7d9bb 2446 arm_cfft_radix4_instance_q31 * S_CFFT,
Kojto 119:aae6fcc7d9bb 2447 uint16_t N,
Kojto 119:aae6fcc7d9bb 2448 uint16_t Nby2,
Kojto 119:aae6fcc7d9bb 2449 q31_t normalize);
Kojto 119:aae6fcc7d9bb 2450
Kojto 119:aae6fcc7d9bb 2451 /**
Kojto 119:aae6fcc7d9bb 2452 * @brief Processing function for the Q31 DCT4/IDCT4.
Kojto 119:aae6fcc7d9bb 2453 * @param[in] *S points to an instance of the Q31 DCT4 structure.
Kojto 119:aae6fcc7d9bb 2454 * @param[in] *pState points to state buffer.
Kojto 119:aae6fcc7d9bb 2455 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
Kojto 119:aae6fcc7d9bb 2456 * @return none.
Kojto 119:aae6fcc7d9bb 2457 */
Kojto 119:aae6fcc7d9bb 2458
Kojto 119:aae6fcc7d9bb 2459 void arm_dct4_q31(
Kojto 119:aae6fcc7d9bb 2460 const arm_dct4_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 2461 q31_t * pState,
Kojto 119:aae6fcc7d9bb 2462 q31_t * pInlineBuffer);
Kojto 119:aae6fcc7d9bb 2463
Kojto 119:aae6fcc7d9bb 2464 /**
Kojto 119:aae6fcc7d9bb 2465 * @brief Instance structure for the Q15 DCT4/IDCT4 function.
Kojto 119:aae6fcc7d9bb 2466 */
Kojto 119:aae6fcc7d9bb 2467
Kojto 119:aae6fcc7d9bb 2468 typedef struct
Kojto 119:aae6fcc7d9bb 2469 {
Kojto 119:aae6fcc7d9bb 2470 uint16_t N; /**< length of the DCT4. */
Kojto 119:aae6fcc7d9bb 2471 uint16_t Nby2; /**< half of the length of the DCT4. */
Kojto 119:aae6fcc7d9bb 2472 q15_t normalize; /**< normalizing factor. */
Kojto 119:aae6fcc7d9bb 2473 q15_t *pTwiddle; /**< points to the twiddle factor table. */
Kojto 119:aae6fcc7d9bb 2474 q15_t *pCosFactor; /**< points to the cosFactor table. */
Kojto 119:aae6fcc7d9bb 2475 arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
Kojto 119:aae6fcc7d9bb 2476 arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
Kojto 119:aae6fcc7d9bb 2477 } arm_dct4_instance_q15;
Kojto 119:aae6fcc7d9bb 2478
Kojto 119:aae6fcc7d9bb 2479 /**
Kojto 119:aae6fcc7d9bb 2480 * @brief Initialization function for the Q15 DCT4/IDCT4.
Kojto 119:aae6fcc7d9bb 2481 * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
Kojto 119:aae6fcc7d9bb 2482 * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
Kojto 119:aae6fcc7d9bb 2483 * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
Kojto 119:aae6fcc7d9bb 2484 * @param[in] N length of the DCT4.
Kojto 119:aae6fcc7d9bb 2485 * @param[in] Nby2 half of the length of the DCT4.
Kojto 119:aae6fcc7d9bb 2486 * @param[in] normalize normalizing factor.
Kojto 119:aae6fcc7d9bb 2487 * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
Kojto 119:aae6fcc7d9bb 2488 */
Kojto 119:aae6fcc7d9bb 2489
Kojto 119:aae6fcc7d9bb 2490 arm_status arm_dct4_init_q15(
Kojto 119:aae6fcc7d9bb 2491 arm_dct4_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 2492 arm_rfft_instance_q15 * S_RFFT,
Kojto 119:aae6fcc7d9bb 2493 arm_cfft_radix4_instance_q15 * S_CFFT,
Kojto 119:aae6fcc7d9bb 2494 uint16_t N,
Kojto 119:aae6fcc7d9bb 2495 uint16_t Nby2,
Kojto 119:aae6fcc7d9bb 2496 q15_t normalize);
Kojto 119:aae6fcc7d9bb 2497
Kojto 119:aae6fcc7d9bb 2498 /**
Kojto 119:aae6fcc7d9bb 2499 * @brief Processing function for the Q15 DCT4/IDCT4.
Kojto 119:aae6fcc7d9bb 2500 * @param[in] *S points to an instance of the Q15 DCT4 structure.
Kojto 119:aae6fcc7d9bb 2501 * @param[in] *pState points to state buffer.
Kojto 119:aae6fcc7d9bb 2502 * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
Kojto 119:aae6fcc7d9bb 2503 * @return none.
Kojto 119:aae6fcc7d9bb 2504 */
Kojto 119:aae6fcc7d9bb 2505
Kojto 119:aae6fcc7d9bb 2506 void arm_dct4_q15(
Kojto 119:aae6fcc7d9bb 2507 const arm_dct4_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 2508 q15_t * pState,
Kojto 119:aae6fcc7d9bb 2509 q15_t * pInlineBuffer);
Kojto 119:aae6fcc7d9bb 2510
Kojto 119:aae6fcc7d9bb 2511 /**
Kojto 119:aae6fcc7d9bb 2512 * @brief Floating-point vector addition.
Kojto 119:aae6fcc7d9bb 2513 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2514 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2515 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2516 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2517 * @return none.
Kojto 119:aae6fcc7d9bb 2518 */
Kojto 119:aae6fcc7d9bb 2519
Kojto 119:aae6fcc7d9bb 2520 void arm_add_f32(
Kojto 119:aae6fcc7d9bb 2521 float32_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2522 float32_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2523 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 2524 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2525
Kojto 119:aae6fcc7d9bb 2526 /**
Kojto 119:aae6fcc7d9bb 2527 * @brief Q7 vector addition.
Kojto 119:aae6fcc7d9bb 2528 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2529 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2530 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2531 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2532 * @return none.
Kojto 119:aae6fcc7d9bb 2533 */
Kojto 119:aae6fcc7d9bb 2534
Kojto 119:aae6fcc7d9bb 2535 void arm_add_q7(
Kojto 119:aae6fcc7d9bb 2536 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2537 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2538 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 2539 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2540
Kojto 119:aae6fcc7d9bb 2541 /**
Kojto 119:aae6fcc7d9bb 2542 * @brief Q15 vector addition.
Kojto 119:aae6fcc7d9bb 2543 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2544 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2545 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2546 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2547 * @return none.
Kojto 119:aae6fcc7d9bb 2548 */
Kojto 119:aae6fcc7d9bb 2549
Kojto 119:aae6fcc7d9bb 2550 void arm_add_q15(
Kojto 119:aae6fcc7d9bb 2551 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2552 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2553 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 2554 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2555
Kojto 119:aae6fcc7d9bb 2556 /**
Kojto 119:aae6fcc7d9bb 2557 * @brief Q31 vector addition.
Kojto 119:aae6fcc7d9bb 2558 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2559 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2560 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2561 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2562 * @return none.
Kojto 119:aae6fcc7d9bb 2563 */
Kojto 119:aae6fcc7d9bb 2564
Kojto 119:aae6fcc7d9bb 2565 void arm_add_q31(
Kojto 119:aae6fcc7d9bb 2566 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2567 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2568 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 2569 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2570
Kojto 119:aae6fcc7d9bb 2571 /**
Kojto 119:aae6fcc7d9bb 2572 * @brief Floating-point vector subtraction.
Kojto 119:aae6fcc7d9bb 2573 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2574 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2575 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2576 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2577 * @return none.
Kojto 119:aae6fcc7d9bb 2578 */
Kojto 119:aae6fcc7d9bb 2579
Kojto 119:aae6fcc7d9bb 2580 void arm_sub_f32(
Kojto 119:aae6fcc7d9bb 2581 float32_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2582 float32_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2583 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 2584 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2585
Kojto 119:aae6fcc7d9bb 2586 /**
Kojto 119:aae6fcc7d9bb 2587 * @brief Q7 vector subtraction.
Kojto 119:aae6fcc7d9bb 2588 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2589 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2590 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2591 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2592 * @return none.
Kojto 119:aae6fcc7d9bb 2593 */
Kojto 119:aae6fcc7d9bb 2594
Kojto 119:aae6fcc7d9bb 2595 void arm_sub_q7(
Kojto 119:aae6fcc7d9bb 2596 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2597 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2598 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 2599 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2600
Kojto 119:aae6fcc7d9bb 2601 /**
Kojto 119:aae6fcc7d9bb 2602 * @brief Q15 vector subtraction.
Kojto 119:aae6fcc7d9bb 2603 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2604 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2605 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2606 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2607 * @return none.
Kojto 119:aae6fcc7d9bb 2608 */
Kojto 119:aae6fcc7d9bb 2609
Kojto 119:aae6fcc7d9bb 2610 void arm_sub_q15(
Kojto 119:aae6fcc7d9bb 2611 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2612 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2613 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 2614 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2615
Kojto 119:aae6fcc7d9bb 2616 /**
Kojto 119:aae6fcc7d9bb 2617 * @brief Q31 vector subtraction.
Kojto 119:aae6fcc7d9bb 2618 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2619 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2620 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2621 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2622 * @return none.
Kojto 119:aae6fcc7d9bb 2623 */
Kojto 119:aae6fcc7d9bb 2624
Kojto 119:aae6fcc7d9bb 2625 void arm_sub_q31(
Kojto 119:aae6fcc7d9bb 2626 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2627 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2628 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 2629 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2630
Kojto 119:aae6fcc7d9bb 2631 /**
Kojto 119:aae6fcc7d9bb 2632 * @brief Multiplies a floating-point vector by a scalar.
Kojto 119:aae6fcc7d9bb 2633 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2634 * @param[in] scale scale factor to be applied
Kojto 119:aae6fcc7d9bb 2635 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2636 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2637 * @return none.
Kojto 119:aae6fcc7d9bb 2638 */
Kojto 119:aae6fcc7d9bb 2639
Kojto 119:aae6fcc7d9bb 2640 void arm_scale_f32(
Kojto 119:aae6fcc7d9bb 2641 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 2642 float32_t scale,
Kojto 119:aae6fcc7d9bb 2643 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 2644 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2645
Kojto 119:aae6fcc7d9bb 2646 /**
Kojto 119:aae6fcc7d9bb 2647 * @brief Multiplies a Q7 vector by a scalar.
Kojto 119:aae6fcc7d9bb 2648 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2649 * @param[in] scaleFract fractional portion of the scale value
Kojto 119:aae6fcc7d9bb 2650 * @param[in] shift number of bits to shift the result by
Kojto 119:aae6fcc7d9bb 2651 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2652 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2653 * @return none.
Kojto 119:aae6fcc7d9bb 2654 */
Kojto 119:aae6fcc7d9bb 2655
Kojto 119:aae6fcc7d9bb 2656 void arm_scale_q7(
Kojto 119:aae6fcc7d9bb 2657 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 2658 q7_t scaleFract,
Kojto 119:aae6fcc7d9bb 2659 int8_t shift,
Kojto 119:aae6fcc7d9bb 2660 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 2661 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2662
Kojto 119:aae6fcc7d9bb 2663 /**
Kojto 119:aae6fcc7d9bb 2664 * @brief Multiplies a Q15 vector by a scalar.
Kojto 119:aae6fcc7d9bb 2665 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2666 * @param[in] scaleFract fractional portion of the scale value
Kojto 119:aae6fcc7d9bb 2667 * @param[in] shift number of bits to shift the result by
Kojto 119:aae6fcc7d9bb 2668 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2669 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2670 * @return none.
Kojto 119:aae6fcc7d9bb 2671 */
Kojto 119:aae6fcc7d9bb 2672
Kojto 119:aae6fcc7d9bb 2673 void arm_scale_q15(
Kojto 119:aae6fcc7d9bb 2674 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 2675 q15_t scaleFract,
Kojto 119:aae6fcc7d9bb 2676 int8_t shift,
Kojto 119:aae6fcc7d9bb 2677 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 2678 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2679
Kojto 119:aae6fcc7d9bb 2680 /**
Kojto 119:aae6fcc7d9bb 2681 * @brief Multiplies a Q31 vector by a scalar.
Kojto 119:aae6fcc7d9bb 2682 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2683 * @param[in] scaleFract fractional portion of the scale value
Kojto 119:aae6fcc7d9bb 2684 * @param[in] shift number of bits to shift the result by
Kojto 119:aae6fcc7d9bb 2685 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2686 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2687 * @return none.
Kojto 119:aae6fcc7d9bb 2688 */
Kojto 119:aae6fcc7d9bb 2689
Kojto 119:aae6fcc7d9bb 2690 void arm_scale_q31(
Kojto 119:aae6fcc7d9bb 2691 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 2692 q31_t scaleFract,
Kojto 119:aae6fcc7d9bb 2693 int8_t shift,
Kojto 119:aae6fcc7d9bb 2694 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 2695 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2696
Kojto 119:aae6fcc7d9bb 2697 /**
Kojto 119:aae6fcc7d9bb 2698 * @brief Q7 vector absolute value.
Kojto 119:aae6fcc7d9bb 2699 * @param[in] *pSrc points to the input buffer
Kojto 119:aae6fcc7d9bb 2700 * @param[out] *pDst points to the output buffer
Kojto 119:aae6fcc7d9bb 2701 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2702 * @return none.
Kojto 119:aae6fcc7d9bb 2703 */
Kojto 119:aae6fcc7d9bb 2704
Kojto 119:aae6fcc7d9bb 2705 void arm_abs_q7(
Kojto 119:aae6fcc7d9bb 2706 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 2707 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 2708 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2709
Kojto 119:aae6fcc7d9bb 2710 /**
Kojto 119:aae6fcc7d9bb 2711 * @brief Floating-point vector absolute value.
Kojto 119:aae6fcc7d9bb 2712 * @param[in] *pSrc points to the input buffer
Kojto 119:aae6fcc7d9bb 2713 * @param[out] *pDst points to the output buffer
Kojto 119:aae6fcc7d9bb 2714 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2715 * @return none.
Kojto 119:aae6fcc7d9bb 2716 */
Kojto 119:aae6fcc7d9bb 2717
Kojto 119:aae6fcc7d9bb 2718 void arm_abs_f32(
Kojto 119:aae6fcc7d9bb 2719 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 2720 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 2721 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2722
Kojto 119:aae6fcc7d9bb 2723 /**
Kojto 119:aae6fcc7d9bb 2724 * @brief Q15 vector absolute value.
Kojto 119:aae6fcc7d9bb 2725 * @param[in] *pSrc points to the input buffer
Kojto 119:aae6fcc7d9bb 2726 * @param[out] *pDst points to the output buffer
Kojto 119:aae6fcc7d9bb 2727 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2728 * @return none.
Kojto 119:aae6fcc7d9bb 2729 */
Kojto 119:aae6fcc7d9bb 2730
Kojto 119:aae6fcc7d9bb 2731 void arm_abs_q15(
Kojto 119:aae6fcc7d9bb 2732 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 2733 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 2734 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2735
Kojto 119:aae6fcc7d9bb 2736 /**
Kojto 119:aae6fcc7d9bb 2737 * @brief Q31 vector absolute value.
Kojto 119:aae6fcc7d9bb 2738 * @param[in] *pSrc points to the input buffer
Kojto 119:aae6fcc7d9bb 2739 * @param[out] *pDst points to the output buffer
Kojto 119:aae6fcc7d9bb 2740 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2741 * @return none.
Kojto 119:aae6fcc7d9bb 2742 */
Kojto 119:aae6fcc7d9bb 2743
Kojto 119:aae6fcc7d9bb 2744 void arm_abs_q31(
Kojto 119:aae6fcc7d9bb 2745 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 2746 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 2747 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2748
Kojto 119:aae6fcc7d9bb 2749 /**
Kojto 119:aae6fcc7d9bb 2750 * @brief Dot product of floating-point vectors.
Kojto 119:aae6fcc7d9bb 2751 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2752 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2753 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2754 * @param[out] *result output result returned here
Kojto 119:aae6fcc7d9bb 2755 * @return none.
Kojto 119:aae6fcc7d9bb 2756 */
Kojto 119:aae6fcc7d9bb 2757
Kojto 119:aae6fcc7d9bb 2758 void arm_dot_prod_f32(
Kojto 119:aae6fcc7d9bb 2759 float32_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2760 float32_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2761 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 2762 float32_t * result);
Kojto 119:aae6fcc7d9bb 2763
Kojto 119:aae6fcc7d9bb 2764 /**
Kojto 119:aae6fcc7d9bb 2765 * @brief Dot product of Q7 vectors.
Kojto 119:aae6fcc7d9bb 2766 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2767 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2768 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2769 * @param[out] *result output result returned here
Kojto 119:aae6fcc7d9bb 2770 * @return none.
Kojto 119:aae6fcc7d9bb 2771 */
Kojto 119:aae6fcc7d9bb 2772
Kojto 119:aae6fcc7d9bb 2773 void arm_dot_prod_q7(
Kojto 119:aae6fcc7d9bb 2774 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2775 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2776 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 2777 q31_t * result);
Kojto 119:aae6fcc7d9bb 2778
Kojto 119:aae6fcc7d9bb 2779 /**
Kojto 119:aae6fcc7d9bb 2780 * @brief Dot product of Q15 vectors.
Kojto 119:aae6fcc7d9bb 2781 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2782 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2783 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2784 * @param[out] *result output result returned here
Kojto 119:aae6fcc7d9bb 2785 * @return none.
Kojto 119:aae6fcc7d9bb 2786 */
Kojto 119:aae6fcc7d9bb 2787
Kojto 119:aae6fcc7d9bb 2788 void arm_dot_prod_q15(
Kojto 119:aae6fcc7d9bb 2789 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2790 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2791 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 2792 q63_t * result);
Kojto 119:aae6fcc7d9bb 2793
Kojto 119:aae6fcc7d9bb 2794 /**
Kojto 119:aae6fcc7d9bb 2795 * @brief Dot product of Q31 vectors.
Kojto 119:aae6fcc7d9bb 2796 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 2797 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 2798 * @param[in] blockSize number of samples in each vector
Kojto 119:aae6fcc7d9bb 2799 * @param[out] *result output result returned here
Kojto 119:aae6fcc7d9bb 2800 * @return none.
Kojto 119:aae6fcc7d9bb 2801 */
Kojto 119:aae6fcc7d9bb 2802
Kojto 119:aae6fcc7d9bb 2803 void arm_dot_prod_q31(
Kojto 119:aae6fcc7d9bb 2804 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 2805 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 2806 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 2807 q63_t * result);
Kojto 119:aae6fcc7d9bb 2808
Kojto 119:aae6fcc7d9bb 2809 /**
Kojto 119:aae6fcc7d9bb 2810 * @brief Shifts the elements of a Q7 vector a specified number of bits.
Kojto 119:aae6fcc7d9bb 2811 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2812 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 119:aae6fcc7d9bb 2813 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2814 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2815 * @return none.
Kojto 119:aae6fcc7d9bb 2816 */
Kojto 119:aae6fcc7d9bb 2817
Kojto 119:aae6fcc7d9bb 2818 void arm_shift_q7(
Kojto 119:aae6fcc7d9bb 2819 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 2820 int8_t shiftBits,
Kojto 119:aae6fcc7d9bb 2821 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 2822 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2823
Kojto 119:aae6fcc7d9bb 2824 /**
Kojto 119:aae6fcc7d9bb 2825 * @brief Shifts the elements of a Q15 vector a specified number of bits.
Kojto 119:aae6fcc7d9bb 2826 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2827 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 119:aae6fcc7d9bb 2828 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2829 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2830 * @return none.
Kojto 119:aae6fcc7d9bb 2831 */
Kojto 119:aae6fcc7d9bb 2832
Kojto 119:aae6fcc7d9bb 2833 void arm_shift_q15(
Kojto 119:aae6fcc7d9bb 2834 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 2835 int8_t shiftBits,
Kojto 119:aae6fcc7d9bb 2836 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 2837 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2838
Kojto 119:aae6fcc7d9bb 2839 /**
Kojto 119:aae6fcc7d9bb 2840 * @brief Shifts the elements of a Q31 vector a specified number of bits.
Kojto 119:aae6fcc7d9bb 2841 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2842 * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
Kojto 119:aae6fcc7d9bb 2843 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2844 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2845 * @return none.
Kojto 119:aae6fcc7d9bb 2846 */
Kojto 119:aae6fcc7d9bb 2847
Kojto 119:aae6fcc7d9bb 2848 void arm_shift_q31(
Kojto 119:aae6fcc7d9bb 2849 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 2850 int8_t shiftBits,
Kojto 119:aae6fcc7d9bb 2851 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 2852 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2853
Kojto 119:aae6fcc7d9bb 2854 /**
Kojto 119:aae6fcc7d9bb 2855 * @brief Adds a constant offset to a floating-point vector.
Kojto 119:aae6fcc7d9bb 2856 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2857 * @param[in] offset is the offset to be added
Kojto 119:aae6fcc7d9bb 2858 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2859 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2860 * @return none.
Kojto 119:aae6fcc7d9bb 2861 */
Kojto 119:aae6fcc7d9bb 2862
Kojto 119:aae6fcc7d9bb 2863 void arm_offset_f32(
Kojto 119:aae6fcc7d9bb 2864 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 2865 float32_t offset,
Kojto 119:aae6fcc7d9bb 2866 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 2867 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2868
Kojto 119:aae6fcc7d9bb 2869 /**
Kojto 119:aae6fcc7d9bb 2870 * @brief Adds a constant offset to a Q7 vector.
Kojto 119:aae6fcc7d9bb 2871 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2872 * @param[in] offset is the offset to be added
Kojto 119:aae6fcc7d9bb 2873 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2874 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2875 * @return none.
Kojto 119:aae6fcc7d9bb 2876 */
Kojto 119:aae6fcc7d9bb 2877
Kojto 119:aae6fcc7d9bb 2878 void arm_offset_q7(
Kojto 119:aae6fcc7d9bb 2879 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 2880 q7_t offset,
Kojto 119:aae6fcc7d9bb 2881 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 2882 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2883
Kojto 119:aae6fcc7d9bb 2884 /**
Kojto 119:aae6fcc7d9bb 2885 * @brief Adds a constant offset to a Q15 vector.
Kojto 119:aae6fcc7d9bb 2886 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2887 * @param[in] offset is the offset to be added
Kojto 119:aae6fcc7d9bb 2888 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2889 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2890 * @return none.
Kojto 119:aae6fcc7d9bb 2891 */
Kojto 119:aae6fcc7d9bb 2892
Kojto 119:aae6fcc7d9bb 2893 void arm_offset_q15(
Kojto 119:aae6fcc7d9bb 2894 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 2895 q15_t offset,
Kojto 119:aae6fcc7d9bb 2896 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 2897 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2898
Kojto 119:aae6fcc7d9bb 2899 /**
Kojto 119:aae6fcc7d9bb 2900 * @brief Adds a constant offset to a Q31 vector.
Kojto 119:aae6fcc7d9bb 2901 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2902 * @param[in] offset is the offset to be added
Kojto 119:aae6fcc7d9bb 2903 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2904 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2905 * @return none.
Kojto 119:aae6fcc7d9bb 2906 */
Kojto 119:aae6fcc7d9bb 2907
Kojto 119:aae6fcc7d9bb 2908 void arm_offset_q31(
Kojto 119:aae6fcc7d9bb 2909 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 2910 q31_t offset,
Kojto 119:aae6fcc7d9bb 2911 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 2912 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2913
Kojto 119:aae6fcc7d9bb 2914 /**
Kojto 119:aae6fcc7d9bb 2915 * @brief Negates the elements of a floating-point vector.
Kojto 119:aae6fcc7d9bb 2916 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2917 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2918 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2919 * @return none.
Kojto 119:aae6fcc7d9bb 2920 */
Kojto 119:aae6fcc7d9bb 2921
Kojto 119:aae6fcc7d9bb 2922 void arm_negate_f32(
Kojto 119:aae6fcc7d9bb 2923 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 2924 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 2925 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2926
Kojto 119:aae6fcc7d9bb 2927 /**
Kojto 119:aae6fcc7d9bb 2928 * @brief Negates the elements of a Q7 vector.
Kojto 119:aae6fcc7d9bb 2929 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2930 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2931 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2932 * @return none.
Kojto 119:aae6fcc7d9bb 2933 */
Kojto 119:aae6fcc7d9bb 2934
Kojto 119:aae6fcc7d9bb 2935 void arm_negate_q7(
Kojto 119:aae6fcc7d9bb 2936 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 2937 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 2938 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2939
Kojto 119:aae6fcc7d9bb 2940 /**
Kojto 119:aae6fcc7d9bb 2941 * @brief Negates the elements of a Q15 vector.
Kojto 119:aae6fcc7d9bb 2942 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2943 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2944 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2945 * @return none.
Kojto 119:aae6fcc7d9bb 2946 */
Kojto 119:aae6fcc7d9bb 2947
Kojto 119:aae6fcc7d9bb 2948 void arm_negate_q15(
Kojto 119:aae6fcc7d9bb 2949 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 2950 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 2951 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2952
Kojto 119:aae6fcc7d9bb 2953 /**
Kojto 119:aae6fcc7d9bb 2954 * @brief Negates the elements of a Q31 vector.
Kojto 119:aae6fcc7d9bb 2955 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 2956 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 2957 * @param[in] blockSize number of samples in the vector
Kojto 119:aae6fcc7d9bb 2958 * @return none.
Kojto 119:aae6fcc7d9bb 2959 */
Kojto 119:aae6fcc7d9bb 2960
Kojto 119:aae6fcc7d9bb 2961 void arm_negate_q31(
Kojto 119:aae6fcc7d9bb 2962 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 2963 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 2964 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2965 /**
Kojto 119:aae6fcc7d9bb 2966 * @brief Copies the elements of a floating-point vector.
Kojto 119:aae6fcc7d9bb 2967 * @param[in] *pSrc input pointer
Kojto 119:aae6fcc7d9bb 2968 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 2969 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 2970 * @return none.
Kojto 119:aae6fcc7d9bb 2971 */
Kojto 119:aae6fcc7d9bb 2972 void arm_copy_f32(
Kojto 119:aae6fcc7d9bb 2973 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 2974 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 2975 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2976
Kojto 119:aae6fcc7d9bb 2977 /**
Kojto 119:aae6fcc7d9bb 2978 * @brief Copies the elements of a Q7 vector.
Kojto 119:aae6fcc7d9bb 2979 * @param[in] *pSrc input pointer
Kojto 119:aae6fcc7d9bb 2980 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 2981 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 2982 * @return none.
Kojto 119:aae6fcc7d9bb 2983 */
Kojto 119:aae6fcc7d9bb 2984 void arm_copy_q7(
Kojto 119:aae6fcc7d9bb 2985 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 2986 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 2987 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 2988
Kojto 119:aae6fcc7d9bb 2989 /**
Kojto 119:aae6fcc7d9bb 2990 * @brief Copies the elements of a Q15 vector.
Kojto 119:aae6fcc7d9bb 2991 * @param[in] *pSrc input pointer
Kojto 119:aae6fcc7d9bb 2992 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 2993 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 2994 * @return none.
Kojto 119:aae6fcc7d9bb 2995 */
Kojto 119:aae6fcc7d9bb 2996 void arm_copy_q15(
Kojto 119:aae6fcc7d9bb 2997 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 2998 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 2999 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3000
Kojto 119:aae6fcc7d9bb 3001 /**
Kojto 119:aae6fcc7d9bb 3002 * @brief Copies the elements of a Q31 vector.
Kojto 119:aae6fcc7d9bb 3003 * @param[in] *pSrc input pointer
Kojto 119:aae6fcc7d9bb 3004 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 3005 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 3006 * @return none.
Kojto 119:aae6fcc7d9bb 3007 */
Kojto 119:aae6fcc7d9bb 3008 void arm_copy_q31(
Kojto 119:aae6fcc7d9bb 3009 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 3010 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 3011 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3012 /**
Kojto 119:aae6fcc7d9bb 3013 * @brief Fills a constant value into a floating-point vector.
Kojto 119:aae6fcc7d9bb 3014 * @param[in] value input value to be filled
Kojto 119:aae6fcc7d9bb 3015 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 3016 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 3017 * @return none.
Kojto 119:aae6fcc7d9bb 3018 */
Kojto 119:aae6fcc7d9bb 3019 void arm_fill_f32(
Kojto 119:aae6fcc7d9bb 3020 float32_t value,
Kojto 119:aae6fcc7d9bb 3021 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 3022 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3023
Kojto 119:aae6fcc7d9bb 3024 /**
Kojto 119:aae6fcc7d9bb 3025 * @brief Fills a constant value into a Q7 vector.
Kojto 119:aae6fcc7d9bb 3026 * @param[in] value input value to be filled
Kojto 119:aae6fcc7d9bb 3027 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 3028 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 3029 * @return none.
Kojto 119:aae6fcc7d9bb 3030 */
Kojto 119:aae6fcc7d9bb 3031 void arm_fill_q7(
Kojto 119:aae6fcc7d9bb 3032 q7_t value,
Kojto 119:aae6fcc7d9bb 3033 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 3034 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3035
Kojto 119:aae6fcc7d9bb 3036 /**
Kojto 119:aae6fcc7d9bb 3037 * @brief Fills a constant value into a Q15 vector.
Kojto 119:aae6fcc7d9bb 3038 * @param[in] value input value to be filled
Kojto 119:aae6fcc7d9bb 3039 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 3040 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 3041 * @return none.
Kojto 119:aae6fcc7d9bb 3042 */
Kojto 119:aae6fcc7d9bb 3043 void arm_fill_q15(
Kojto 119:aae6fcc7d9bb 3044 q15_t value,
Kojto 119:aae6fcc7d9bb 3045 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3046 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3047
Kojto 119:aae6fcc7d9bb 3048 /**
Kojto 119:aae6fcc7d9bb 3049 * @brief Fills a constant value into a Q31 vector.
Kojto 119:aae6fcc7d9bb 3050 * @param[in] value input value to be filled
Kojto 119:aae6fcc7d9bb 3051 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 3052 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 3053 * @return none.
Kojto 119:aae6fcc7d9bb 3054 */
Kojto 119:aae6fcc7d9bb 3055 void arm_fill_q31(
Kojto 119:aae6fcc7d9bb 3056 q31_t value,
Kojto 119:aae6fcc7d9bb 3057 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 3058 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3059
Kojto 119:aae6fcc7d9bb 3060 /**
Kojto 119:aae6fcc7d9bb 3061 * @brief Convolution of floating-point sequences.
Kojto 119:aae6fcc7d9bb 3062 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3063 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3064 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3065 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3066 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
Kojto 119:aae6fcc7d9bb 3067 * @return none.
Kojto 119:aae6fcc7d9bb 3068 */
Kojto 119:aae6fcc7d9bb 3069
Kojto 119:aae6fcc7d9bb 3070 void arm_conv_f32(
Kojto 119:aae6fcc7d9bb 3071 float32_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3072 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3073 float32_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3074 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3075 float32_t * pDst);
Kojto 119:aae6fcc7d9bb 3076
Kojto 119:aae6fcc7d9bb 3077
Kojto 119:aae6fcc7d9bb 3078 /**
Kojto 119:aae6fcc7d9bb 3079 * @brief Convolution of Q15 sequences.
Kojto 119:aae6fcc7d9bb 3080 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3081 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3082 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3083 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3084 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 119:aae6fcc7d9bb 3085 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 119:aae6fcc7d9bb 3086 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 119:aae6fcc7d9bb 3087 * @return none.
Kojto 119:aae6fcc7d9bb 3088 */
Kojto 119:aae6fcc7d9bb 3089
Kojto 119:aae6fcc7d9bb 3090
Kojto 119:aae6fcc7d9bb 3091 void arm_conv_opt_q15(
Kojto 119:aae6fcc7d9bb 3092 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3093 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3094 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3095 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3096 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3097 q15_t * pScratch1,
Kojto 119:aae6fcc7d9bb 3098 q15_t * pScratch2);
Kojto 119:aae6fcc7d9bb 3099
Kojto 119:aae6fcc7d9bb 3100
Kojto 119:aae6fcc7d9bb 3101 /**
Kojto 119:aae6fcc7d9bb 3102 * @brief Convolution of Q15 sequences.
Kojto 119:aae6fcc7d9bb 3103 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3104 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3105 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3106 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3107 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
Kojto 119:aae6fcc7d9bb 3108 * @return none.
Kojto 119:aae6fcc7d9bb 3109 */
Kojto 119:aae6fcc7d9bb 3110
Kojto 119:aae6fcc7d9bb 3111 void arm_conv_q15(
Kojto 119:aae6fcc7d9bb 3112 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3113 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3114 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3115 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3116 q15_t * pDst);
Kojto 119:aae6fcc7d9bb 3117
Kojto 119:aae6fcc7d9bb 3118 /**
Kojto 119:aae6fcc7d9bb 3119 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 119:aae6fcc7d9bb 3120 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3121 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3122 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3123 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3124 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 119:aae6fcc7d9bb 3125 * @return none.
Kojto 119:aae6fcc7d9bb 3126 */
Kojto 119:aae6fcc7d9bb 3127
Kojto 119:aae6fcc7d9bb 3128 void arm_conv_fast_q15(
Kojto 119:aae6fcc7d9bb 3129 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3130 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3131 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3132 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3133 q15_t * pDst);
Kojto 119:aae6fcc7d9bb 3134
Kojto 119:aae6fcc7d9bb 3135 /**
Kojto 119:aae6fcc7d9bb 3136 * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 119:aae6fcc7d9bb 3137 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3138 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3139 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3140 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3141 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 119:aae6fcc7d9bb 3142 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 119:aae6fcc7d9bb 3143 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 119:aae6fcc7d9bb 3144 * @return none.
Kojto 119:aae6fcc7d9bb 3145 */
Kojto 119:aae6fcc7d9bb 3146
Kojto 119:aae6fcc7d9bb 3147 void arm_conv_fast_opt_q15(
Kojto 119:aae6fcc7d9bb 3148 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3149 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3150 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3151 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3152 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3153 q15_t * pScratch1,
Kojto 119:aae6fcc7d9bb 3154 q15_t * pScratch2);
Kojto 119:aae6fcc7d9bb 3155
Kojto 119:aae6fcc7d9bb 3156
Kojto 119:aae6fcc7d9bb 3157
Kojto 119:aae6fcc7d9bb 3158 /**
Kojto 119:aae6fcc7d9bb 3159 * @brief Convolution of Q31 sequences.
Kojto 119:aae6fcc7d9bb 3160 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3161 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3162 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3163 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3164 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 119:aae6fcc7d9bb 3165 * @return none.
Kojto 119:aae6fcc7d9bb 3166 */
Kojto 119:aae6fcc7d9bb 3167
Kojto 119:aae6fcc7d9bb 3168 void arm_conv_q31(
Kojto 119:aae6fcc7d9bb 3169 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3170 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3171 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3172 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3173 q31_t * pDst);
Kojto 119:aae6fcc7d9bb 3174
Kojto 119:aae6fcc7d9bb 3175 /**
Kojto 119:aae6fcc7d9bb 3176 * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 119:aae6fcc7d9bb 3177 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3178 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3179 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3180 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3181 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 119:aae6fcc7d9bb 3182 * @return none.
Kojto 119:aae6fcc7d9bb 3183 */
Kojto 119:aae6fcc7d9bb 3184
Kojto 119:aae6fcc7d9bb 3185 void arm_conv_fast_q31(
Kojto 119:aae6fcc7d9bb 3186 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3187 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3188 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3189 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3190 q31_t * pDst);
Kojto 119:aae6fcc7d9bb 3191
Kojto 119:aae6fcc7d9bb 3192
Kojto 119:aae6fcc7d9bb 3193 /**
Kojto 119:aae6fcc7d9bb 3194 * @brief Convolution of Q7 sequences.
Kojto 119:aae6fcc7d9bb 3195 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3196 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3197 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3198 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3199 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 119:aae6fcc7d9bb 3200 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 119:aae6fcc7d9bb 3201 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 119:aae6fcc7d9bb 3202 * @return none.
Kojto 119:aae6fcc7d9bb 3203 */
Kojto 119:aae6fcc7d9bb 3204
Kojto 119:aae6fcc7d9bb 3205 void arm_conv_opt_q7(
Kojto 119:aae6fcc7d9bb 3206 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3207 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3208 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3209 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3210 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 3211 q15_t * pScratch1,
Kojto 119:aae6fcc7d9bb 3212 q15_t * pScratch2);
Kojto 119:aae6fcc7d9bb 3213
Kojto 119:aae6fcc7d9bb 3214
Kojto 119:aae6fcc7d9bb 3215
Kojto 119:aae6fcc7d9bb 3216 /**
Kojto 119:aae6fcc7d9bb 3217 * @brief Convolution of Q7 sequences.
Kojto 119:aae6fcc7d9bb 3218 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3219 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3220 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3221 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3222 * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
Kojto 119:aae6fcc7d9bb 3223 * @return none.
Kojto 119:aae6fcc7d9bb 3224 */
Kojto 119:aae6fcc7d9bb 3225
Kojto 119:aae6fcc7d9bb 3226 void arm_conv_q7(
Kojto 119:aae6fcc7d9bb 3227 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3228 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3229 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3230 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3231 q7_t * pDst);
Kojto 119:aae6fcc7d9bb 3232
Kojto 119:aae6fcc7d9bb 3233
Kojto 119:aae6fcc7d9bb 3234 /**
Kojto 119:aae6fcc7d9bb 3235 * @brief Partial convolution of floating-point sequences.
Kojto 119:aae6fcc7d9bb 3236 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3237 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3238 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3239 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3240 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3241 * @param[in] firstIndex is the first output sample to start with.
Kojto 119:aae6fcc7d9bb 3242 * @param[in] numPoints is the number of output points to be computed.
Kojto 119:aae6fcc7d9bb 3243 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 119:aae6fcc7d9bb 3244 */
Kojto 119:aae6fcc7d9bb 3245
Kojto 119:aae6fcc7d9bb 3246 arm_status arm_conv_partial_f32(
Kojto 119:aae6fcc7d9bb 3247 float32_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3248 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3249 float32_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3250 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3251 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 3252 uint32_t firstIndex,
Kojto 119:aae6fcc7d9bb 3253 uint32_t numPoints);
Kojto 119:aae6fcc7d9bb 3254
Kojto 119:aae6fcc7d9bb 3255 /**
Kojto 119:aae6fcc7d9bb 3256 * @brief Partial convolution of Q15 sequences.
Kojto 119:aae6fcc7d9bb 3257 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3258 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3259 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3260 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3261 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3262 * @param[in] firstIndex is the first output sample to start with.
Kojto 119:aae6fcc7d9bb 3263 * @param[in] numPoints is the number of output points to be computed.
Kojto 119:aae6fcc7d9bb 3264 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 119:aae6fcc7d9bb 3265 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 119:aae6fcc7d9bb 3266 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 119:aae6fcc7d9bb 3267 */
Kojto 119:aae6fcc7d9bb 3268
Kojto 119:aae6fcc7d9bb 3269 arm_status arm_conv_partial_opt_q15(
Kojto 119:aae6fcc7d9bb 3270 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3271 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3272 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3273 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3274 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3275 uint32_t firstIndex,
Kojto 119:aae6fcc7d9bb 3276 uint32_t numPoints,
Kojto 119:aae6fcc7d9bb 3277 q15_t * pScratch1,
Kojto 119:aae6fcc7d9bb 3278 q15_t * pScratch2);
Kojto 119:aae6fcc7d9bb 3279
Kojto 119:aae6fcc7d9bb 3280
Kojto 119:aae6fcc7d9bb 3281 /**
Kojto 119:aae6fcc7d9bb 3282 * @brief Partial convolution of Q15 sequences.
Kojto 119:aae6fcc7d9bb 3283 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3284 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3285 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3286 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3287 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3288 * @param[in] firstIndex is the first output sample to start with.
Kojto 119:aae6fcc7d9bb 3289 * @param[in] numPoints is the number of output points to be computed.
Kojto 119:aae6fcc7d9bb 3290 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 119:aae6fcc7d9bb 3291 */
Kojto 119:aae6fcc7d9bb 3292
Kojto 119:aae6fcc7d9bb 3293 arm_status arm_conv_partial_q15(
Kojto 119:aae6fcc7d9bb 3294 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3295 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3296 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3297 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3298 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3299 uint32_t firstIndex,
Kojto 119:aae6fcc7d9bb 3300 uint32_t numPoints);
Kojto 119:aae6fcc7d9bb 3301
Kojto 119:aae6fcc7d9bb 3302 /**
Kojto 119:aae6fcc7d9bb 3303 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 119:aae6fcc7d9bb 3304 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3305 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3306 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3307 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3308 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3309 * @param[in] firstIndex is the first output sample to start with.
Kojto 119:aae6fcc7d9bb 3310 * @param[in] numPoints is the number of output points to be computed.
Kojto 119:aae6fcc7d9bb 3311 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 119:aae6fcc7d9bb 3312 */
Kojto 119:aae6fcc7d9bb 3313
Kojto 119:aae6fcc7d9bb 3314 arm_status arm_conv_partial_fast_q15(
Kojto 119:aae6fcc7d9bb 3315 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3316 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3317 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3318 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3319 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3320 uint32_t firstIndex,
Kojto 119:aae6fcc7d9bb 3321 uint32_t numPoints);
Kojto 119:aae6fcc7d9bb 3322
Kojto 119:aae6fcc7d9bb 3323
Kojto 119:aae6fcc7d9bb 3324 /**
Kojto 119:aae6fcc7d9bb 3325 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 119:aae6fcc7d9bb 3326 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3327 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3328 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3329 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3330 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3331 * @param[in] firstIndex is the first output sample to start with.
Kojto 119:aae6fcc7d9bb 3332 * @param[in] numPoints is the number of output points to be computed.
Kojto 119:aae6fcc7d9bb 3333 * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 119:aae6fcc7d9bb 3334 * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
Kojto 119:aae6fcc7d9bb 3335 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 119:aae6fcc7d9bb 3336 */
Kojto 119:aae6fcc7d9bb 3337
Kojto 119:aae6fcc7d9bb 3338 arm_status arm_conv_partial_fast_opt_q15(
Kojto 119:aae6fcc7d9bb 3339 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3340 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3341 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3342 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3343 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3344 uint32_t firstIndex,
Kojto 119:aae6fcc7d9bb 3345 uint32_t numPoints,
Kojto 119:aae6fcc7d9bb 3346 q15_t * pScratch1,
Kojto 119:aae6fcc7d9bb 3347 q15_t * pScratch2);
Kojto 119:aae6fcc7d9bb 3348
Kojto 119:aae6fcc7d9bb 3349
Kojto 119:aae6fcc7d9bb 3350 /**
Kojto 119:aae6fcc7d9bb 3351 * @brief Partial convolution of Q31 sequences.
Kojto 119:aae6fcc7d9bb 3352 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3353 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3354 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3355 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3356 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3357 * @param[in] firstIndex is the first output sample to start with.
Kojto 119:aae6fcc7d9bb 3358 * @param[in] numPoints is the number of output points to be computed.
Kojto 119:aae6fcc7d9bb 3359 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 119:aae6fcc7d9bb 3360 */
Kojto 119:aae6fcc7d9bb 3361
Kojto 119:aae6fcc7d9bb 3362 arm_status arm_conv_partial_q31(
Kojto 119:aae6fcc7d9bb 3363 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3364 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3365 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3366 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3367 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 3368 uint32_t firstIndex,
Kojto 119:aae6fcc7d9bb 3369 uint32_t numPoints);
Kojto 119:aae6fcc7d9bb 3370
Kojto 119:aae6fcc7d9bb 3371
Kojto 119:aae6fcc7d9bb 3372 /**
Kojto 119:aae6fcc7d9bb 3373 * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 119:aae6fcc7d9bb 3374 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3375 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3376 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3377 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3378 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3379 * @param[in] firstIndex is the first output sample to start with.
Kojto 119:aae6fcc7d9bb 3380 * @param[in] numPoints is the number of output points to be computed.
Kojto 119:aae6fcc7d9bb 3381 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 119:aae6fcc7d9bb 3382 */
Kojto 119:aae6fcc7d9bb 3383
Kojto 119:aae6fcc7d9bb 3384 arm_status arm_conv_partial_fast_q31(
Kojto 119:aae6fcc7d9bb 3385 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3386 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3387 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3388 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3389 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 3390 uint32_t firstIndex,
Kojto 119:aae6fcc7d9bb 3391 uint32_t numPoints);
Kojto 119:aae6fcc7d9bb 3392
Kojto 119:aae6fcc7d9bb 3393
Kojto 119:aae6fcc7d9bb 3394 /**
Kojto 119:aae6fcc7d9bb 3395 * @brief Partial convolution of Q7 sequences
Kojto 119:aae6fcc7d9bb 3396 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3397 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3398 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3399 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3400 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3401 * @param[in] firstIndex is the first output sample to start with.
Kojto 119:aae6fcc7d9bb 3402 * @param[in] numPoints is the number of output points to be computed.
Kojto 119:aae6fcc7d9bb 3403 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 119:aae6fcc7d9bb 3404 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 119:aae6fcc7d9bb 3405 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 119:aae6fcc7d9bb 3406 */
Kojto 119:aae6fcc7d9bb 3407
Kojto 119:aae6fcc7d9bb 3408 arm_status arm_conv_partial_opt_q7(
Kojto 119:aae6fcc7d9bb 3409 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3410 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3411 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3412 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3413 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 3414 uint32_t firstIndex,
Kojto 119:aae6fcc7d9bb 3415 uint32_t numPoints,
Kojto 119:aae6fcc7d9bb 3416 q15_t * pScratch1,
Kojto 119:aae6fcc7d9bb 3417 q15_t * pScratch2);
Kojto 119:aae6fcc7d9bb 3418
Kojto 119:aae6fcc7d9bb 3419
Kojto 119:aae6fcc7d9bb 3420 /**
Kojto 119:aae6fcc7d9bb 3421 * @brief Partial convolution of Q7 sequences.
Kojto 119:aae6fcc7d9bb 3422 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 3423 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 3424 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 3425 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 3426 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3427 * @param[in] firstIndex is the first output sample to start with.
Kojto 119:aae6fcc7d9bb 3428 * @param[in] numPoints is the number of output points to be computed.
Kojto 119:aae6fcc7d9bb 3429 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
Kojto 119:aae6fcc7d9bb 3430 */
Kojto 119:aae6fcc7d9bb 3431
Kojto 119:aae6fcc7d9bb 3432 arm_status arm_conv_partial_q7(
Kojto 119:aae6fcc7d9bb 3433 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 3434 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 3435 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 3436 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 3437 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 3438 uint32_t firstIndex,
Kojto 119:aae6fcc7d9bb 3439 uint32_t numPoints);
Kojto 119:aae6fcc7d9bb 3440
Kojto 119:aae6fcc7d9bb 3441
Kojto 119:aae6fcc7d9bb 3442
Kojto 119:aae6fcc7d9bb 3443 /**
Kojto 119:aae6fcc7d9bb 3444 * @brief Instance structure for the Q15 FIR decimator.
Kojto 119:aae6fcc7d9bb 3445 */
Kojto 119:aae6fcc7d9bb 3446
Kojto 119:aae6fcc7d9bb 3447 typedef struct
Kojto 119:aae6fcc7d9bb 3448 {
Kojto 119:aae6fcc7d9bb 3449 uint8_t M; /**< decimation factor. */
Kojto 119:aae6fcc7d9bb 3450 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 3451 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 119:aae6fcc7d9bb 3452 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 3453 } arm_fir_decimate_instance_q15;
Kojto 119:aae6fcc7d9bb 3454
Kojto 119:aae6fcc7d9bb 3455 /**
Kojto 119:aae6fcc7d9bb 3456 * @brief Instance structure for the Q31 FIR decimator.
Kojto 119:aae6fcc7d9bb 3457 */
Kojto 119:aae6fcc7d9bb 3458
Kojto 119:aae6fcc7d9bb 3459 typedef struct
Kojto 119:aae6fcc7d9bb 3460 {
Kojto 119:aae6fcc7d9bb 3461 uint8_t M; /**< decimation factor. */
Kojto 119:aae6fcc7d9bb 3462 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 3463 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 119:aae6fcc7d9bb 3464 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 3465
Kojto 119:aae6fcc7d9bb 3466 } arm_fir_decimate_instance_q31;
Kojto 119:aae6fcc7d9bb 3467
Kojto 119:aae6fcc7d9bb 3468 /**
Kojto 119:aae6fcc7d9bb 3469 * @brief Instance structure for the floating-point FIR decimator.
Kojto 119:aae6fcc7d9bb 3470 */
Kojto 119:aae6fcc7d9bb 3471
Kojto 119:aae6fcc7d9bb 3472 typedef struct
Kojto 119:aae6fcc7d9bb 3473 {
Kojto 119:aae6fcc7d9bb 3474 uint8_t M; /**< decimation factor. */
Kojto 119:aae6fcc7d9bb 3475 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 3476 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 119:aae6fcc7d9bb 3477 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 3478
Kojto 119:aae6fcc7d9bb 3479 } arm_fir_decimate_instance_f32;
Kojto 119:aae6fcc7d9bb 3480
Kojto 119:aae6fcc7d9bb 3481
Kojto 119:aae6fcc7d9bb 3482
Kojto 119:aae6fcc7d9bb 3483 /**
Kojto 119:aae6fcc7d9bb 3484 * @brief Processing function for the floating-point FIR decimator.
Kojto 119:aae6fcc7d9bb 3485 * @param[in] *S points to an instance of the floating-point FIR decimator structure.
Kojto 119:aae6fcc7d9bb 3486 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3487 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3488 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3489 * @return none
Kojto 119:aae6fcc7d9bb 3490 */
Kojto 119:aae6fcc7d9bb 3491
Kojto 119:aae6fcc7d9bb 3492 void arm_fir_decimate_f32(
Kojto 119:aae6fcc7d9bb 3493 const arm_fir_decimate_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 3494 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 3495 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 3496 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3497
Kojto 119:aae6fcc7d9bb 3498
Kojto 119:aae6fcc7d9bb 3499 /**
Kojto 119:aae6fcc7d9bb 3500 * @brief Initialization function for the floating-point FIR decimator.
Kojto 119:aae6fcc7d9bb 3501 * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
Kojto 119:aae6fcc7d9bb 3502 * @param[in] numTaps number of coefficients in the filter.
Kojto 119:aae6fcc7d9bb 3503 * @param[in] M decimation factor.
Kojto 119:aae6fcc7d9bb 3504 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 3505 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3506 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3507 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 119:aae6fcc7d9bb 3508 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 119:aae6fcc7d9bb 3509 */
Kojto 119:aae6fcc7d9bb 3510
Kojto 119:aae6fcc7d9bb 3511 arm_status arm_fir_decimate_init_f32(
Kojto 119:aae6fcc7d9bb 3512 arm_fir_decimate_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 3513 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 3514 uint8_t M,
Kojto 119:aae6fcc7d9bb 3515 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3516 float32_t * pState,
Kojto 119:aae6fcc7d9bb 3517 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3518
Kojto 119:aae6fcc7d9bb 3519 /**
Kojto 119:aae6fcc7d9bb 3520 * @brief Processing function for the Q15 FIR decimator.
Kojto 119:aae6fcc7d9bb 3521 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
Kojto 119:aae6fcc7d9bb 3522 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3523 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3524 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3525 * @return none
Kojto 119:aae6fcc7d9bb 3526 */
Kojto 119:aae6fcc7d9bb 3527
Kojto 119:aae6fcc7d9bb 3528 void arm_fir_decimate_q15(
Kojto 119:aae6fcc7d9bb 3529 const arm_fir_decimate_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 3530 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 3531 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3532 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3533
Kojto 119:aae6fcc7d9bb 3534 /**
Kojto 119:aae6fcc7d9bb 3535 * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
Kojto 119:aae6fcc7d9bb 3536 * @param[in] *S points to an instance of the Q15 FIR decimator structure.
Kojto 119:aae6fcc7d9bb 3537 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3538 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3539 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3540 * @return none
Kojto 119:aae6fcc7d9bb 3541 */
Kojto 119:aae6fcc7d9bb 3542
Kojto 119:aae6fcc7d9bb 3543 void arm_fir_decimate_fast_q15(
Kojto 119:aae6fcc7d9bb 3544 const arm_fir_decimate_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 3545 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 3546 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3547 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3548
Kojto 119:aae6fcc7d9bb 3549
Kojto 119:aae6fcc7d9bb 3550
Kojto 119:aae6fcc7d9bb 3551 /**
Kojto 119:aae6fcc7d9bb 3552 * @brief Initialization function for the Q15 FIR decimator.
Kojto 119:aae6fcc7d9bb 3553 * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
Kojto 119:aae6fcc7d9bb 3554 * @param[in] numTaps number of coefficients in the filter.
Kojto 119:aae6fcc7d9bb 3555 * @param[in] M decimation factor.
Kojto 119:aae6fcc7d9bb 3556 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 3557 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3558 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3559 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 119:aae6fcc7d9bb 3560 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 119:aae6fcc7d9bb 3561 */
Kojto 119:aae6fcc7d9bb 3562
Kojto 119:aae6fcc7d9bb 3563 arm_status arm_fir_decimate_init_q15(
Kojto 119:aae6fcc7d9bb 3564 arm_fir_decimate_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 3565 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 3566 uint8_t M,
Kojto 119:aae6fcc7d9bb 3567 q15_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3568 q15_t * pState,
Kojto 119:aae6fcc7d9bb 3569 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3570
Kojto 119:aae6fcc7d9bb 3571 /**
Kojto 119:aae6fcc7d9bb 3572 * @brief Processing function for the Q31 FIR decimator.
Kojto 119:aae6fcc7d9bb 3573 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
Kojto 119:aae6fcc7d9bb 3574 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3575 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3576 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3577 * @return none
Kojto 119:aae6fcc7d9bb 3578 */
Kojto 119:aae6fcc7d9bb 3579
Kojto 119:aae6fcc7d9bb 3580 void arm_fir_decimate_q31(
Kojto 119:aae6fcc7d9bb 3581 const arm_fir_decimate_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 3582 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 3583 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 3584 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3585
Kojto 119:aae6fcc7d9bb 3586 /**
Kojto 119:aae6fcc7d9bb 3587 * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
Kojto 119:aae6fcc7d9bb 3588 * @param[in] *S points to an instance of the Q31 FIR decimator structure.
Kojto 119:aae6fcc7d9bb 3589 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3590 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3591 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3592 * @return none
Kojto 119:aae6fcc7d9bb 3593 */
Kojto 119:aae6fcc7d9bb 3594
Kojto 119:aae6fcc7d9bb 3595 void arm_fir_decimate_fast_q31(
Kojto 119:aae6fcc7d9bb 3596 arm_fir_decimate_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 3597 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 3598 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 3599 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3600
Kojto 119:aae6fcc7d9bb 3601
Kojto 119:aae6fcc7d9bb 3602 /**
Kojto 119:aae6fcc7d9bb 3603 * @brief Initialization function for the Q31 FIR decimator.
Kojto 119:aae6fcc7d9bb 3604 * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
Kojto 119:aae6fcc7d9bb 3605 * @param[in] numTaps number of coefficients in the filter.
Kojto 119:aae6fcc7d9bb 3606 * @param[in] M decimation factor.
Kojto 119:aae6fcc7d9bb 3607 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 3608 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3609 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3610 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 119:aae6fcc7d9bb 3611 * <code>blockSize</code> is not a multiple of <code>M</code>.
Kojto 119:aae6fcc7d9bb 3612 */
Kojto 119:aae6fcc7d9bb 3613
Kojto 119:aae6fcc7d9bb 3614 arm_status arm_fir_decimate_init_q31(
Kojto 119:aae6fcc7d9bb 3615 arm_fir_decimate_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 3616 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 3617 uint8_t M,
Kojto 119:aae6fcc7d9bb 3618 q31_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3619 q31_t * pState,
Kojto 119:aae6fcc7d9bb 3620 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3621
Kojto 119:aae6fcc7d9bb 3622
Kojto 119:aae6fcc7d9bb 3623
Kojto 119:aae6fcc7d9bb 3624 /**
Kojto 119:aae6fcc7d9bb 3625 * @brief Instance structure for the Q15 FIR interpolator.
Kojto 119:aae6fcc7d9bb 3626 */
Kojto 119:aae6fcc7d9bb 3627
Kojto 119:aae6fcc7d9bb 3628 typedef struct
Kojto 119:aae6fcc7d9bb 3629 {
Kojto 119:aae6fcc7d9bb 3630 uint8_t L; /**< upsample factor. */
Kojto 119:aae6fcc7d9bb 3631 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 119:aae6fcc7d9bb 3632 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 119:aae6fcc7d9bb 3633 q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
Kojto 119:aae6fcc7d9bb 3634 } arm_fir_interpolate_instance_q15;
Kojto 119:aae6fcc7d9bb 3635
Kojto 119:aae6fcc7d9bb 3636 /**
Kojto 119:aae6fcc7d9bb 3637 * @brief Instance structure for the Q31 FIR interpolator.
Kojto 119:aae6fcc7d9bb 3638 */
Kojto 119:aae6fcc7d9bb 3639
Kojto 119:aae6fcc7d9bb 3640 typedef struct
Kojto 119:aae6fcc7d9bb 3641 {
Kojto 119:aae6fcc7d9bb 3642 uint8_t L; /**< upsample factor. */
Kojto 119:aae6fcc7d9bb 3643 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 119:aae6fcc7d9bb 3644 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 119:aae6fcc7d9bb 3645 q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
Kojto 119:aae6fcc7d9bb 3646 } arm_fir_interpolate_instance_q31;
Kojto 119:aae6fcc7d9bb 3647
Kojto 119:aae6fcc7d9bb 3648 /**
Kojto 119:aae6fcc7d9bb 3649 * @brief Instance structure for the floating-point FIR interpolator.
Kojto 119:aae6fcc7d9bb 3650 */
Kojto 119:aae6fcc7d9bb 3651
Kojto 119:aae6fcc7d9bb 3652 typedef struct
Kojto 119:aae6fcc7d9bb 3653 {
Kojto 119:aae6fcc7d9bb 3654 uint8_t L; /**< upsample factor. */
Kojto 119:aae6fcc7d9bb 3655 uint16_t phaseLength; /**< length of each polyphase filter component. */
Kojto 119:aae6fcc7d9bb 3656 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
Kojto 119:aae6fcc7d9bb 3657 float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
Kojto 119:aae6fcc7d9bb 3658 } arm_fir_interpolate_instance_f32;
Kojto 119:aae6fcc7d9bb 3659
Kojto 119:aae6fcc7d9bb 3660
Kojto 119:aae6fcc7d9bb 3661 /**
Kojto 119:aae6fcc7d9bb 3662 * @brief Processing function for the Q15 FIR interpolator.
Kojto 119:aae6fcc7d9bb 3663 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
Kojto 119:aae6fcc7d9bb 3664 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3665 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 3666 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3667 * @return none.
Kojto 119:aae6fcc7d9bb 3668 */
Kojto 119:aae6fcc7d9bb 3669
Kojto 119:aae6fcc7d9bb 3670 void arm_fir_interpolate_q15(
Kojto 119:aae6fcc7d9bb 3671 const arm_fir_interpolate_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 3672 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 3673 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 3674 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3675
Kojto 119:aae6fcc7d9bb 3676
Kojto 119:aae6fcc7d9bb 3677 /**
Kojto 119:aae6fcc7d9bb 3678 * @brief Initialization function for the Q15 FIR interpolator.
Kojto 119:aae6fcc7d9bb 3679 * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
Kojto 119:aae6fcc7d9bb 3680 * @param[in] L upsample factor.
Kojto 119:aae6fcc7d9bb 3681 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 119:aae6fcc7d9bb 3682 * @param[in] *pCoeffs points to the filter coefficient buffer.
Kojto 119:aae6fcc7d9bb 3683 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3684 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3685 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 119:aae6fcc7d9bb 3686 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 119:aae6fcc7d9bb 3687 */
Kojto 119:aae6fcc7d9bb 3688
Kojto 119:aae6fcc7d9bb 3689 arm_status arm_fir_interpolate_init_q15(
Kojto 119:aae6fcc7d9bb 3690 arm_fir_interpolate_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 3691 uint8_t L,
Kojto 119:aae6fcc7d9bb 3692 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 3693 q15_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3694 q15_t * pState,
Kojto 119:aae6fcc7d9bb 3695 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3696
Kojto 119:aae6fcc7d9bb 3697 /**
Kojto 119:aae6fcc7d9bb 3698 * @brief Processing function for the Q31 FIR interpolator.
Kojto 119:aae6fcc7d9bb 3699 * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
Kojto 119:aae6fcc7d9bb 3700 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3701 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 3702 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3703 * @return none.
Kojto 119:aae6fcc7d9bb 3704 */
Kojto 119:aae6fcc7d9bb 3705
Kojto 119:aae6fcc7d9bb 3706 void arm_fir_interpolate_q31(
Kojto 119:aae6fcc7d9bb 3707 const arm_fir_interpolate_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 3708 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 3709 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 3710 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3711
Kojto 119:aae6fcc7d9bb 3712 /**
Kojto 119:aae6fcc7d9bb 3713 * @brief Initialization function for the Q31 FIR interpolator.
Kojto 119:aae6fcc7d9bb 3714 * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
Kojto 119:aae6fcc7d9bb 3715 * @param[in] L upsample factor.
Kojto 119:aae6fcc7d9bb 3716 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 119:aae6fcc7d9bb 3717 * @param[in] *pCoeffs points to the filter coefficient buffer.
Kojto 119:aae6fcc7d9bb 3718 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3719 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3720 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 119:aae6fcc7d9bb 3721 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 119:aae6fcc7d9bb 3722 */
Kojto 119:aae6fcc7d9bb 3723
Kojto 119:aae6fcc7d9bb 3724 arm_status arm_fir_interpolate_init_q31(
Kojto 119:aae6fcc7d9bb 3725 arm_fir_interpolate_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 3726 uint8_t L,
Kojto 119:aae6fcc7d9bb 3727 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 3728 q31_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3729 q31_t * pState,
Kojto 119:aae6fcc7d9bb 3730 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3731
Kojto 119:aae6fcc7d9bb 3732
Kojto 119:aae6fcc7d9bb 3733 /**
Kojto 119:aae6fcc7d9bb 3734 * @brief Processing function for the floating-point FIR interpolator.
Kojto 119:aae6fcc7d9bb 3735 * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
Kojto 119:aae6fcc7d9bb 3736 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3737 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 3738 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3739 * @return none.
Kojto 119:aae6fcc7d9bb 3740 */
Kojto 119:aae6fcc7d9bb 3741
Kojto 119:aae6fcc7d9bb 3742 void arm_fir_interpolate_f32(
Kojto 119:aae6fcc7d9bb 3743 const arm_fir_interpolate_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 3744 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 3745 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 3746 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3747
Kojto 119:aae6fcc7d9bb 3748 /**
Kojto 119:aae6fcc7d9bb 3749 * @brief Initialization function for the floating-point FIR interpolator.
Kojto 119:aae6fcc7d9bb 3750 * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
Kojto 119:aae6fcc7d9bb 3751 * @param[in] L upsample factor.
Kojto 119:aae6fcc7d9bb 3752 * @param[in] numTaps number of filter coefficients in the filter.
Kojto 119:aae6fcc7d9bb 3753 * @param[in] *pCoeffs points to the filter coefficient buffer.
Kojto 119:aae6fcc7d9bb 3754 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3755 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 3756 * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
Kojto 119:aae6fcc7d9bb 3757 * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
Kojto 119:aae6fcc7d9bb 3758 */
Kojto 119:aae6fcc7d9bb 3759
Kojto 119:aae6fcc7d9bb 3760 arm_status arm_fir_interpolate_init_f32(
Kojto 119:aae6fcc7d9bb 3761 arm_fir_interpolate_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 3762 uint8_t L,
Kojto 119:aae6fcc7d9bb 3763 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 3764 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3765 float32_t * pState,
Kojto 119:aae6fcc7d9bb 3766 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3767
Kojto 119:aae6fcc7d9bb 3768 /**
Kojto 119:aae6fcc7d9bb 3769 * @brief Instance structure for the high precision Q31 Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 3770 */
Kojto 119:aae6fcc7d9bb 3771
Kojto 119:aae6fcc7d9bb 3772 typedef struct
Kojto 119:aae6fcc7d9bb 3773 {
Kojto 119:aae6fcc7d9bb 3774 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 119:aae6fcc7d9bb 3775 q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 119:aae6fcc7d9bb 3776 q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 119:aae6fcc7d9bb 3777 uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
Kojto 119:aae6fcc7d9bb 3778
Kojto 119:aae6fcc7d9bb 3779 } arm_biquad_cas_df1_32x64_ins_q31;
Kojto 119:aae6fcc7d9bb 3780
Kojto 119:aae6fcc7d9bb 3781
Kojto 119:aae6fcc7d9bb 3782 /**
Kojto 119:aae6fcc7d9bb 3783 * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
Kojto 119:aae6fcc7d9bb 3784 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3785 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3786 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 3787 * @return none.
Kojto 119:aae6fcc7d9bb 3788 */
Kojto 119:aae6fcc7d9bb 3789
Kojto 119:aae6fcc7d9bb 3790 void arm_biquad_cas_df1_32x64_q31(
Kojto 119:aae6fcc7d9bb 3791 const arm_biquad_cas_df1_32x64_ins_q31 * S,
Kojto 119:aae6fcc7d9bb 3792 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 3793 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 3794 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3795
Kojto 119:aae6fcc7d9bb 3796
Kojto 119:aae6fcc7d9bb 3797 /**
Kojto 119:aae6fcc7d9bb 3798 * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
Kojto 119:aae6fcc7d9bb 3799 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 119:aae6fcc7d9bb 3800 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 3801 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3802 * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
Kojto 119:aae6fcc7d9bb 3803 * @return none
Kojto 119:aae6fcc7d9bb 3804 */
Kojto 119:aae6fcc7d9bb 3805
Kojto 119:aae6fcc7d9bb 3806 void arm_biquad_cas_df1_32x64_init_q31(
Kojto 119:aae6fcc7d9bb 3807 arm_biquad_cas_df1_32x64_ins_q31 * S,
Kojto 119:aae6fcc7d9bb 3808 uint8_t numStages,
Kojto 119:aae6fcc7d9bb 3809 q31_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3810 q63_t * pState,
Kojto 119:aae6fcc7d9bb 3811 uint8_t postShift);
Kojto 119:aae6fcc7d9bb 3812
Kojto 119:aae6fcc7d9bb 3813
Kojto 119:aae6fcc7d9bb 3814
Kojto 119:aae6fcc7d9bb 3815 /**
Kojto 119:aae6fcc7d9bb 3816 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 3817 */
Kojto 119:aae6fcc7d9bb 3818
Kojto 119:aae6fcc7d9bb 3819 typedef struct
Kojto 119:aae6fcc7d9bb 3820 {
Kojto 119:aae6fcc7d9bb 3821 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 119:aae6fcc7d9bb 3822 float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
Kojto 119:aae6fcc7d9bb 3823 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 119:aae6fcc7d9bb 3824 } arm_biquad_cascade_df2T_instance_f32;
Kojto 119:aae6fcc7d9bb 3825
Kojto 119:aae6fcc7d9bb 3826
Kojto 119:aae6fcc7d9bb 3827
Kojto 119:aae6fcc7d9bb 3828 /**
Kojto 119:aae6fcc7d9bb 3829 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 3830 */
Kojto 119:aae6fcc7d9bb 3831
Kojto 119:aae6fcc7d9bb 3832 typedef struct
Kojto 119:aae6fcc7d9bb 3833 {
Kojto 119:aae6fcc7d9bb 3834 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 119:aae6fcc7d9bb 3835 float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
Kojto 119:aae6fcc7d9bb 3836 float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 119:aae6fcc7d9bb 3837 } arm_biquad_cascade_stereo_df2T_instance_f32;
Kojto 119:aae6fcc7d9bb 3838
Kojto 119:aae6fcc7d9bb 3839
Kojto 119:aae6fcc7d9bb 3840
Kojto 119:aae6fcc7d9bb 3841 /**
Kojto 119:aae6fcc7d9bb 3842 * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 3843 */
Kojto 119:aae6fcc7d9bb 3844
Kojto 119:aae6fcc7d9bb 3845 typedef struct
Kojto 119:aae6fcc7d9bb 3846 {
Kojto 119:aae6fcc7d9bb 3847 uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
Kojto 119:aae6fcc7d9bb 3848 float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
Kojto 119:aae6fcc7d9bb 3849 float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
Kojto 119:aae6fcc7d9bb 3850 } arm_biquad_cascade_df2T_instance_f64;
Kojto 119:aae6fcc7d9bb 3851
Kojto 119:aae6fcc7d9bb 3852
Kojto 119:aae6fcc7d9bb 3853 /**
Kojto 119:aae6fcc7d9bb 3854 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 3855 * @param[in] *S points to an instance of the filter data structure.
Kojto 119:aae6fcc7d9bb 3856 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3857 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3858 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 3859 * @return none.
Kojto 119:aae6fcc7d9bb 3860 */
Kojto 119:aae6fcc7d9bb 3861
Kojto 119:aae6fcc7d9bb 3862 void arm_biquad_cascade_df2T_f32(
Kojto 119:aae6fcc7d9bb 3863 const arm_biquad_cascade_df2T_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 3864 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 3865 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 3866 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3867
Kojto 119:aae6fcc7d9bb 3868
Kojto 119:aae6fcc7d9bb 3869 /**
Kojto 119:aae6fcc7d9bb 3870 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
Kojto 119:aae6fcc7d9bb 3871 * @param[in] *S points to an instance of the filter data structure.
Kojto 119:aae6fcc7d9bb 3872 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3873 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3874 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 3875 * @return none.
Kojto 119:aae6fcc7d9bb 3876 */
Kojto 119:aae6fcc7d9bb 3877
Kojto 119:aae6fcc7d9bb 3878 void arm_biquad_cascade_stereo_df2T_f32(
Kojto 119:aae6fcc7d9bb 3879 const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 3880 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 3881 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 3882 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3883
Kojto 119:aae6fcc7d9bb 3884 /**
Kojto 119:aae6fcc7d9bb 3885 * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 3886 * @param[in] *S points to an instance of the filter data structure.
Kojto 119:aae6fcc7d9bb 3887 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 3888 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 3889 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 3890 * @return none.
Kojto 119:aae6fcc7d9bb 3891 */
Kojto 119:aae6fcc7d9bb 3892
Kojto 119:aae6fcc7d9bb 3893 void arm_biquad_cascade_df2T_f64(
Kojto 119:aae6fcc7d9bb 3894 const arm_biquad_cascade_df2T_instance_f64 * S,
Kojto 119:aae6fcc7d9bb 3895 float64_t * pSrc,
Kojto 119:aae6fcc7d9bb 3896 float64_t * pDst,
Kojto 119:aae6fcc7d9bb 3897 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 3898
Kojto 119:aae6fcc7d9bb 3899
Kojto 119:aae6fcc7d9bb 3900 /**
Kojto 119:aae6fcc7d9bb 3901 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 3902 * @param[in,out] *S points to an instance of the filter data structure.
Kojto 119:aae6fcc7d9bb 3903 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 119:aae6fcc7d9bb 3904 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 3905 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3906 * @return none
Kojto 119:aae6fcc7d9bb 3907 */
Kojto 119:aae6fcc7d9bb 3908
Kojto 119:aae6fcc7d9bb 3909 void arm_biquad_cascade_df2T_init_f32(
Kojto 119:aae6fcc7d9bb 3910 arm_biquad_cascade_df2T_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 3911 uint8_t numStages,
Kojto 119:aae6fcc7d9bb 3912 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3913 float32_t * pState);
Kojto 119:aae6fcc7d9bb 3914
Kojto 119:aae6fcc7d9bb 3915
Kojto 119:aae6fcc7d9bb 3916 /**
Kojto 119:aae6fcc7d9bb 3917 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 3918 * @param[in,out] *S points to an instance of the filter data structure.
Kojto 119:aae6fcc7d9bb 3919 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 119:aae6fcc7d9bb 3920 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 3921 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3922 * @return none
Kojto 119:aae6fcc7d9bb 3923 */
Kojto 119:aae6fcc7d9bb 3924
Kojto 119:aae6fcc7d9bb 3925 void arm_biquad_cascade_stereo_df2T_init_f32(
Kojto 119:aae6fcc7d9bb 3926 arm_biquad_cascade_stereo_df2T_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 3927 uint8_t numStages,
Kojto 119:aae6fcc7d9bb 3928 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3929 float32_t * pState);
Kojto 119:aae6fcc7d9bb 3930
Kojto 119:aae6fcc7d9bb 3931
Kojto 119:aae6fcc7d9bb 3932 /**
Kojto 119:aae6fcc7d9bb 3933 * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
Kojto 119:aae6fcc7d9bb 3934 * @param[in,out] *S points to an instance of the filter data structure.
Kojto 119:aae6fcc7d9bb 3935 * @param[in] numStages number of 2nd order stages in the filter.
Kojto 119:aae6fcc7d9bb 3936 * @param[in] *pCoeffs points to the filter coefficients.
Kojto 119:aae6fcc7d9bb 3937 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 3938 * @return none
Kojto 119:aae6fcc7d9bb 3939 */
Kojto 119:aae6fcc7d9bb 3940
Kojto 119:aae6fcc7d9bb 3941 void arm_biquad_cascade_df2T_init_f64(
Kojto 119:aae6fcc7d9bb 3942 arm_biquad_cascade_df2T_instance_f64 * S,
Kojto 119:aae6fcc7d9bb 3943 uint8_t numStages,
Kojto 119:aae6fcc7d9bb 3944 float64_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3945 float64_t * pState);
Kojto 119:aae6fcc7d9bb 3946
Kojto 119:aae6fcc7d9bb 3947
Kojto 119:aae6fcc7d9bb 3948
Kojto 119:aae6fcc7d9bb 3949 /**
Kojto 119:aae6fcc7d9bb 3950 * @brief Instance structure for the Q15 FIR lattice filter.
Kojto 119:aae6fcc7d9bb 3951 */
Kojto 119:aae6fcc7d9bb 3952
Kojto 119:aae6fcc7d9bb 3953 typedef struct
Kojto 119:aae6fcc7d9bb 3954 {
Kojto 119:aae6fcc7d9bb 3955 uint16_t numStages; /**< number of filter stages. */
Kojto 119:aae6fcc7d9bb 3956 q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 119:aae6fcc7d9bb 3957 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 119:aae6fcc7d9bb 3958 } arm_fir_lattice_instance_q15;
Kojto 119:aae6fcc7d9bb 3959
Kojto 119:aae6fcc7d9bb 3960 /**
Kojto 119:aae6fcc7d9bb 3961 * @brief Instance structure for the Q31 FIR lattice filter.
Kojto 119:aae6fcc7d9bb 3962 */
Kojto 119:aae6fcc7d9bb 3963
Kojto 119:aae6fcc7d9bb 3964 typedef struct
Kojto 119:aae6fcc7d9bb 3965 {
Kojto 119:aae6fcc7d9bb 3966 uint16_t numStages; /**< number of filter stages. */
Kojto 119:aae6fcc7d9bb 3967 q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 119:aae6fcc7d9bb 3968 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 119:aae6fcc7d9bb 3969 } arm_fir_lattice_instance_q31;
Kojto 119:aae6fcc7d9bb 3970
Kojto 119:aae6fcc7d9bb 3971 /**
Kojto 119:aae6fcc7d9bb 3972 * @brief Instance structure for the floating-point FIR lattice filter.
Kojto 119:aae6fcc7d9bb 3973 */
Kojto 119:aae6fcc7d9bb 3974
Kojto 119:aae6fcc7d9bb 3975 typedef struct
Kojto 119:aae6fcc7d9bb 3976 {
Kojto 119:aae6fcc7d9bb 3977 uint16_t numStages; /**< number of filter stages. */
Kojto 119:aae6fcc7d9bb 3978 float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
Kojto 119:aae6fcc7d9bb 3979 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
Kojto 119:aae6fcc7d9bb 3980 } arm_fir_lattice_instance_f32;
Kojto 119:aae6fcc7d9bb 3981
Kojto 119:aae6fcc7d9bb 3982 /**
Kojto 119:aae6fcc7d9bb 3983 * @brief Initialization function for the Q15 FIR lattice filter.
Kojto 119:aae6fcc7d9bb 3984 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
Kojto 119:aae6fcc7d9bb 3985 * @param[in] numStages number of filter stages.
Kojto 119:aae6fcc7d9bb 3986 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 119:aae6fcc7d9bb 3987 * @param[in] *pState points to the state buffer. The array is of length numStages.
Kojto 119:aae6fcc7d9bb 3988 * @return none.
Kojto 119:aae6fcc7d9bb 3989 */
Kojto 119:aae6fcc7d9bb 3990
Kojto 119:aae6fcc7d9bb 3991 void arm_fir_lattice_init_q15(
Kojto 119:aae6fcc7d9bb 3992 arm_fir_lattice_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 3993 uint16_t numStages,
Kojto 119:aae6fcc7d9bb 3994 q15_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 3995 q15_t * pState);
Kojto 119:aae6fcc7d9bb 3996
Kojto 119:aae6fcc7d9bb 3997
Kojto 119:aae6fcc7d9bb 3998 /**
Kojto 119:aae6fcc7d9bb 3999 * @brief Processing function for the Q15 FIR lattice filter.
Kojto 119:aae6fcc7d9bb 4000 * @param[in] *S points to an instance of the Q15 FIR lattice structure.
Kojto 119:aae6fcc7d9bb 4001 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4002 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 4003 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4004 * @return none.
Kojto 119:aae6fcc7d9bb 4005 */
Kojto 119:aae6fcc7d9bb 4006 void arm_fir_lattice_q15(
Kojto 119:aae6fcc7d9bb 4007 const arm_fir_lattice_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 4008 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 4009 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 4010 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4011
Kojto 119:aae6fcc7d9bb 4012 /**
Kojto 119:aae6fcc7d9bb 4013 * @brief Initialization function for the Q31 FIR lattice filter.
Kojto 119:aae6fcc7d9bb 4014 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
Kojto 119:aae6fcc7d9bb 4015 * @param[in] numStages number of filter stages.
Kojto 119:aae6fcc7d9bb 4016 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 119:aae6fcc7d9bb 4017 * @param[in] *pState points to the state buffer. The array is of length numStages.
Kojto 119:aae6fcc7d9bb 4018 * @return none.
Kojto 119:aae6fcc7d9bb 4019 */
Kojto 119:aae6fcc7d9bb 4020
Kojto 119:aae6fcc7d9bb 4021 void arm_fir_lattice_init_q31(
Kojto 119:aae6fcc7d9bb 4022 arm_fir_lattice_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4023 uint16_t numStages,
Kojto 119:aae6fcc7d9bb 4024 q31_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4025 q31_t * pState);
Kojto 119:aae6fcc7d9bb 4026
Kojto 119:aae6fcc7d9bb 4027
Kojto 119:aae6fcc7d9bb 4028 /**
Kojto 119:aae6fcc7d9bb 4029 * @brief Processing function for the Q31 FIR lattice filter.
Kojto 119:aae6fcc7d9bb 4030 * @param[in] *S points to an instance of the Q31 FIR lattice structure.
Kojto 119:aae6fcc7d9bb 4031 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4032 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 4033 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4034 * @return none.
Kojto 119:aae6fcc7d9bb 4035 */
Kojto 119:aae6fcc7d9bb 4036
Kojto 119:aae6fcc7d9bb 4037 void arm_fir_lattice_q31(
Kojto 119:aae6fcc7d9bb 4038 const arm_fir_lattice_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4039 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 4040 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 4041 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4042
Kojto 119:aae6fcc7d9bb 4043 /**
Kojto 119:aae6fcc7d9bb 4044 * @brief Initialization function for the floating-point FIR lattice filter.
Kojto 119:aae6fcc7d9bb 4045 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
Kojto 119:aae6fcc7d9bb 4046 * @param[in] numStages number of filter stages.
Kojto 119:aae6fcc7d9bb 4047 * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
Kojto 119:aae6fcc7d9bb 4048 * @param[in] *pState points to the state buffer. The array is of length numStages.
Kojto 119:aae6fcc7d9bb 4049 * @return none.
Kojto 119:aae6fcc7d9bb 4050 */
Kojto 119:aae6fcc7d9bb 4051
Kojto 119:aae6fcc7d9bb 4052 void arm_fir_lattice_init_f32(
Kojto 119:aae6fcc7d9bb 4053 arm_fir_lattice_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4054 uint16_t numStages,
Kojto 119:aae6fcc7d9bb 4055 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4056 float32_t * pState);
Kojto 119:aae6fcc7d9bb 4057
Kojto 119:aae6fcc7d9bb 4058 /**
Kojto 119:aae6fcc7d9bb 4059 * @brief Processing function for the floating-point FIR lattice filter.
Kojto 119:aae6fcc7d9bb 4060 * @param[in] *S points to an instance of the floating-point FIR lattice structure.
Kojto 119:aae6fcc7d9bb 4061 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4062 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 4063 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4064 * @return none.
Kojto 119:aae6fcc7d9bb 4065 */
Kojto 119:aae6fcc7d9bb 4066
Kojto 119:aae6fcc7d9bb 4067 void arm_fir_lattice_f32(
Kojto 119:aae6fcc7d9bb 4068 const arm_fir_lattice_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4069 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 4070 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 4071 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4072
Kojto 119:aae6fcc7d9bb 4073 /**
Kojto 119:aae6fcc7d9bb 4074 * @brief Instance structure for the Q15 IIR lattice filter.
Kojto 119:aae6fcc7d9bb 4075 */
Kojto 119:aae6fcc7d9bb 4076 typedef struct
Kojto 119:aae6fcc7d9bb 4077 {
Kojto 119:aae6fcc7d9bb 4078 uint16_t numStages; /**< number of stages in the filter. */
Kojto 119:aae6fcc7d9bb 4079 q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 119:aae6fcc7d9bb 4080 q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 119:aae6fcc7d9bb 4081 q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 119:aae6fcc7d9bb 4082 } arm_iir_lattice_instance_q15;
Kojto 119:aae6fcc7d9bb 4083
Kojto 119:aae6fcc7d9bb 4084 /**
Kojto 119:aae6fcc7d9bb 4085 * @brief Instance structure for the Q31 IIR lattice filter.
Kojto 119:aae6fcc7d9bb 4086 */
Kojto 119:aae6fcc7d9bb 4087 typedef struct
Kojto 119:aae6fcc7d9bb 4088 {
Kojto 119:aae6fcc7d9bb 4089 uint16_t numStages; /**< number of stages in the filter. */
Kojto 119:aae6fcc7d9bb 4090 q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 119:aae6fcc7d9bb 4091 q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 119:aae6fcc7d9bb 4092 q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 119:aae6fcc7d9bb 4093 } arm_iir_lattice_instance_q31;
Kojto 119:aae6fcc7d9bb 4094
Kojto 119:aae6fcc7d9bb 4095 /**
Kojto 119:aae6fcc7d9bb 4096 * @brief Instance structure for the floating-point IIR lattice filter.
Kojto 119:aae6fcc7d9bb 4097 */
Kojto 119:aae6fcc7d9bb 4098 typedef struct
Kojto 119:aae6fcc7d9bb 4099 {
Kojto 119:aae6fcc7d9bb 4100 uint16_t numStages; /**< number of stages in the filter. */
Kojto 119:aae6fcc7d9bb 4101 float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
Kojto 119:aae6fcc7d9bb 4102 float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
Kojto 119:aae6fcc7d9bb 4103 float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
Kojto 119:aae6fcc7d9bb 4104 } arm_iir_lattice_instance_f32;
Kojto 119:aae6fcc7d9bb 4105
Kojto 119:aae6fcc7d9bb 4106 /**
Kojto 119:aae6fcc7d9bb 4107 * @brief Processing function for the floating-point IIR lattice filter.
Kojto 119:aae6fcc7d9bb 4108 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
Kojto 119:aae6fcc7d9bb 4109 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4110 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 4111 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4112 * @return none.
Kojto 119:aae6fcc7d9bb 4113 */
Kojto 119:aae6fcc7d9bb 4114
Kojto 119:aae6fcc7d9bb 4115 void arm_iir_lattice_f32(
Kojto 119:aae6fcc7d9bb 4116 const arm_iir_lattice_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4117 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 4118 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 4119 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4120
Kojto 119:aae6fcc7d9bb 4121 /**
Kojto 119:aae6fcc7d9bb 4122 * @brief Initialization function for the floating-point IIR lattice filter.
Kojto 119:aae6fcc7d9bb 4123 * @param[in] *S points to an instance of the floating-point IIR lattice structure.
Kojto 119:aae6fcc7d9bb 4124 * @param[in] numStages number of stages in the filter.
Kojto 119:aae6fcc7d9bb 4125 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
Kojto 119:aae6fcc7d9bb 4126 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
Kojto 119:aae6fcc7d9bb 4127 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
Kojto 119:aae6fcc7d9bb 4128 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4129 * @return none.
Kojto 119:aae6fcc7d9bb 4130 */
Kojto 119:aae6fcc7d9bb 4131
Kojto 119:aae6fcc7d9bb 4132 void arm_iir_lattice_init_f32(
Kojto 119:aae6fcc7d9bb 4133 arm_iir_lattice_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4134 uint16_t numStages,
Kojto 119:aae6fcc7d9bb 4135 float32_t * pkCoeffs,
Kojto 119:aae6fcc7d9bb 4136 float32_t * pvCoeffs,
Kojto 119:aae6fcc7d9bb 4137 float32_t * pState,
Kojto 119:aae6fcc7d9bb 4138 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4139
Kojto 119:aae6fcc7d9bb 4140
Kojto 119:aae6fcc7d9bb 4141 /**
Kojto 119:aae6fcc7d9bb 4142 * @brief Processing function for the Q31 IIR lattice filter.
Kojto 119:aae6fcc7d9bb 4143 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
Kojto 119:aae6fcc7d9bb 4144 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4145 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 4146 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4147 * @return none.
Kojto 119:aae6fcc7d9bb 4148 */
Kojto 119:aae6fcc7d9bb 4149
Kojto 119:aae6fcc7d9bb 4150 void arm_iir_lattice_q31(
Kojto 119:aae6fcc7d9bb 4151 const arm_iir_lattice_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4152 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 4153 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 4154 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4155
Kojto 119:aae6fcc7d9bb 4156
Kojto 119:aae6fcc7d9bb 4157 /**
Kojto 119:aae6fcc7d9bb 4158 * @brief Initialization function for the Q31 IIR lattice filter.
Kojto 119:aae6fcc7d9bb 4159 * @param[in] *S points to an instance of the Q31 IIR lattice structure.
Kojto 119:aae6fcc7d9bb 4160 * @param[in] numStages number of stages in the filter.
Kojto 119:aae6fcc7d9bb 4161 * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
Kojto 119:aae6fcc7d9bb 4162 * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
Kojto 119:aae6fcc7d9bb 4163 * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
Kojto 119:aae6fcc7d9bb 4164 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4165 * @return none.
Kojto 119:aae6fcc7d9bb 4166 */
Kojto 119:aae6fcc7d9bb 4167
Kojto 119:aae6fcc7d9bb 4168 void arm_iir_lattice_init_q31(
Kojto 119:aae6fcc7d9bb 4169 arm_iir_lattice_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4170 uint16_t numStages,
Kojto 119:aae6fcc7d9bb 4171 q31_t * pkCoeffs,
Kojto 119:aae6fcc7d9bb 4172 q31_t * pvCoeffs,
Kojto 119:aae6fcc7d9bb 4173 q31_t * pState,
Kojto 119:aae6fcc7d9bb 4174 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4175
Kojto 119:aae6fcc7d9bb 4176
Kojto 119:aae6fcc7d9bb 4177 /**
Kojto 119:aae6fcc7d9bb 4178 * @brief Processing function for the Q15 IIR lattice filter.
Kojto 119:aae6fcc7d9bb 4179 * @param[in] *S points to an instance of the Q15 IIR lattice structure.
Kojto 119:aae6fcc7d9bb 4180 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4181 * @param[out] *pDst points to the block of output data.
Kojto 119:aae6fcc7d9bb 4182 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4183 * @return none.
Kojto 119:aae6fcc7d9bb 4184 */
Kojto 119:aae6fcc7d9bb 4185
Kojto 119:aae6fcc7d9bb 4186 void arm_iir_lattice_q15(
Kojto 119:aae6fcc7d9bb 4187 const arm_iir_lattice_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 4188 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 4189 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 4190 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4191
Kojto 119:aae6fcc7d9bb 4192
Kojto 119:aae6fcc7d9bb 4193 /**
Kojto 119:aae6fcc7d9bb 4194 * @brief Initialization function for the Q15 IIR lattice filter.
Kojto 119:aae6fcc7d9bb 4195 * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
Kojto 119:aae6fcc7d9bb 4196 * @param[in] numStages number of stages in the filter.
Kojto 119:aae6fcc7d9bb 4197 * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
Kojto 119:aae6fcc7d9bb 4198 * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
Kojto 119:aae6fcc7d9bb 4199 * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
Kojto 119:aae6fcc7d9bb 4200 * @param[in] blockSize number of samples to process per call.
Kojto 119:aae6fcc7d9bb 4201 * @return none.
Kojto 119:aae6fcc7d9bb 4202 */
Kojto 119:aae6fcc7d9bb 4203
Kojto 119:aae6fcc7d9bb 4204 void arm_iir_lattice_init_q15(
Kojto 119:aae6fcc7d9bb 4205 arm_iir_lattice_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 4206 uint16_t numStages,
Kojto 119:aae6fcc7d9bb 4207 q15_t * pkCoeffs,
Kojto 119:aae6fcc7d9bb 4208 q15_t * pvCoeffs,
Kojto 119:aae6fcc7d9bb 4209 q15_t * pState,
Kojto 119:aae6fcc7d9bb 4210 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4211
Kojto 119:aae6fcc7d9bb 4212 /**
Kojto 119:aae6fcc7d9bb 4213 * @brief Instance structure for the floating-point LMS filter.
Kojto 119:aae6fcc7d9bb 4214 */
Kojto 119:aae6fcc7d9bb 4215
Kojto 119:aae6fcc7d9bb 4216 typedef struct
Kojto 119:aae6fcc7d9bb 4217 {
Kojto 119:aae6fcc7d9bb 4218 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4219 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4220 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4221 float32_t mu; /**< step size that controls filter coefficient updates. */
Kojto 119:aae6fcc7d9bb 4222 } arm_lms_instance_f32;
Kojto 119:aae6fcc7d9bb 4223
Kojto 119:aae6fcc7d9bb 4224 /**
Kojto 119:aae6fcc7d9bb 4225 * @brief Processing function for floating-point LMS filter.
Kojto 119:aae6fcc7d9bb 4226 * @param[in] *S points to an instance of the floating-point LMS filter structure.
Kojto 119:aae6fcc7d9bb 4227 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4228 * @param[in] *pRef points to the block of reference data.
Kojto 119:aae6fcc7d9bb 4229 * @param[out] *pOut points to the block of output data.
Kojto 119:aae6fcc7d9bb 4230 * @param[out] *pErr points to the block of error data.
Kojto 119:aae6fcc7d9bb 4231 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4232 * @return none.
Kojto 119:aae6fcc7d9bb 4233 */
Kojto 119:aae6fcc7d9bb 4234
Kojto 119:aae6fcc7d9bb 4235 void arm_lms_f32(
Kojto 119:aae6fcc7d9bb 4236 const arm_lms_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4237 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 4238 float32_t * pRef,
Kojto 119:aae6fcc7d9bb 4239 float32_t * pOut,
Kojto 119:aae6fcc7d9bb 4240 float32_t * pErr,
Kojto 119:aae6fcc7d9bb 4241 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4242
Kojto 119:aae6fcc7d9bb 4243 /**
Kojto 119:aae6fcc7d9bb 4244 * @brief Initialization function for floating-point LMS filter.
Kojto 119:aae6fcc7d9bb 4245 * @param[in] *S points to an instance of the floating-point LMS filter structure.
Kojto 119:aae6fcc7d9bb 4246 * @param[in] numTaps number of filter coefficients.
Kojto 119:aae6fcc7d9bb 4247 * @param[in] *pCoeffs points to the coefficient buffer.
Kojto 119:aae6fcc7d9bb 4248 * @param[in] *pState points to state buffer.
Kojto 119:aae6fcc7d9bb 4249 * @param[in] mu step size that controls filter coefficient updates.
Kojto 119:aae6fcc7d9bb 4250 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4251 * @return none.
Kojto 119:aae6fcc7d9bb 4252 */
Kojto 119:aae6fcc7d9bb 4253
Kojto 119:aae6fcc7d9bb 4254 void arm_lms_init_f32(
Kojto 119:aae6fcc7d9bb 4255 arm_lms_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4256 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4257 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4258 float32_t * pState,
Kojto 119:aae6fcc7d9bb 4259 float32_t mu,
Kojto 119:aae6fcc7d9bb 4260 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4261
Kojto 119:aae6fcc7d9bb 4262 /**
Kojto 119:aae6fcc7d9bb 4263 * @brief Instance structure for the Q15 LMS filter.
Kojto 119:aae6fcc7d9bb 4264 */
Kojto 119:aae6fcc7d9bb 4265
Kojto 119:aae6fcc7d9bb 4266 typedef struct
Kojto 119:aae6fcc7d9bb 4267 {
Kojto 119:aae6fcc7d9bb 4268 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4269 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4270 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4271 q15_t mu; /**< step size that controls filter coefficient updates. */
Kojto 119:aae6fcc7d9bb 4272 uint32_t postShift; /**< bit shift applied to coefficients. */
Kojto 119:aae6fcc7d9bb 4273 } arm_lms_instance_q15;
Kojto 119:aae6fcc7d9bb 4274
Kojto 119:aae6fcc7d9bb 4275
Kojto 119:aae6fcc7d9bb 4276 /**
Kojto 119:aae6fcc7d9bb 4277 * @brief Initialization function for the Q15 LMS filter.
Kojto 119:aae6fcc7d9bb 4278 * @param[in] *S points to an instance of the Q15 LMS filter structure.
Kojto 119:aae6fcc7d9bb 4279 * @param[in] numTaps number of filter coefficients.
Kojto 119:aae6fcc7d9bb 4280 * @param[in] *pCoeffs points to the coefficient buffer.
Kojto 119:aae6fcc7d9bb 4281 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 4282 * @param[in] mu step size that controls filter coefficient updates.
Kojto 119:aae6fcc7d9bb 4283 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4284 * @param[in] postShift bit shift applied to coefficients.
Kojto 119:aae6fcc7d9bb 4285 * @return none.
Kojto 119:aae6fcc7d9bb 4286 */
Kojto 119:aae6fcc7d9bb 4287
Kojto 119:aae6fcc7d9bb 4288 void arm_lms_init_q15(
Kojto 119:aae6fcc7d9bb 4289 arm_lms_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 4290 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4291 q15_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4292 q15_t * pState,
Kojto 119:aae6fcc7d9bb 4293 q15_t mu,
Kojto 119:aae6fcc7d9bb 4294 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 4295 uint32_t postShift);
Kojto 119:aae6fcc7d9bb 4296
Kojto 119:aae6fcc7d9bb 4297 /**
Kojto 119:aae6fcc7d9bb 4298 * @brief Processing function for Q15 LMS filter.
Kojto 119:aae6fcc7d9bb 4299 * @param[in] *S points to an instance of the Q15 LMS filter structure.
Kojto 119:aae6fcc7d9bb 4300 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4301 * @param[in] *pRef points to the block of reference data.
Kojto 119:aae6fcc7d9bb 4302 * @param[out] *pOut points to the block of output data.
Kojto 119:aae6fcc7d9bb 4303 * @param[out] *pErr points to the block of error data.
Kojto 119:aae6fcc7d9bb 4304 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4305 * @return none.
Kojto 119:aae6fcc7d9bb 4306 */
Kojto 119:aae6fcc7d9bb 4307
Kojto 119:aae6fcc7d9bb 4308 void arm_lms_q15(
Kojto 119:aae6fcc7d9bb 4309 const arm_lms_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 4310 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 4311 q15_t * pRef,
Kojto 119:aae6fcc7d9bb 4312 q15_t * pOut,
Kojto 119:aae6fcc7d9bb 4313 q15_t * pErr,
Kojto 119:aae6fcc7d9bb 4314 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4315
Kojto 119:aae6fcc7d9bb 4316
Kojto 119:aae6fcc7d9bb 4317 /**
Kojto 119:aae6fcc7d9bb 4318 * @brief Instance structure for the Q31 LMS filter.
Kojto 119:aae6fcc7d9bb 4319 */
Kojto 119:aae6fcc7d9bb 4320
Kojto 119:aae6fcc7d9bb 4321 typedef struct
Kojto 119:aae6fcc7d9bb 4322 {
Kojto 119:aae6fcc7d9bb 4323 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4324 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4325 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4326 q31_t mu; /**< step size that controls filter coefficient updates. */
Kojto 119:aae6fcc7d9bb 4327 uint32_t postShift; /**< bit shift applied to coefficients. */
Kojto 119:aae6fcc7d9bb 4328
Kojto 119:aae6fcc7d9bb 4329 } arm_lms_instance_q31;
Kojto 119:aae6fcc7d9bb 4330
Kojto 119:aae6fcc7d9bb 4331 /**
Kojto 119:aae6fcc7d9bb 4332 * @brief Processing function for Q31 LMS filter.
Kojto 119:aae6fcc7d9bb 4333 * @param[in] *S points to an instance of the Q15 LMS filter structure.
Kojto 119:aae6fcc7d9bb 4334 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4335 * @param[in] *pRef points to the block of reference data.
Kojto 119:aae6fcc7d9bb 4336 * @param[out] *pOut points to the block of output data.
Kojto 119:aae6fcc7d9bb 4337 * @param[out] *pErr points to the block of error data.
Kojto 119:aae6fcc7d9bb 4338 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4339 * @return none.
Kojto 119:aae6fcc7d9bb 4340 */
Kojto 119:aae6fcc7d9bb 4341
Kojto 119:aae6fcc7d9bb 4342 void arm_lms_q31(
Kojto 119:aae6fcc7d9bb 4343 const arm_lms_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4344 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 4345 q31_t * pRef,
Kojto 119:aae6fcc7d9bb 4346 q31_t * pOut,
Kojto 119:aae6fcc7d9bb 4347 q31_t * pErr,
Kojto 119:aae6fcc7d9bb 4348 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4349
Kojto 119:aae6fcc7d9bb 4350 /**
Kojto 119:aae6fcc7d9bb 4351 * @brief Initialization function for Q31 LMS filter.
Kojto 119:aae6fcc7d9bb 4352 * @param[in] *S points to an instance of the Q31 LMS filter structure.
Kojto 119:aae6fcc7d9bb 4353 * @param[in] numTaps number of filter coefficients.
Kojto 119:aae6fcc7d9bb 4354 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 119:aae6fcc7d9bb 4355 * @param[in] *pState points to state buffer.
Kojto 119:aae6fcc7d9bb 4356 * @param[in] mu step size that controls filter coefficient updates.
Kojto 119:aae6fcc7d9bb 4357 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4358 * @param[in] postShift bit shift applied to coefficients.
Kojto 119:aae6fcc7d9bb 4359 * @return none.
Kojto 119:aae6fcc7d9bb 4360 */
Kojto 119:aae6fcc7d9bb 4361
Kojto 119:aae6fcc7d9bb 4362 void arm_lms_init_q31(
Kojto 119:aae6fcc7d9bb 4363 arm_lms_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4364 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4365 q31_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4366 q31_t * pState,
Kojto 119:aae6fcc7d9bb 4367 q31_t mu,
Kojto 119:aae6fcc7d9bb 4368 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 4369 uint32_t postShift);
Kojto 119:aae6fcc7d9bb 4370
Kojto 119:aae6fcc7d9bb 4371 /**
Kojto 119:aae6fcc7d9bb 4372 * @brief Instance structure for the floating-point normalized LMS filter.
Kojto 119:aae6fcc7d9bb 4373 */
Kojto 119:aae6fcc7d9bb 4374
Kojto 119:aae6fcc7d9bb 4375 typedef struct
Kojto 119:aae6fcc7d9bb 4376 {
Kojto 119:aae6fcc7d9bb 4377 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4378 float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4379 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4380 float32_t mu; /**< step size that control filter coefficient updates. */
Kojto 119:aae6fcc7d9bb 4381 float32_t energy; /**< saves previous frame energy. */
Kojto 119:aae6fcc7d9bb 4382 float32_t x0; /**< saves previous input sample. */
Kojto 119:aae6fcc7d9bb 4383 } arm_lms_norm_instance_f32;
Kojto 119:aae6fcc7d9bb 4384
Kojto 119:aae6fcc7d9bb 4385 /**
Kojto 119:aae6fcc7d9bb 4386 * @brief Processing function for floating-point normalized LMS filter.
Kojto 119:aae6fcc7d9bb 4387 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
Kojto 119:aae6fcc7d9bb 4388 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4389 * @param[in] *pRef points to the block of reference data.
Kojto 119:aae6fcc7d9bb 4390 * @param[out] *pOut points to the block of output data.
Kojto 119:aae6fcc7d9bb 4391 * @param[out] *pErr points to the block of error data.
Kojto 119:aae6fcc7d9bb 4392 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4393 * @return none.
Kojto 119:aae6fcc7d9bb 4394 */
Kojto 119:aae6fcc7d9bb 4395
Kojto 119:aae6fcc7d9bb 4396 void arm_lms_norm_f32(
Kojto 119:aae6fcc7d9bb 4397 arm_lms_norm_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4398 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 4399 float32_t * pRef,
Kojto 119:aae6fcc7d9bb 4400 float32_t * pOut,
Kojto 119:aae6fcc7d9bb 4401 float32_t * pErr,
Kojto 119:aae6fcc7d9bb 4402 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4403
Kojto 119:aae6fcc7d9bb 4404 /**
Kojto 119:aae6fcc7d9bb 4405 * @brief Initialization function for floating-point normalized LMS filter.
Kojto 119:aae6fcc7d9bb 4406 * @param[in] *S points to an instance of the floating-point LMS filter structure.
Kojto 119:aae6fcc7d9bb 4407 * @param[in] numTaps number of filter coefficients.
Kojto 119:aae6fcc7d9bb 4408 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 119:aae6fcc7d9bb 4409 * @param[in] *pState points to state buffer.
Kojto 119:aae6fcc7d9bb 4410 * @param[in] mu step size that controls filter coefficient updates.
Kojto 119:aae6fcc7d9bb 4411 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4412 * @return none.
Kojto 119:aae6fcc7d9bb 4413 */
Kojto 119:aae6fcc7d9bb 4414
Kojto 119:aae6fcc7d9bb 4415 void arm_lms_norm_init_f32(
Kojto 119:aae6fcc7d9bb 4416 arm_lms_norm_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4417 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4418 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4419 float32_t * pState,
Kojto 119:aae6fcc7d9bb 4420 float32_t mu,
Kojto 119:aae6fcc7d9bb 4421 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4422
Kojto 119:aae6fcc7d9bb 4423
Kojto 119:aae6fcc7d9bb 4424 /**
Kojto 119:aae6fcc7d9bb 4425 * @brief Instance structure for the Q31 normalized LMS filter.
Kojto 119:aae6fcc7d9bb 4426 */
Kojto 119:aae6fcc7d9bb 4427 typedef struct
Kojto 119:aae6fcc7d9bb 4428 {
Kojto 119:aae6fcc7d9bb 4429 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4430 q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4431 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4432 q31_t mu; /**< step size that controls filter coefficient updates. */
Kojto 119:aae6fcc7d9bb 4433 uint8_t postShift; /**< bit shift applied to coefficients. */
Kojto 119:aae6fcc7d9bb 4434 q31_t *recipTable; /**< points to the reciprocal initial value table. */
Kojto 119:aae6fcc7d9bb 4435 q31_t energy; /**< saves previous frame energy. */
Kojto 119:aae6fcc7d9bb 4436 q31_t x0; /**< saves previous input sample. */
Kojto 119:aae6fcc7d9bb 4437 } arm_lms_norm_instance_q31;
Kojto 119:aae6fcc7d9bb 4438
Kojto 119:aae6fcc7d9bb 4439 /**
Kojto 119:aae6fcc7d9bb 4440 * @brief Processing function for Q31 normalized LMS filter.
Kojto 119:aae6fcc7d9bb 4441 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
Kojto 119:aae6fcc7d9bb 4442 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4443 * @param[in] *pRef points to the block of reference data.
Kojto 119:aae6fcc7d9bb 4444 * @param[out] *pOut points to the block of output data.
Kojto 119:aae6fcc7d9bb 4445 * @param[out] *pErr points to the block of error data.
Kojto 119:aae6fcc7d9bb 4446 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4447 * @return none.
Kojto 119:aae6fcc7d9bb 4448 */
Kojto 119:aae6fcc7d9bb 4449
Kojto 119:aae6fcc7d9bb 4450 void arm_lms_norm_q31(
Kojto 119:aae6fcc7d9bb 4451 arm_lms_norm_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4452 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 4453 q31_t * pRef,
Kojto 119:aae6fcc7d9bb 4454 q31_t * pOut,
Kojto 119:aae6fcc7d9bb 4455 q31_t * pErr,
Kojto 119:aae6fcc7d9bb 4456 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4457
Kojto 119:aae6fcc7d9bb 4458 /**
Kojto 119:aae6fcc7d9bb 4459 * @brief Initialization function for Q31 normalized LMS filter.
Kojto 119:aae6fcc7d9bb 4460 * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
Kojto 119:aae6fcc7d9bb 4461 * @param[in] numTaps number of filter coefficients.
Kojto 119:aae6fcc7d9bb 4462 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 119:aae6fcc7d9bb 4463 * @param[in] *pState points to state buffer.
Kojto 119:aae6fcc7d9bb 4464 * @param[in] mu step size that controls filter coefficient updates.
Kojto 119:aae6fcc7d9bb 4465 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4466 * @param[in] postShift bit shift applied to coefficients.
Kojto 119:aae6fcc7d9bb 4467 * @return none.
Kojto 119:aae6fcc7d9bb 4468 */
Kojto 119:aae6fcc7d9bb 4469
Kojto 119:aae6fcc7d9bb 4470 void arm_lms_norm_init_q31(
Kojto 119:aae6fcc7d9bb 4471 arm_lms_norm_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4472 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4473 q31_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4474 q31_t * pState,
Kojto 119:aae6fcc7d9bb 4475 q31_t mu,
Kojto 119:aae6fcc7d9bb 4476 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 4477 uint8_t postShift);
Kojto 119:aae6fcc7d9bb 4478
Kojto 119:aae6fcc7d9bb 4479 /**
Kojto 119:aae6fcc7d9bb 4480 * @brief Instance structure for the Q15 normalized LMS filter.
Kojto 119:aae6fcc7d9bb 4481 */
Kojto 119:aae6fcc7d9bb 4482
Kojto 119:aae6fcc7d9bb 4483 typedef struct
Kojto 119:aae6fcc7d9bb 4484 {
Kojto 119:aae6fcc7d9bb 4485 uint16_t numTaps; /**< Number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4486 q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4487 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4488 q15_t mu; /**< step size that controls filter coefficient updates. */
Kojto 119:aae6fcc7d9bb 4489 uint8_t postShift; /**< bit shift applied to coefficients. */
Kojto 119:aae6fcc7d9bb 4490 q15_t *recipTable; /**< Points to the reciprocal initial value table. */
Kojto 119:aae6fcc7d9bb 4491 q15_t energy; /**< saves previous frame energy. */
Kojto 119:aae6fcc7d9bb 4492 q15_t x0; /**< saves previous input sample. */
Kojto 119:aae6fcc7d9bb 4493 } arm_lms_norm_instance_q15;
Kojto 119:aae6fcc7d9bb 4494
Kojto 119:aae6fcc7d9bb 4495 /**
Kojto 119:aae6fcc7d9bb 4496 * @brief Processing function for Q15 normalized LMS filter.
Kojto 119:aae6fcc7d9bb 4497 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
Kojto 119:aae6fcc7d9bb 4498 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4499 * @param[in] *pRef points to the block of reference data.
Kojto 119:aae6fcc7d9bb 4500 * @param[out] *pOut points to the block of output data.
Kojto 119:aae6fcc7d9bb 4501 * @param[out] *pErr points to the block of error data.
Kojto 119:aae6fcc7d9bb 4502 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4503 * @return none.
Kojto 119:aae6fcc7d9bb 4504 */
Kojto 119:aae6fcc7d9bb 4505
Kojto 119:aae6fcc7d9bb 4506 void arm_lms_norm_q15(
Kojto 119:aae6fcc7d9bb 4507 arm_lms_norm_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 4508 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 4509 q15_t * pRef,
Kojto 119:aae6fcc7d9bb 4510 q15_t * pOut,
Kojto 119:aae6fcc7d9bb 4511 q15_t * pErr,
Kojto 119:aae6fcc7d9bb 4512 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4513
Kojto 119:aae6fcc7d9bb 4514
Kojto 119:aae6fcc7d9bb 4515 /**
Kojto 119:aae6fcc7d9bb 4516 * @brief Initialization function for Q15 normalized LMS filter.
Kojto 119:aae6fcc7d9bb 4517 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
Kojto 119:aae6fcc7d9bb 4518 * @param[in] numTaps number of filter coefficients.
Kojto 119:aae6fcc7d9bb 4519 * @param[in] *pCoeffs points to coefficient buffer.
Kojto 119:aae6fcc7d9bb 4520 * @param[in] *pState points to state buffer.
Kojto 119:aae6fcc7d9bb 4521 * @param[in] mu step size that controls filter coefficient updates.
Kojto 119:aae6fcc7d9bb 4522 * @param[in] blockSize number of samples to process.
Kojto 119:aae6fcc7d9bb 4523 * @param[in] postShift bit shift applied to coefficients.
Kojto 119:aae6fcc7d9bb 4524 * @return none.
Kojto 119:aae6fcc7d9bb 4525 */
Kojto 119:aae6fcc7d9bb 4526
Kojto 119:aae6fcc7d9bb 4527 void arm_lms_norm_init_q15(
Kojto 119:aae6fcc7d9bb 4528 arm_lms_norm_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 4529 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4530 q15_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4531 q15_t * pState,
Kojto 119:aae6fcc7d9bb 4532 q15_t mu,
Kojto 119:aae6fcc7d9bb 4533 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 4534 uint8_t postShift);
Kojto 119:aae6fcc7d9bb 4535
Kojto 119:aae6fcc7d9bb 4536 /**
Kojto 119:aae6fcc7d9bb 4537 * @brief Correlation of floating-point sequences.
Kojto 119:aae6fcc7d9bb 4538 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 4539 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 4540 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 4541 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 4542 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 119:aae6fcc7d9bb 4543 * @return none.
Kojto 119:aae6fcc7d9bb 4544 */
Kojto 119:aae6fcc7d9bb 4545
Kojto 119:aae6fcc7d9bb 4546 void arm_correlate_f32(
Kojto 119:aae6fcc7d9bb 4547 float32_t * pSrcA,
Kojto 119:aae6fcc7d9bb 4548 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 4549 float32_t * pSrcB,
Kojto 119:aae6fcc7d9bb 4550 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 4551 float32_t * pDst);
Kojto 119:aae6fcc7d9bb 4552
Kojto 119:aae6fcc7d9bb 4553
Kojto 119:aae6fcc7d9bb 4554 /**
Kojto 119:aae6fcc7d9bb 4555 * @brief Correlation of Q15 sequences
Kojto 119:aae6fcc7d9bb 4556 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 4557 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 4558 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 4559 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 4560 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 119:aae6fcc7d9bb 4561 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 119:aae6fcc7d9bb 4562 * @return none.
Kojto 119:aae6fcc7d9bb 4563 */
Kojto 119:aae6fcc7d9bb 4564 void arm_correlate_opt_q15(
Kojto 119:aae6fcc7d9bb 4565 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 4566 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 4567 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 4568 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 4569 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 4570 q15_t * pScratch);
Kojto 119:aae6fcc7d9bb 4571
Kojto 119:aae6fcc7d9bb 4572
Kojto 119:aae6fcc7d9bb 4573 /**
Kojto 119:aae6fcc7d9bb 4574 * @brief Correlation of Q15 sequences.
Kojto 119:aae6fcc7d9bb 4575 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 4576 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 4577 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 4578 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 4579 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 119:aae6fcc7d9bb 4580 * @return none.
Kojto 119:aae6fcc7d9bb 4581 */
Kojto 119:aae6fcc7d9bb 4582
Kojto 119:aae6fcc7d9bb 4583 void arm_correlate_q15(
Kojto 119:aae6fcc7d9bb 4584 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 4585 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 4586 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 4587 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 4588 q15_t * pDst);
Kojto 119:aae6fcc7d9bb 4589
Kojto 119:aae6fcc7d9bb 4590 /**
Kojto 119:aae6fcc7d9bb 4591 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
Kojto 119:aae6fcc7d9bb 4592 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 4593 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 4594 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 4595 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 4596 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 119:aae6fcc7d9bb 4597 * @return none.
Kojto 119:aae6fcc7d9bb 4598 */
Kojto 119:aae6fcc7d9bb 4599
Kojto 119:aae6fcc7d9bb 4600 void arm_correlate_fast_q15(
Kojto 119:aae6fcc7d9bb 4601 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 4602 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 4603 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 4604 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 4605 q15_t * pDst);
Kojto 119:aae6fcc7d9bb 4606
Kojto 119:aae6fcc7d9bb 4607
Kojto 119:aae6fcc7d9bb 4608
Kojto 119:aae6fcc7d9bb 4609 /**
Kojto 119:aae6fcc7d9bb 4610 * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
Kojto 119:aae6fcc7d9bb 4611 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 4612 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 4613 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 4614 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 4615 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 119:aae6fcc7d9bb 4616 * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 119:aae6fcc7d9bb 4617 * @return none.
Kojto 119:aae6fcc7d9bb 4618 */
Kojto 119:aae6fcc7d9bb 4619
Kojto 119:aae6fcc7d9bb 4620 void arm_correlate_fast_opt_q15(
Kojto 119:aae6fcc7d9bb 4621 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 4622 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 4623 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 4624 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 4625 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 4626 q15_t * pScratch);
Kojto 119:aae6fcc7d9bb 4627
Kojto 119:aae6fcc7d9bb 4628 /**
Kojto 119:aae6fcc7d9bb 4629 * @brief Correlation of Q31 sequences.
Kojto 119:aae6fcc7d9bb 4630 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 4631 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 4632 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 4633 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 4634 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 119:aae6fcc7d9bb 4635 * @return none.
Kojto 119:aae6fcc7d9bb 4636 */
Kojto 119:aae6fcc7d9bb 4637
Kojto 119:aae6fcc7d9bb 4638 void arm_correlate_q31(
Kojto 119:aae6fcc7d9bb 4639 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 4640 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 4641 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 4642 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 4643 q31_t * pDst);
Kojto 119:aae6fcc7d9bb 4644
Kojto 119:aae6fcc7d9bb 4645 /**
Kojto 119:aae6fcc7d9bb 4646 * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
Kojto 119:aae6fcc7d9bb 4647 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 4648 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 4649 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 4650 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 4651 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 119:aae6fcc7d9bb 4652 * @return none.
Kojto 119:aae6fcc7d9bb 4653 */
Kojto 119:aae6fcc7d9bb 4654
Kojto 119:aae6fcc7d9bb 4655 void arm_correlate_fast_q31(
Kojto 119:aae6fcc7d9bb 4656 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 4657 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 4658 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 4659 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 4660 q31_t * pDst);
Kojto 119:aae6fcc7d9bb 4661
Kojto 119:aae6fcc7d9bb 4662
Kojto 119:aae6fcc7d9bb 4663
Kojto 119:aae6fcc7d9bb 4664 /**
Kojto 119:aae6fcc7d9bb 4665 * @brief Correlation of Q7 sequences.
Kojto 119:aae6fcc7d9bb 4666 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 4667 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 4668 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 4669 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 4670 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 119:aae6fcc7d9bb 4671 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
Kojto 119:aae6fcc7d9bb 4672 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
Kojto 119:aae6fcc7d9bb 4673 * @return none.
Kojto 119:aae6fcc7d9bb 4674 */
Kojto 119:aae6fcc7d9bb 4675
Kojto 119:aae6fcc7d9bb 4676 void arm_correlate_opt_q7(
Kojto 119:aae6fcc7d9bb 4677 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 4678 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 4679 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 4680 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 4681 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 4682 q15_t * pScratch1,
Kojto 119:aae6fcc7d9bb 4683 q15_t * pScratch2);
Kojto 119:aae6fcc7d9bb 4684
Kojto 119:aae6fcc7d9bb 4685
Kojto 119:aae6fcc7d9bb 4686 /**
Kojto 119:aae6fcc7d9bb 4687 * @brief Correlation of Q7 sequences.
Kojto 119:aae6fcc7d9bb 4688 * @param[in] *pSrcA points to the first input sequence.
Kojto 119:aae6fcc7d9bb 4689 * @param[in] srcALen length of the first input sequence.
Kojto 119:aae6fcc7d9bb 4690 * @param[in] *pSrcB points to the second input sequence.
Kojto 119:aae6fcc7d9bb 4691 * @param[in] srcBLen length of the second input sequence.
Kojto 119:aae6fcc7d9bb 4692 * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
Kojto 119:aae6fcc7d9bb 4693 * @return none.
Kojto 119:aae6fcc7d9bb 4694 */
Kojto 119:aae6fcc7d9bb 4695
Kojto 119:aae6fcc7d9bb 4696 void arm_correlate_q7(
Kojto 119:aae6fcc7d9bb 4697 q7_t * pSrcA,
Kojto 119:aae6fcc7d9bb 4698 uint32_t srcALen,
Kojto 119:aae6fcc7d9bb 4699 q7_t * pSrcB,
Kojto 119:aae6fcc7d9bb 4700 uint32_t srcBLen,
Kojto 119:aae6fcc7d9bb 4701 q7_t * pDst);
Kojto 119:aae6fcc7d9bb 4702
Kojto 119:aae6fcc7d9bb 4703
Kojto 119:aae6fcc7d9bb 4704 /**
Kojto 119:aae6fcc7d9bb 4705 * @brief Instance structure for the floating-point sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4706 */
Kojto 119:aae6fcc7d9bb 4707 typedef struct
Kojto 119:aae6fcc7d9bb 4708 {
Kojto 119:aae6fcc7d9bb 4709 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4710 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 119:aae6fcc7d9bb 4711 float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4712 float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 119:aae6fcc7d9bb 4713 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 119:aae6fcc7d9bb 4714 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4715 } arm_fir_sparse_instance_f32;
Kojto 119:aae6fcc7d9bb 4716
Kojto 119:aae6fcc7d9bb 4717 /**
Kojto 119:aae6fcc7d9bb 4718 * @brief Instance structure for the Q31 sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4719 */
Kojto 119:aae6fcc7d9bb 4720
Kojto 119:aae6fcc7d9bb 4721 typedef struct
Kojto 119:aae6fcc7d9bb 4722 {
Kojto 119:aae6fcc7d9bb 4723 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4724 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 119:aae6fcc7d9bb 4725 q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4726 q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 119:aae6fcc7d9bb 4727 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 119:aae6fcc7d9bb 4728 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4729 } arm_fir_sparse_instance_q31;
Kojto 119:aae6fcc7d9bb 4730
Kojto 119:aae6fcc7d9bb 4731 /**
Kojto 119:aae6fcc7d9bb 4732 * @brief Instance structure for the Q15 sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4733 */
Kojto 119:aae6fcc7d9bb 4734
Kojto 119:aae6fcc7d9bb 4735 typedef struct
Kojto 119:aae6fcc7d9bb 4736 {
Kojto 119:aae6fcc7d9bb 4737 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4738 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 119:aae6fcc7d9bb 4739 q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4740 q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 119:aae6fcc7d9bb 4741 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 119:aae6fcc7d9bb 4742 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4743 } arm_fir_sparse_instance_q15;
Kojto 119:aae6fcc7d9bb 4744
Kojto 119:aae6fcc7d9bb 4745 /**
Kojto 119:aae6fcc7d9bb 4746 * @brief Instance structure for the Q7 sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4747 */
Kojto 119:aae6fcc7d9bb 4748
Kojto 119:aae6fcc7d9bb 4749 typedef struct
Kojto 119:aae6fcc7d9bb 4750 {
Kojto 119:aae6fcc7d9bb 4751 uint16_t numTaps; /**< number of coefficients in the filter. */
Kojto 119:aae6fcc7d9bb 4752 uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
Kojto 119:aae6fcc7d9bb 4753 q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
Kojto 119:aae6fcc7d9bb 4754 q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
Kojto 119:aae6fcc7d9bb 4755 uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
Kojto 119:aae6fcc7d9bb 4756 int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
Kojto 119:aae6fcc7d9bb 4757 } arm_fir_sparse_instance_q7;
Kojto 119:aae6fcc7d9bb 4758
Kojto 119:aae6fcc7d9bb 4759 /**
Kojto 119:aae6fcc7d9bb 4760 * @brief Processing function for the floating-point sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4761 * @param[in] *S points to an instance of the floating-point sparse FIR structure.
Kojto 119:aae6fcc7d9bb 4762 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4763 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 4764 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 119:aae6fcc7d9bb 4765 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 4766 * @return none.
Kojto 119:aae6fcc7d9bb 4767 */
Kojto 119:aae6fcc7d9bb 4768
Kojto 119:aae6fcc7d9bb 4769 void arm_fir_sparse_f32(
Kojto 119:aae6fcc7d9bb 4770 arm_fir_sparse_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4771 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 4772 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 4773 float32_t * pScratchIn,
Kojto 119:aae6fcc7d9bb 4774 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4775
Kojto 119:aae6fcc7d9bb 4776 /**
Kojto 119:aae6fcc7d9bb 4777 * @brief Initialization function for the floating-point sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4778 * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
Kojto 119:aae6fcc7d9bb 4779 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 119:aae6fcc7d9bb 4780 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 119:aae6fcc7d9bb 4781 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 4782 * @param[in] *pTapDelay points to the array of offset times.
Kojto 119:aae6fcc7d9bb 4783 * @param[in] maxDelay maximum offset time supported.
Kojto 119:aae6fcc7d9bb 4784 * @param[in] blockSize number of samples that will be processed per block.
Kojto 119:aae6fcc7d9bb 4785 * @return none
Kojto 119:aae6fcc7d9bb 4786 */
Kojto 119:aae6fcc7d9bb 4787
Kojto 119:aae6fcc7d9bb 4788 void arm_fir_sparse_init_f32(
Kojto 119:aae6fcc7d9bb 4789 arm_fir_sparse_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 4790 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4791 float32_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4792 float32_t * pState,
Kojto 119:aae6fcc7d9bb 4793 int32_t * pTapDelay,
Kojto 119:aae6fcc7d9bb 4794 uint16_t maxDelay,
Kojto 119:aae6fcc7d9bb 4795 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4796
Kojto 119:aae6fcc7d9bb 4797 /**
Kojto 119:aae6fcc7d9bb 4798 * @brief Processing function for the Q31 sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4799 * @param[in] *S points to an instance of the Q31 sparse FIR structure.
Kojto 119:aae6fcc7d9bb 4800 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4801 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 4802 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 119:aae6fcc7d9bb 4803 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 4804 * @return none.
Kojto 119:aae6fcc7d9bb 4805 */
Kojto 119:aae6fcc7d9bb 4806
Kojto 119:aae6fcc7d9bb 4807 void arm_fir_sparse_q31(
Kojto 119:aae6fcc7d9bb 4808 arm_fir_sparse_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4809 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 4810 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 4811 q31_t * pScratchIn,
Kojto 119:aae6fcc7d9bb 4812 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4813
Kojto 119:aae6fcc7d9bb 4814 /**
Kojto 119:aae6fcc7d9bb 4815 * @brief Initialization function for the Q31 sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4816 * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
Kojto 119:aae6fcc7d9bb 4817 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 119:aae6fcc7d9bb 4818 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 119:aae6fcc7d9bb 4819 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 4820 * @param[in] *pTapDelay points to the array of offset times.
Kojto 119:aae6fcc7d9bb 4821 * @param[in] maxDelay maximum offset time supported.
Kojto 119:aae6fcc7d9bb 4822 * @param[in] blockSize number of samples that will be processed per block.
Kojto 119:aae6fcc7d9bb 4823 * @return none
Kojto 119:aae6fcc7d9bb 4824 */
Kojto 119:aae6fcc7d9bb 4825
Kojto 119:aae6fcc7d9bb 4826 void arm_fir_sparse_init_q31(
Kojto 119:aae6fcc7d9bb 4827 arm_fir_sparse_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 4828 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4829 q31_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4830 q31_t * pState,
Kojto 119:aae6fcc7d9bb 4831 int32_t * pTapDelay,
Kojto 119:aae6fcc7d9bb 4832 uint16_t maxDelay,
Kojto 119:aae6fcc7d9bb 4833 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4834
Kojto 119:aae6fcc7d9bb 4835 /**
Kojto 119:aae6fcc7d9bb 4836 * @brief Processing function for the Q15 sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4837 * @param[in] *S points to an instance of the Q15 sparse FIR structure.
Kojto 119:aae6fcc7d9bb 4838 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4839 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 4840 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 119:aae6fcc7d9bb 4841 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
Kojto 119:aae6fcc7d9bb 4842 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 4843 * @return none.
Kojto 119:aae6fcc7d9bb 4844 */
Kojto 119:aae6fcc7d9bb 4845
Kojto 119:aae6fcc7d9bb 4846 void arm_fir_sparse_q15(
Kojto 119:aae6fcc7d9bb 4847 arm_fir_sparse_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 4848 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 4849 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 4850 q15_t * pScratchIn,
Kojto 119:aae6fcc7d9bb 4851 q31_t * pScratchOut,
Kojto 119:aae6fcc7d9bb 4852 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4853
Kojto 119:aae6fcc7d9bb 4854
Kojto 119:aae6fcc7d9bb 4855 /**
Kojto 119:aae6fcc7d9bb 4856 * @brief Initialization function for the Q15 sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4857 * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
Kojto 119:aae6fcc7d9bb 4858 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 119:aae6fcc7d9bb 4859 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 119:aae6fcc7d9bb 4860 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 4861 * @param[in] *pTapDelay points to the array of offset times.
Kojto 119:aae6fcc7d9bb 4862 * @param[in] maxDelay maximum offset time supported.
Kojto 119:aae6fcc7d9bb 4863 * @param[in] blockSize number of samples that will be processed per block.
Kojto 119:aae6fcc7d9bb 4864 * @return none
Kojto 119:aae6fcc7d9bb 4865 */
Kojto 119:aae6fcc7d9bb 4866
Kojto 119:aae6fcc7d9bb 4867 void arm_fir_sparse_init_q15(
Kojto 119:aae6fcc7d9bb 4868 arm_fir_sparse_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 4869 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4870 q15_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4871 q15_t * pState,
Kojto 119:aae6fcc7d9bb 4872 int32_t * pTapDelay,
Kojto 119:aae6fcc7d9bb 4873 uint16_t maxDelay,
Kojto 119:aae6fcc7d9bb 4874 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4875
Kojto 119:aae6fcc7d9bb 4876 /**
Kojto 119:aae6fcc7d9bb 4877 * @brief Processing function for the Q7 sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4878 * @param[in] *S points to an instance of the Q7 sparse FIR structure.
Kojto 119:aae6fcc7d9bb 4879 * @param[in] *pSrc points to the block of input data.
Kojto 119:aae6fcc7d9bb 4880 * @param[out] *pDst points to the block of output data
Kojto 119:aae6fcc7d9bb 4881 * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
Kojto 119:aae6fcc7d9bb 4882 * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
Kojto 119:aae6fcc7d9bb 4883 * @param[in] blockSize number of input samples to process per call.
Kojto 119:aae6fcc7d9bb 4884 * @return none.
Kojto 119:aae6fcc7d9bb 4885 */
Kojto 119:aae6fcc7d9bb 4886
Kojto 119:aae6fcc7d9bb 4887 void arm_fir_sparse_q7(
Kojto 119:aae6fcc7d9bb 4888 arm_fir_sparse_instance_q7 * S,
Kojto 119:aae6fcc7d9bb 4889 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 4890 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 4891 q7_t * pScratchIn,
Kojto 119:aae6fcc7d9bb 4892 q31_t * pScratchOut,
Kojto 119:aae6fcc7d9bb 4893 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4894
Kojto 119:aae6fcc7d9bb 4895 /**
Kojto 119:aae6fcc7d9bb 4896 * @brief Initialization function for the Q7 sparse FIR filter.
Kojto 119:aae6fcc7d9bb 4897 * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
Kojto 119:aae6fcc7d9bb 4898 * @param[in] numTaps number of nonzero coefficients in the filter.
Kojto 119:aae6fcc7d9bb 4899 * @param[in] *pCoeffs points to the array of filter coefficients.
Kojto 119:aae6fcc7d9bb 4900 * @param[in] *pState points to the state buffer.
Kojto 119:aae6fcc7d9bb 4901 * @param[in] *pTapDelay points to the array of offset times.
Kojto 119:aae6fcc7d9bb 4902 * @param[in] maxDelay maximum offset time supported.
Kojto 119:aae6fcc7d9bb 4903 * @param[in] blockSize number of samples that will be processed per block.
Kojto 119:aae6fcc7d9bb 4904 * @return none
Kojto 119:aae6fcc7d9bb 4905 */
Kojto 119:aae6fcc7d9bb 4906
Kojto 119:aae6fcc7d9bb 4907 void arm_fir_sparse_init_q7(
Kojto 119:aae6fcc7d9bb 4908 arm_fir_sparse_instance_q7 * S,
Kojto 119:aae6fcc7d9bb 4909 uint16_t numTaps,
Kojto 119:aae6fcc7d9bb 4910 q7_t * pCoeffs,
Kojto 119:aae6fcc7d9bb 4911 q7_t * pState,
Kojto 119:aae6fcc7d9bb 4912 int32_t * pTapDelay,
Kojto 119:aae6fcc7d9bb 4913 uint16_t maxDelay,
Kojto 119:aae6fcc7d9bb 4914 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 4915
Kojto 119:aae6fcc7d9bb 4916
Kojto 119:aae6fcc7d9bb 4917 /*
Kojto 119:aae6fcc7d9bb 4918 * @brief Floating-point sin_cos function.
Kojto 119:aae6fcc7d9bb 4919 * @param[in] theta input value in degrees
Kojto 119:aae6fcc7d9bb 4920 * @param[out] *pSinVal points to the processed sine output.
Kojto 119:aae6fcc7d9bb 4921 * @param[out] *pCosVal points to the processed cos output.
Kojto 119:aae6fcc7d9bb 4922 * @return none.
Kojto 119:aae6fcc7d9bb 4923 */
Kojto 119:aae6fcc7d9bb 4924
Kojto 119:aae6fcc7d9bb 4925 void arm_sin_cos_f32(
Kojto 119:aae6fcc7d9bb 4926 float32_t theta,
Kojto 119:aae6fcc7d9bb 4927 float32_t * pSinVal,
Kojto 119:aae6fcc7d9bb 4928 float32_t * pCcosVal);
Kojto 119:aae6fcc7d9bb 4929
Kojto 119:aae6fcc7d9bb 4930 /*
Kojto 119:aae6fcc7d9bb 4931 * @brief Q31 sin_cos function.
Kojto 119:aae6fcc7d9bb 4932 * @param[in] theta scaled input value in degrees
Kojto 119:aae6fcc7d9bb 4933 * @param[out] *pSinVal points to the processed sine output.
Kojto 119:aae6fcc7d9bb 4934 * @param[out] *pCosVal points to the processed cosine output.
Kojto 119:aae6fcc7d9bb 4935 * @return none.
Kojto 119:aae6fcc7d9bb 4936 */
Kojto 119:aae6fcc7d9bb 4937
Kojto 119:aae6fcc7d9bb 4938 void arm_sin_cos_q31(
Kojto 119:aae6fcc7d9bb 4939 q31_t theta,
Kojto 119:aae6fcc7d9bb 4940 q31_t * pSinVal,
Kojto 119:aae6fcc7d9bb 4941 q31_t * pCosVal);
Kojto 119:aae6fcc7d9bb 4942
Kojto 119:aae6fcc7d9bb 4943
Kojto 119:aae6fcc7d9bb 4944 /**
Kojto 119:aae6fcc7d9bb 4945 * @brief Floating-point complex conjugate.
Kojto 119:aae6fcc7d9bb 4946 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 4947 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 4948 * @param[in] numSamples number of complex samples in each vector
Kojto 119:aae6fcc7d9bb 4949 * @return none.
Kojto 119:aae6fcc7d9bb 4950 */
Kojto 119:aae6fcc7d9bb 4951
Kojto 119:aae6fcc7d9bb 4952 void arm_cmplx_conj_f32(
Kojto 119:aae6fcc7d9bb 4953 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 4954 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 4955 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 4956
Kojto 119:aae6fcc7d9bb 4957 /**
Kojto 119:aae6fcc7d9bb 4958 * @brief Q31 complex conjugate.
Kojto 119:aae6fcc7d9bb 4959 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 4960 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 4961 * @param[in] numSamples number of complex samples in each vector
Kojto 119:aae6fcc7d9bb 4962 * @return none.
Kojto 119:aae6fcc7d9bb 4963 */
Kojto 119:aae6fcc7d9bb 4964
Kojto 119:aae6fcc7d9bb 4965 void arm_cmplx_conj_q31(
Kojto 119:aae6fcc7d9bb 4966 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 4967 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 4968 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 4969
Kojto 119:aae6fcc7d9bb 4970 /**
Kojto 119:aae6fcc7d9bb 4971 * @brief Q15 complex conjugate.
Kojto 119:aae6fcc7d9bb 4972 * @param[in] *pSrc points to the input vector
Kojto 119:aae6fcc7d9bb 4973 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 4974 * @param[in] numSamples number of complex samples in each vector
Kojto 119:aae6fcc7d9bb 4975 * @return none.
Kojto 119:aae6fcc7d9bb 4976 */
Kojto 119:aae6fcc7d9bb 4977
Kojto 119:aae6fcc7d9bb 4978 void arm_cmplx_conj_q15(
Kojto 119:aae6fcc7d9bb 4979 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 4980 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 4981 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 4982
Kojto 119:aae6fcc7d9bb 4983
Kojto 119:aae6fcc7d9bb 4984
Kojto 119:aae6fcc7d9bb 4985 /**
Kojto 119:aae6fcc7d9bb 4986 * @brief Floating-point complex magnitude squared
Kojto 119:aae6fcc7d9bb 4987 * @param[in] *pSrc points to the complex input vector
Kojto 119:aae6fcc7d9bb 4988 * @param[out] *pDst points to the real output vector
Kojto 119:aae6fcc7d9bb 4989 * @param[in] numSamples number of complex samples in the input vector
Kojto 119:aae6fcc7d9bb 4990 * @return none.
Kojto 119:aae6fcc7d9bb 4991 */
Kojto 119:aae6fcc7d9bb 4992
Kojto 119:aae6fcc7d9bb 4993 void arm_cmplx_mag_squared_f32(
Kojto 119:aae6fcc7d9bb 4994 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 4995 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 4996 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 4997
Kojto 119:aae6fcc7d9bb 4998 /**
Kojto 119:aae6fcc7d9bb 4999 * @brief Q31 complex magnitude squared
Kojto 119:aae6fcc7d9bb 5000 * @param[in] *pSrc points to the complex input vector
Kojto 119:aae6fcc7d9bb 5001 * @param[out] *pDst points to the real output vector
Kojto 119:aae6fcc7d9bb 5002 * @param[in] numSamples number of complex samples in the input vector
Kojto 119:aae6fcc7d9bb 5003 * @return none.
Kojto 119:aae6fcc7d9bb 5004 */
Kojto 119:aae6fcc7d9bb 5005
Kojto 119:aae6fcc7d9bb 5006 void arm_cmplx_mag_squared_q31(
Kojto 119:aae6fcc7d9bb 5007 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 5008 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 5009 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 5010
Kojto 119:aae6fcc7d9bb 5011 /**
Kojto 119:aae6fcc7d9bb 5012 * @brief Q15 complex magnitude squared
Kojto 119:aae6fcc7d9bb 5013 * @param[in] *pSrc points to the complex input vector
Kojto 119:aae6fcc7d9bb 5014 * @param[out] *pDst points to the real output vector
Kojto 119:aae6fcc7d9bb 5015 * @param[in] numSamples number of complex samples in the input vector
Kojto 119:aae6fcc7d9bb 5016 * @return none.
Kojto 119:aae6fcc7d9bb 5017 */
Kojto 119:aae6fcc7d9bb 5018
Kojto 119:aae6fcc7d9bb 5019 void arm_cmplx_mag_squared_q15(
Kojto 119:aae6fcc7d9bb 5020 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 5021 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 5022 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 5023
Kojto 119:aae6fcc7d9bb 5024
Kojto 119:aae6fcc7d9bb 5025 /**
Kojto 119:aae6fcc7d9bb 5026 * @ingroup groupController
Kojto 119:aae6fcc7d9bb 5027 */
Kojto 119:aae6fcc7d9bb 5028
Kojto 119:aae6fcc7d9bb 5029 /**
Kojto 119:aae6fcc7d9bb 5030 * @defgroup PID PID Motor Control
Kojto 119:aae6fcc7d9bb 5031 *
Kojto 119:aae6fcc7d9bb 5032 * A Proportional Integral Derivative (PID) controller is a generic feedback control
Kojto 119:aae6fcc7d9bb 5033 * loop mechanism widely used in industrial control systems.
Kojto 119:aae6fcc7d9bb 5034 * A PID controller is the most commonly used type of feedback controller.
Kojto 119:aae6fcc7d9bb 5035 *
Kojto 119:aae6fcc7d9bb 5036 * This set of functions implements (PID) controllers
Kojto 119:aae6fcc7d9bb 5037 * for Q15, Q31, and floating-point data types. The functions operate on a single sample
Kojto 119:aae6fcc7d9bb 5038 * of data and each call to the function returns a single processed value.
Kojto 119:aae6fcc7d9bb 5039 * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
Kojto 119:aae6fcc7d9bb 5040 * is the input sample value. The functions return the output value.
Kojto 119:aae6fcc7d9bb 5041 *
Kojto 119:aae6fcc7d9bb 5042 * \par Algorithm:
Kojto 119:aae6fcc7d9bb 5043 * <pre>
Kojto 119:aae6fcc7d9bb 5044 * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
Kojto 119:aae6fcc7d9bb 5045 * A0 = Kp + Ki + Kd
Kojto 119:aae6fcc7d9bb 5046 * A1 = (-Kp ) - (2 * Kd )
Kojto 119:aae6fcc7d9bb 5047 * A2 = Kd </pre>
Kojto 119:aae6fcc7d9bb 5048 *
Kojto 119:aae6fcc7d9bb 5049 * \par
Kojto 119:aae6fcc7d9bb 5050 * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
Kojto 119:aae6fcc7d9bb 5051 *
Kojto 119:aae6fcc7d9bb 5052 * \par
Kojto 119:aae6fcc7d9bb 5053 * \image html PID.gif "Proportional Integral Derivative Controller"
Kojto 119:aae6fcc7d9bb 5054 *
Kojto 119:aae6fcc7d9bb 5055 * \par
Kojto 119:aae6fcc7d9bb 5056 * The PID controller calculates an "error" value as the difference between
Kojto 119:aae6fcc7d9bb 5057 * the measured output and the reference input.
Kojto 119:aae6fcc7d9bb 5058 * The controller attempts to minimize the error by adjusting the process control inputs.
Kojto 119:aae6fcc7d9bb 5059 * The proportional value determines the reaction to the current error,
Kojto 119:aae6fcc7d9bb 5060 * the integral value determines the reaction based on the sum of recent errors,
Kojto 119:aae6fcc7d9bb 5061 * and the derivative value determines the reaction based on the rate at which the error has been changing.
Kojto 119:aae6fcc7d9bb 5062 *
Kojto 119:aae6fcc7d9bb 5063 * \par Instance Structure
Kojto 119:aae6fcc7d9bb 5064 * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
Kojto 119:aae6fcc7d9bb 5065 * A separate instance structure must be defined for each PID Controller.
Kojto 119:aae6fcc7d9bb 5066 * There are separate instance structure declarations for each of the 3 supported data types.
Kojto 119:aae6fcc7d9bb 5067 *
Kojto 119:aae6fcc7d9bb 5068 * \par Reset Functions
Kojto 119:aae6fcc7d9bb 5069 * There is also an associated reset function for each data type which clears the state array.
Kojto 119:aae6fcc7d9bb 5070 *
Kojto 119:aae6fcc7d9bb 5071 * \par Initialization Functions
Kojto 119:aae6fcc7d9bb 5072 * There is also an associated initialization function for each data type.
Kojto 119:aae6fcc7d9bb 5073 * The initialization function performs the following operations:
Kojto 119:aae6fcc7d9bb 5074 * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
Kojto 119:aae6fcc7d9bb 5075 * - Zeros out the values in the state buffer.
Kojto 119:aae6fcc7d9bb 5076 *
Kojto 119:aae6fcc7d9bb 5077 * \par
Kojto 119:aae6fcc7d9bb 5078 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
Kojto 119:aae6fcc7d9bb 5079 *
Kojto 119:aae6fcc7d9bb 5080 * \par Fixed-Point Behavior
Kojto 119:aae6fcc7d9bb 5081 * Care must be taken when using the fixed-point versions of the PID Controller functions.
Kojto 119:aae6fcc7d9bb 5082 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
Kojto 119:aae6fcc7d9bb 5083 * Refer to the function specific documentation below for usage guidelines.
Kojto 119:aae6fcc7d9bb 5084 */
Kojto 119:aae6fcc7d9bb 5085
Kojto 119:aae6fcc7d9bb 5086 /**
Kojto 119:aae6fcc7d9bb 5087 * @addtogroup PID
Kojto 119:aae6fcc7d9bb 5088 * @{
Kojto 119:aae6fcc7d9bb 5089 */
Kojto 119:aae6fcc7d9bb 5090
Kojto 119:aae6fcc7d9bb 5091 /**
Kojto 119:aae6fcc7d9bb 5092 * @brief Process function for the floating-point PID Control.
Kojto 119:aae6fcc7d9bb 5093 * @param[in,out] *S is an instance of the floating-point PID Control structure
Kojto 119:aae6fcc7d9bb 5094 * @param[in] in input sample to process
Kojto 119:aae6fcc7d9bb 5095 * @return out processed output sample.
Kojto 119:aae6fcc7d9bb 5096 */
Kojto 119:aae6fcc7d9bb 5097
Kojto 119:aae6fcc7d9bb 5098
Kojto 119:aae6fcc7d9bb 5099 static __INLINE float32_t arm_pid_f32(
Kojto 119:aae6fcc7d9bb 5100 arm_pid_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 5101 float32_t in)
Kojto 119:aae6fcc7d9bb 5102 {
Kojto 119:aae6fcc7d9bb 5103 float32_t out;
Kojto 119:aae6fcc7d9bb 5104
Kojto 119:aae6fcc7d9bb 5105 /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
Kojto 119:aae6fcc7d9bb 5106 out = (S->A0 * in) +
Kojto 119:aae6fcc7d9bb 5107 (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
Kojto 119:aae6fcc7d9bb 5108
Kojto 119:aae6fcc7d9bb 5109 /* Update state */
Kojto 119:aae6fcc7d9bb 5110 S->state[1] = S->state[0];
Kojto 119:aae6fcc7d9bb 5111 S->state[0] = in;
Kojto 119:aae6fcc7d9bb 5112 S->state[2] = out;
Kojto 119:aae6fcc7d9bb 5113
Kojto 119:aae6fcc7d9bb 5114 /* return to application */
Kojto 119:aae6fcc7d9bb 5115 return (out);
Kojto 119:aae6fcc7d9bb 5116
Kojto 119:aae6fcc7d9bb 5117 }
Kojto 119:aae6fcc7d9bb 5118
Kojto 119:aae6fcc7d9bb 5119 /**
Kojto 119:aae6fcc7d9bb 5120 * @brief Process function for the Q31 PID Control.
Kojto 119:aae6fcc7d9bb 5121 * @param[in,out] *S points to an instance of the Q31 PID Control structure
Kojto 119:aae6fcc7d9bb 5122 * @param[in] in input sample to process
Kojto 119:aae6fcc7d9bb 5123 * @return out processed output sample.
Kojto 119:aae6fcc7d9bb 5124 *
Kojto 119:aae6fcc7d9bb 5125 * <b>Scaling and Overflow Behavior:</b>
Kojto 119:aae6fcc7d9bb 5126 * \par
Kojto 119:aae6fcc7d9bb 5127 * The function is implemented using an internal 64-bit accumulator.
Kojto 119:aae6fcc7d9bb 5128 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
Kojto 119:aae6fcc7d9bb 5129 * Thus, if the accumulator result overflows it wraps around rather than clip.
Kojto 119:aae6fcc7d9bb 5130 * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
Kojto 119:aae6fcc7d9bb 5131 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
Kojto 119:aae6fcc7d9bb 5132 */
Kojto 119:aae6fcc7d9bb 5133
Kojto 119:aae6fcc7d9bb 5134 static __INLINE q31_t arm_pid_q31(
Kojto 119:aae6fcc7d9bb 5135 arm_pid_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 5136 q31_t in)
Kojto 119:aae6fcc7d9bb 5137 {
Kojto 119:aae6fcc7d9bb 5138 q63_t acc;
Kojto 119:aae6fcc7d9bb 5139 q31_t out;
Kojto 119:aae6fcc7d9bb 5140
Kojto 119:aae6fcc7d9bb 5141 /* acc = A0 * x[n] */
Kojto 119:aae6fcc7d9bb 5142 acc = (q63_t) S->A0 * in;
Kojto 119:aae6fcc7d9bb 5143
Kojto 119:aae6fcc7d9bb 5144 /* acc += A1 * x[n-1] */
Kojto 119:aae6fcc7d9bb 5145 acc += (q63_t) S->A1 * S->state[0];
Kojto 119:aae6fcc7d9bb 5146
Kojto 119:aae6fcc7d9bb 5147 /* acc += A2 * x[n-2] */
Kojto 119:aae6fcc7d9bb 5148 acc += (q63_t) S->A2 * S->state[1];
Kojto 119:aae6fcc7d9bb 5149
Kojto 119:aae6fcc7d9bb 5150 /* convert output to 1.31 format to add y[n-1] */
Kojto 119:aae6fcc7d9bb 5151 out = (q31_t) (acc >> 31u);
Kojto 119:aae6fcc7d9bb 5152
Kojto 119:aae6fcc7d9bb 5153 /* out += y[n-1] */
Kojto 119:aae6fcc7d9bb 5154 out += S->state[2];
Kojto 119:aae6fcc7d9bb 5155
Kojto 119:aae6fcc7d9bb 5156 /* Update state */
Kojto 119:aae6fcc7d9bb 5157 S->state[1] = S->state[0];
Kojto 119:aae6fcc7d9bb 5158 S->state[0] = in;
Kojto 119:aae6fcc7d9bb 5159 S->state[2] = out;
Kojto 119:aae6fcc7d9bb 5160
Kojto 119:aae6fcc7d9bb 5161 /* return to application */
Kojto 119:aae6fcc7d9bb 5162 return (out);
Kojto 119:aae6fcc7d9bb 5163
Kojto 119:aae6fcc7d9bb 5164 }
Kojto 119:aae6fcc7d9bb 5165
Kojto 119:aae6fcc7d9bb 5166 /**
Kojto 119:aae6fcc7d9bb 5167 * @brief Process function for the Q15 PID Control.
Kojto 119:aae6fcc7d9bb 5168 * @param[in,out] *S points to an instance of the Q15 PID Control structure
Kojto 119:aae6fcc7d9bb 5169 * @param[in] in input sample to process
Kojto 119:aae6fcc7d9bb 5170 * @return out processed output sample.
Kojto 119:aae6fcc7d9bb 5171 *
Kojto 119:aae6fcc7d9bb 5172 * <b>Scaling and Overflow Behavior:</b>
Kojto 119:aae6fcc7d9bb 5173 * \par
Kojto 119:aae6fcc7d9bb 5174 * The function is implemented using a 64-bit internal accumulator.
Kojto 119:aae6fcc7d9bb 5175 * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
Kojto 119:aae6fcc7d9bb 5176 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
Kojto 119:aae6fcc7d9bb 5177 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
Kojto 119:aae6fcc7d9bb 5178 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
Kojto 119:aae6fcc7d9bb 5179 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
Kojto 119:aae6fcc7d9bb 5180 */
Kojto 119:aae6fcc7d9bb 5181
Kojto 119:aae6fcc7d9bb 5182 static __INLINE q15_t arm_pid_q15(
Kojto 119:aae6fcc7d9bb 5183 arm_pid_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 5184 q15_t in)
Kojto 119:aae6fcc7d9bb 5185 {
Kojto 119:aae6fcc7d9bb 5186 q63_t acc;
Kojto 119:aae6fcc7d9bb 5187 q15_t out;
Kojto 119:aae6fcc7d9bb 5188
Kojto 119:aae6fcc7d9bb 5189 #ifndef ARM_MATH_CM0_FAMILY
Kojto 119:aae6fcc7d9bb 5190 __SIMD32_TYPE *vstate;
Kojto 119:aae6fcc7d9bb 5191
Kojto 119:aae6fcc7d9bb 5192 /* Implementation of PID controller */
Kojto 119:aae6fcc7d9bb 5193
Kojto 119:aae6fcc7d9bb 5194 /* acc = A0 * x[n] */
Kojto 119:aae6fcc7d9bb 5195 acc = (q31_t) __SMUAD(S->A0, in);
Kojto 119:aae6fcc7d9bb 5196
Kojto 119:aae6fcc7d9bb 5197 /* acc += A1 * x[n-1] + A2 * x[n-2] */
Kojto 119:aae6fcc7d9bb 5198 vstate = __SIMD32_CONST(S->state);
Kojto 119:aae6fcc7d9bb 5199 acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
Kojto 119:aae6fcc7d9bb 5200
Kojto 119:aae6fcc7d9bb 5201 #else
Kojto 119:aae6fcc7d9bb 5202 /* acc = A0 * x[n] */
Kojto 119:aae6fcc7d9bb 5203 acc = ((q31_t) S->A0) * in;
Kojto 119:aae6fcc7d9bb 5204
Kojto 119:aae6fcc7d9bb 5205 /* acc += A1 * x[n-1] + A2 * x[n-2] */
Kojto 119:aae6fcc7d9bb 5206 acc += (q31_t) S->A1 * S->state[0];
Kojto 119:aae6fcc7d9bb 5207 acc += (q31_t) S->A2 * S->state[1];
Kojto 119:aae6fcc7d9bb 5208
Kojto 119:aae6fcc7d9bb 5209 #endif
Kojto 119:aae6fcc7d9bb 5210
Kojto 119:aae6fcc7d9bb 5211 /* acc += y[n-1] */
Kojto 119:aae6fcc7d9bb 5212 acc += (q31_t) S->state[2] << 15;
Kojto 119:aae6fcc7d9bb 5213
Kojto 119:aae6fcc7d9bb 5214 /* saturate the output */
Kojto 119:aae6fcc7d9bb 5215 out = (q15_t) (__SSAT((acc >> 15), 16));
Kojto 119:aae6fcc7d9bb 5216
Kojto 119:aae6fcc7d9bb 5217 /* Update state */
Kojto 119:aae6fcc7d9bb 5218 S->state[1] = S->state[0];
Kojto 119:aae6fcc7d9bb 5219 S->state[0] = in;
Kojto 119:aae6fcc7d9bb 5220 S->state[2] = out;
Kojto 119:aae6fcc7d9bb 5221
Kojto 119:aae6fcc7d9bb 5222 /* return to application */
Kojto 119:aae6fcc7d9bb 5223 return (out);
Kojto 119:aae6fcc7d9bb 5224
Kojto 119:aae6fcc7d9bb 5225 }
Kojto 119:aae6fcc7d9bb 5226
Kojto 119:aae6fcc7d9bb 5227 /**
Kojto 119:aae6fcc7d9bb 5228 * @} end of PID group
Kojto 119:aae6fcc7d9bb 5229 */
Kojto 119:aae6fcc7d9bb 5230
Kojto 119:aae6fcc7d9bb 5231
Kojto 119:aae6fcc7d9bb 5232 /**
Kojto 119:aae6fcc7d9bb 5233 * @brief Floating-point matrix inverse.
Kojto 119:aae6fcc7d9bb 5234 * @param[in] *src points to the instance of the input floating-point matrix structure.
Kojto 119:aae6fcc7d9bb 5235 * @param[out] *dst points to the instance of the output floating-point matrix structure.
Kojto 119:aae6fcc7d9bb 5236 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
Kojto 119:aae6fcc7d9bb 5237 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
Kojto 119:aae6fcc7d9bb 5238 */
Kojto 119:aae6fcc7d9bb 5239
Kojto 119:aae6fcc7d9bb 5240 arm_status arm_mat_inverse_f32(
Kojto 119:aae6fcc7d9bb 5241 const arm_matrix_instance_f32 * src,
Kojto 119:aae6fcc7d9bb 5242 arm_matrix_instance_f32 * dst);
Kojto 119:aae6fcc7d9bb 5243
Kojto 119:aae6fcc7d9bb 5244
Kojto 119:aae6fcc7d9bb 5245 /**
Kojto 119:aae6fcc7d9bb 5246 * @brief Floating-point matrix inverse.
Kojto 119:aae6fcc7d9bb 5247 * @param[in] *src points to the instance of the input floating-point matrix structure.
Kojto 119:aae6fcc7d9bb 5248 * @param[out] *dst points to the instance of the output floating-point matrix structure.
Kojto 119:aae6fcc7d9bb 5249 * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
Kojto 119:aae6fcc7d9bb 5250 * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
Kojto 119:aae6fcc7d9bb 5251 */
Kojto 119:aae6fcc7d9bb 5252
Kojto 119:aae6fcc7d9bb 5253 arm_status arm_mat_inverse_f64(
Kojto 119:aae6fcc7d9bb 5254 const arm_matrix_instance_f64 * src,
Kojto 119:aae6fcc7d9bb 5255 arm_matrix_instance_f64 * dst);
Kojto 119:aae6fcc7d9bb 5256
Kojto 119:aae6fcc7d9bb 5257
Kojto 119:aae6fcc7d9bb 5258
Kojto 119:aae6fcc7d9bb 5259 /**
Kojto 119:aae6fcc7d9bb 5260 * @ingroup groupController
Kojto 119:aae6fcc7d9bb 5261 */
Kojto 119:aae6fcc7d9bb 5262
Kojto 119:aae6fcc7d9bb 5263
Kojto 119:aae6fcc7d9bb 5264 /**
Kojto 119:aae6fcc7d9bb 5265 * @defgroup clarke Vector Clarke Transform
Kojto 119:aae6fcc7d9bb 5266 * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
Kojto 119:aae6fcc7d9bb 5267 * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
Kojto 119:aae6fcc7d9bb 5268 * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
Kojto 119:aae6fcc7d9bb 5269 * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
Kojto 119:aae6fcc7d9bb 5270 * \image html clarke.gif Stator current space vector and its components in (a,b).
Kojto 119:aae6fcc7d9bb 5271 * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
Kojto 119:aae6fcc7d9bb 5272 * can be calculated using only <code>Ia</code> and <code>Ib</code>.
Kojto 119:aae6fcc7d9bb 5273 *
Kojto 119:aae6fcc7d9bb 5274 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 119:aae6fcc7d9bb 5275 * The library provides separate functions for Q31 and floating-point data types.
Kojto 119:aae6fcc7d9bb 5276 * \par Algorithm
Kojto 119:aae6fcc7d9bb 5277 * \image html clarkeFormula.gif
Kojto 119:aae6fcc7d9bb 5278 * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
Kojto 119:aae6fcc7d9bb 5279 * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
Kojto 119:aae6fcc7d9bb 5280 * \par Fixed-Point Behavior
Kojto 119:aae6fcc7d9bb 5281 * Care must be taken when using the Q31 version of the Clarke transform.
Kojto 119:aae6fcc7d9bb 5282 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 119:aae6fcc7d9bb 5283 * Refer to the function specific documentation below for usage guidelines.
Kojto 119:aae6fcc7d9bb 5284 */
Kojto 119:aae6fcc7d9bb 5285
Kojto 119:aae6fcc7d9bb 5286 /**
Kojto 119:aae6fcc7d9bb 5287 * @addtogroup clarke
Kojto 119:aae6fcc7d9bb 5288 * @{
Kojto 119:aae6fcc7d9bb 5289 */
Kojto 119:aae6fcc7d9bb 5290
Kojto 119:aae6fcc7d9bb 5291 /**
Kojto 119:aae6fcc7d9bb 5292 *
Kojto 119:aae6fcc7d9bb 5293 * @brief Floating-point Clarke transform
Kojto 119:aae6fcc7d9bb 5294 * @param[in] Ia input three-phase coordinate <code>a</code>
Kojto 119:aae6fcc7d9bb 5295 * @param[in] Ib input three-phase coordinate <code>b</code>
Kojto 119:aae6fcc7d9bb 5296 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 119:aae6fcc7d9bb 5297 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 119:aae6fcc7d9bb 5298 * @return none.
Kojto 119:aae6fcc7d9bb 5299 */
Kojto 119:aae6fcc7d9bb 5300
Kojto 119:aae6fcc7d9bb 5301 static __INLINE void arm_clarke_f32(
Kojto 119:aae6fcc7d9bb 5302 float32_t Ia,
Kojto 119:aae6fcc7d9bb 5303 float32_t Ib,
Kojto 119:aae6fcc7d9bb 5304 float32_t * pIalpha,
Kojto 119:aae6fcc7d9bb 5305 float32_t * pIbeta)
Kojto 119:aae6fcc7d9bb 5306 {
Kojto 119:aae6fcc7d9bb 5307 /* Calculate pIalpha using the equation, pIalpha = Ia */
Kojto 119:aae6fcc7d9bb 5308 *pIalpha = Ia;
Kojto 119:aae6fcc7d9bb 5309
Kojto 119:aae6fcc7d9bb 5310 /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
Kojto 119:aae6fcc7d9bb 5311 *pIbeta =
Kojto 119:aae6fcc7d9bb 5312 ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
Kojto 119:aae6fcc7d9bb 5313
Kojto 119:aae6fcc7d9bb 5314 }
Kojto 119:aae6fcc7d9bb 5315
Kojto 119:aae6fcc7d9bb 5316 /**
Kojto 119:aae6fcc7d9bb 5317 * @brief Clarke transform for Q31 version
Kojto 119:aae6fcc7d9bb 5318 * @param[in] Ia input three-phase coordinate <code>a</code>
Kojto 119:aae6fcc7d9bb 5319 * @param[in] Ib input three-phase coordinate <code>b</code>
Kojto 119:aae6fcc7d9bb 5320 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 119:aae6fcc7d9bb 5321 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 119:aae6fcc7d9bb 5322 * @return none.
Kojto 119:aae6fcc7d9bb 5323 *
Kojto 119:aae6fcc7d9bb 5324 * <b>Scaling and Overflow Behavior:</b>
Kojto 119:aae6fcc7d9bb 5325 * \par
Kojto 119:aae6fcc7d9bb 5326 * The function is implemented using an internal 32-bit accumulator.
Kojto 119:aae6fcc7d9bb 5327 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 119:aae6fcc7d9bb 5328 * There is saturation on the addition, hence there is no risk of overflow.
Kojto 119:aae6fcc7d9bb 5329 */
Kojto 119:aae6fcc7d9bb 5330
Kojto 119:aae6fcc7d9bb 5331 static __INLINE void arm_clarke_q31(
Kojto 119:aae6fcc7d9bb 5332 q31_t Ia,
Kojto 119:aae6fcc7d9bb 5333 q31_t Ib,
Kojto 119:aae6fcc7d9bb 5334 q31_t * pIalpha,
Kojto 119:aae6fcc7d9bb 5335 q31_t * pIbeta)
Kojto 119:aae6fcc7d9bb 5336 {
Kojto 119:aae6fcc7d9bb 5337 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 119:aae6fcc7d9bb 5338
Kojto 119:aae6fcc7d9bb 5339 /* Calculating pIalpha from Ia by equation pIalpha = Ia */
Kojto 119:aae6fcc7d9bb 5340 *pIalpha = Ia;
Kojto 119:aae6fcc7d9bb 5341
Kojto 119:aae6fcc7d9bb 5342 /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
Kojto 119:aae6fcc7d9bb 5343 product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
Kojto 119:aae6fcc7d9bb 5344
Kojto 119:aae6fcc7d9bb 5345 /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
Kojto 119:aae6fcc7d9bb 5346 product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
Kojto 119:aae6fcc7d9bb 5347
Kojto 119:aae6fcc7d9bb 5348 /* pIbeta is calculated by adding the intermediate products */
Kojto 119:aae6fcc7d9bb 5349 *pIbeta = __QADD(product1, product2);
Kojto 119:aae6fcc7d9bb 5350 }
Kojto 119:aae6fcc7d9bb 5351
Kojto 119:aae6fcc7d9bb 5352 /**
Kojto 119:aae6fcc7d9bb 5353 * @} end of clarke group
Kojto 119:aae6fcc7d9bb 5354 */
Kojto 119:aae6fcc7d9bb 5355
Kojto 119:aae6fcc7d9bb 5356 /**
Kojto 119:aae6fcc7d9bb 5357 * @brief Converts the elements of the Q7 vector to Q31 vector.
Kojto 119:aae6fcc7d9bb 5358 * @param[in] *pSrc input pointer
Kojto 119:aae6fcc7d9bb 5359 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 5360 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 5361 * @return none.
Kojto 119:aae6fcc7d9bb 5362 */
Kojto 119:aae6fcc7d9bb 5363 void arm_q7_to_q31(
Kojto 119:aae6fcc7d9bb 5364 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 5365 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 5366 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 5367
Kojto 119:aae6fcc7d9bb 5368
Kojto 119:aae6fcc7d9bb 5369
Kojto 119:aae6fcc7d9bb 5370
Kojto 119:aae6fcc7d9bb 5371 /**
Kojto 119:aae6fcc7d9bb 5372 * @ingroup groupController
Kojto 119:aae6fcc7d9bb 5373 */
Kojto 119:aae6fcc7d9bb 5374
Kojto 119:aae6fcc7d9bb 5375 /**
Kojto 119:aae6fcc7d9bb 5376 * @defgroup inv_clarke Vector Inverse Clarke Transform
Kojto 119:aae6fcc7d9bb 5377 * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
Kojto 119:aae6fcc7d9bb 5378 *
Kojto 119:aae6fcc7d9bb 5379 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 119:aae6fcc7d9bb 5380 * The library provides separate functions for Q31 and floating-point data types.
Kojto 119:aae6fcc7d9bb 5381 * \par Algorithm
Kojto 119:aae6fcc7d9bb 5382 * \image html clarkeInvFormula.gif
Kojto 119:aae6fcc7d9bb 5383 * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
Kojto 119:aae6fcc7d9bb 5384 * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
Kojto 119:aae6fcc7d9bb 5385 * \par Fixed-Point Behavior
Kojto 119:aae6fcc7d9bb 5386 * Care must be taken when using the Q31 version of the Clarke transform.
Kojto 119:aae6fcc7d9bb 5387 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 119:aae6fcc7d9bb 5388 * Refer to the function specific documentation below for usage guidelines.
Kojto 119:aae6fcc7d9bb 5389 */
Kojto 119:aae6fcc7d9bb 5390
Kojto 119:aae6fcc7d9bb 5391 /**
Kojto 119:aae6fcc7d9bb 5392 * @addtogroup inv_clarke
Kojto 119:aae6fcc7d9bb 5393 * @{
Kojto 119:aae6fcc7d9bb 5394 */
Kojto 119:aae6fcc7d9bb 5395
Kojto 119:aae6fcc7d9bb 5396 /**
Kojto 119:aae6fcc7d9bb 5397 * @brief Floating-point Inverse Clarke transform
Kojto 119:aae6fcc7d9bb 5398 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
Kojto 119:aae6fcc7d9bb 5399 * @param[in] Ibeta input two-phase orthogonal vector axis beta
Kojto 119:aae6fcc7d9bb 5400 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
Kojto 119:aae6fcc7d9bb 5401 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
Kojto 119:aae6fcc7d9bb 5402 * @return none.
Kojto 119:aae6fcc7d9bb 5403 */
Kojto 119:aae6fcc7d9bb 5404
Kojto 119:aae6fcc7d9bb 5405
Kojto 119:aae6fcc7d9bb 5406 static __INLINE void arm_inv_clarke_f32(
Kojto 119:aae6fcc7d9bb 5407 float32_t Ialpha,
Kojto 119:aae6fcc7d9bb 5408 float32_t Ibeta,
Kojto 119:aae6fcc7d9bb 5409 float32_t * pIa,
Kojto 119:aae6fcc7d9bb 5410 float32_t * pIb)
Kojto 119:aae6fcc7d9bb 5411 {
Kojto 119:aae6fcc7d9bb 5412 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
Kojto 119:aae6fcc7d9bb 5413 *pIa = Ialpha;
Kojto 119:aae6fcc7d9bb 5414
Kojto 119:aae6fcc7d9bb 5415 /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
Kojto 119:aae6fcc7d9bb 5416 *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
Kojto 119:aae6fcc7d9bb 5417
Kojto 119:aae6fcc7d9bb 5418 }
Kojto 119:aae6fcc7d9bb 5419
Kojto 119:aae6fcc7d9bb 5420 /**
Kojto 119:aae6fcc7d9bb 5421 * @brief Inverse Clarke transform for Q31 version
Kojto 119:aae6fcc7d9bb 5422 * @param[in] Ialpha input two-phase orthogonal vector axis alpha
Kojto 119:aae6fcc7d9bb 5423 * @param[in] Ibeta input two-phase orthogonal vector axis beta
Kojto 119:aae6fcc7d9bb 5424 * @param[out] *pIa points to output three-phase coordinate <code>a</code>
Kojto 119:aae6fcc7d9bb 5425 * @param[out] *pIb points to output three-phase coordinate <code>b</code>
Kojto 119:aae6fcc7d9bb 5426 * @return none.
Kojto 119:aae6fcc7d9bb 5427 *
Kojto 119:aae6fcc7d9bb 5428 * <b>Scaling and Overflow Behavior:</b>
Kojto 119:aae6fcc7d9bb 5429 * \par
Kojto 119:aae6fcc7d9bb 5430 * The function is implemented using an internal 32-bit accumulator.
Kojto 119:aae6fcc7d9bb 5431 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 119:aae6fcc7d9bb 5432 * There is saturation on the subtraction, hence there is no risk of overflow.
Kojto 119:aae6fcc7d9bb 5433 */
Kojto 119:aae6fcc7d9bb 5434
Kojto 119:aae6fcc7d9bb 5435 static __INLINE void arm_inv_clarke_q31(
Kojto 119:aae6fcc7d9bb 5436 q31_t Ialpha,
Kojto 119:aae6fcc7d9bb 5437 q31_t Ibeta,
Kojto 119:aae6fcc7d9bb 5438 q31_t * pIa,
Kojto 119:aae6fcc7d9bb 5439 q31_t * pIb)
Kojto 119:aae6fcc7d9bb 5440 {
Kojto 119:aae6fcc7d9bb 5441 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 119:aae6fcc7d9bb 5442
Kojto 119:aae6fcc7d9bb 5443 /* Calculating pIa from Ialpha by equation pIa = Ialpha */
Kojto 119:aae6fcc7d9bb 5444 *pIa = Ialpha;
Kojto 119:aae6fcc7d9bb 5445
Kojto 119:aae6fcc7d9bb 5446 /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
Kojto 119:aae6fcc7d9bb 5447 product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
Kojto 119:aae6fcc7d9bb 5448
Kojto 119:aae6fcc7d9bb 5449 /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
Kojto 119:aae6fcc7d9bb 5450 product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
Kojto 119:aae6fcc7d9bb 5451
Kojto 119:aae6fcc7d9bb 5452 /* pIb is calculated by subtracting the products */
Kojto 119:aae6fcc7d9bb 5453 *pIb = __QSUB(product2, product1);
Kojto 119:aae6fcc7d9bb 5454
Kojto 119:aae6fcc7d9bb 5455 }
Kojto 119:aae6fcc7d9bb 5456
Kojto 119:aae6fcc7d9bb 5457 /**
Kojto 119:aae6fcc7d9bb 5458 * @} end of inv_clarke group
Kojto 119:aae6fcc7d9bb 5459 */
Kojto 119:aae6fcc7d9bb 5460
Kojto 119:aae6fcc7d9bb 5461 /**
Kojto 119:aae6fcc7d9bb 5462 * @brief Converts the elements of the Q7 vector to Q15 vector.
Kojto 119:aae6fcc7d9bb 5463 * @param[in] *pSrc input pointer
Kojto 119:aae6fcc7d9bb 5464 * @param[out] *pDst output pointer
Kojto 119:aae6fcc7d9bb 5465 * @param[in] blockSize number of samples to process
Kojto 119:aae6fcc7d9bb 5466 * @return none.
Kojto 119:aae6fcc7d9bb 5467 */
Kojto 119:aae6fcc7d9bb 5468 void arm_q7_to_q15(
Kojto 119:aae6fcc7d9bb 5469 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 5470 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 5471 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 5472
Kojto 119:aae6fcc7d9bb 5473
Kojto 119:aae6fcc7d9bb 5474
Kojto 119:aae6fcc7d9bb 5475 /**
Kojto 119:aae6fcc7d9bb 5476 * @ingroup groupController
Kojto 119:aae6fcc7d9bb 5477 */
Kojto 119:aae6fcc7d9bb 5478
Kojto 119:aae6fcc7d9bb 5479 /**
Kojto 119:aae6fcc7d9bb 5480 * @defgroup park Vector Park Transform
Kojto 119:aae6fcc7d9bb 5481 *
Kojto 119:aae6fcc7d9bb 5482 * Forward Park transform converts the input two-coordinate vector to flux and torque components.
Kojto 119:aae6fcc7d9bb 5483 * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
Kojto 119:aae6fcc7d9bb 5484 * from the stationary to the moving reference frame and control the spatial relationship between
Kojto 119:aae6fcc7d9bb 5485 * the stator vector current and rotor flux vector.
Kojto 119:aae6fcc7d9bb 5486 * If we consider the d axis aligned with the rotor flux, the diagram below shows the
Kojto 119:aae6fcc7d9bb 5487 * current vector and the relationship from the two reference frames:
Kojto 119:aae6fcc7d9bb 5488 * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
Kojto 119:aae6fcc7d9bb 5489 *
Kojto 119:aae6fcc7d9bb 5490 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 119:aae6fcc7d9bb 5491 * The library provides separate functions for Q31 and floating-point data types.
Kojto 119:aae6fcc7d9bb 5492 * \par Algorithm
Kojto 119:aae6fcc7d9bb 5493 * \image html parkFormula.gif
Kojto 119:aae6fcc7d9bb 5494 * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
Kojto 119:aae6fcc7d9bb 5495 * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
Kojto 119:aae6fcc7d9bb 5496 * cosine and sine values of theta (rotor flux position).
Kojto 119:aae6fcc7d9bb 5497 * \par Fixed-Point Behavior
Kojto 119:aae6fcc7d9bb 5498 * Care must be taken when using the Q31 version of the Park transform.
Kojto 119:aae6fcc7d9bb 5499 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 119:aae6fcc7d9bb 5500 * Refer to the function specific documentation below for usage guidelines.
Kojto 119:aae6fcc7d9bb 5501 */
Kojto 119:aae6fcc7d9bb 5502
Kojto 119:aae6fcc7d9bb 5503 /**
Kojto 119:aae6fcc7d9bb 5504 * @addtogroup park
Kojto 119:aae6fcc7d9bb 5505 * @{
Kojto 119:aae6fcc7d9bb 5506 */
Kojto 119:aae6fcc7d9bb 5507
Kojto 119:aae6fcc7d9bb 5508 /**
Kojto 119:aae6fcc7d9bb 5509 * @brief Floating-point Park transform
Kojto 119:aae6fcc7d9bb 5510 * @param[in] Ialpha input two-phase vector coordinate alpha
Kojto 119:aae6fcc7d9bb 5511 * @param[in] Ibeta input two-phase vector coordinate beta
Kojto 119:aae6fcc7d9bb 5512 * @param[out] *pId points to output rotor reference frame d
Kojto 119:aae6fcc7d9bb 5513 * @param[out] *pIq points to output rotor reference frame q
Kojto 119:aae6fcc7d9bb 5514 * @param[in] sinVal sine value of rotation angle theta
Kojto 119:aae6fcc7d9bb 5515 * @param[in] cosVal cosine value of rotation angle theta
Kojto 119:aae6fcc7d9bb 5516 * @return none.
Kojto 119:aae6fcc7d9bb 5517 *
Kojto 119:aae6fcc7d9bb 5518 * The function implements the forward Park transform.
Kojto 119:aae6fcc7d9bb 5519 *
Kojto 119:aae6fcc7d9bb 5520 */
Kojto 119:aae6fcc7d9bb 5521
Kojto 119:aae6fcc7d9bb 5522 static __INLINE void arm_park_f32(
Kojto 119:aae6fcc7d9bb 5523 float32_t Ialpha,
Kojto 119:aae6fcc7d9bb 5524 float32_t Ibeta,
Kojto 119:aae6fcc7d9bb 5525 float32_t * pId,
Kojto 119:aae6fcc7d9bb 5526 float32_t * pIq,
Kojto 119:aae6fcc7d9bb 5527 float32_t sinVal,
Kojto 119:aae6fcc7d9bb 5528 float32_t cosVal)
Kojto 119:aae6fcc7d9bb 5529 {
Kojto 119:aae6fcc7d9bb 5530 /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
Kojto 119:aae6fcc7d9bb 5531 *pId = Ialpha * cosVal + Ibeta * sinVal;
Kojto 119:aae6fcc7d9bb 5532
Kojto 119:aae6fcc7d9bb 5533 /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
Kojto 119:aae6fcc7d9bb 5534 *pIq = -Ialpha * sinVal + Ibeta * cosVal;
Kojto 119:aae6fcc7d9bb 5535
Kojto 119:aae6fcc7d9bb 5536 }
Kojto 119:aae6fcc7d9bb 5537
Kojto 119:aae6fcc7d9bb 5538 /**
Kojto 119:aae6fcc7d9bb 5539 * @brief Park transform for Q31 version
Kojto 119:aae6fcc7d9bb 5540 * @param[in] Ialpha input two-phase vector coordinate alpha
Kojto 119:aae6fcc7d9bb 5541 * @param[in] Ibeta input two-phase vector coordinate beta
Kojto 119:aae6fcc7d9bb 5542 * @param[out] *pId points to output rotor reference frame d
Kojto 119:aae6fcc7d9bb 5543 * @param[out] *pIq points to output rotor reference frame q
Kojto 119:aae6fcc7d9bb 5544 * @param[in] sinVal sine value of rotation angle theta
Kojto 119:aae6fcc7d9bb 5545 * @param[in] cosVal cosine value of rotation angle theta
Kojto 119:aae6fcc7d9bb 5546 * @return none.
Kojto 119:aae6fcc7d9bb 5547 *
Kojto 119:aae6fcc7d9bb 5548 * <b>Scaling and Overflow Behavior:</b>
Kojto 119:aae6fcc7d9bb 5549 * \par
Kojto 119:aae6fcc7d9bb 5550 * The function is implemented using an internal 32-bit accumulator.
Kojto 119:aae6fcc7d9bb 5551 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 119:aae6fcc7d9bb 5552 * There is saturation on the addition and subtraction, hence there is no risk of overflow.
Kojto 119:aae6fcc7d9bb 5553 */
Kojto 119:aae6fcc7d9bb 5554
Kojto 119:aae6fcc7d9bb 5555
Kojto 119:aae6fcc7d9bb 5556 static __INLINE void arm_park_q31(
Kojto 119:aae6fcc7d9bb 5557 q31_t Ialpha,
Kojto 119:aae6fcc7d9bb 5558 q31_t Ibeta,
Kojto 119:aae6fcc7d9bb 5559 q31_t * pId,
Kojto 119:aae6fcc7d9bb 5560 q31_t * pIq,
Kojto 119:aae6fcc7d9bb 5561 q31_t sinVal,
Kojto 119:aae6fcc7d9bb 5562 q31_t cosVal)
Kojto 119:aae6fcc7d9bb 5563 {
Kojto 119:aae6fcc7d9bb 5564 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 119:aae6fcc7d9bb 5565 q31_t product3, product4; /* Temporary variables used to store intermediate results */
Kojto 119:aae6fcc7d9bb 5566
Kojto 119:aae6fcc7d9bb 5567 /* Intermediate product is calculated by (Ialpha * cosVal) */
Kojto 119:aae6fcc7d9bb 5568 product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
Kojto 119:aae6fcc7d9bb 5569
Kojto 119:aae6fcc7d9bb 5570 /* Intermediate product is calculated by (Ibeta * sinVal) */
Kojto 119:aae6fcc7d9bb 5571 product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
Kojto 119:aae6fcc7d9bb 5572
Kojto 119:aae6fcc7d9bb 5573
Kojto 119:aae6fcc7d9bb 5574 /* Intermediate product is calculated by (Ialpha * sinVal) */
Kojto 119:aae6fcc7d9bb 5575 product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
Kojto 119:aae6fcc7d9bb 5576
Kojto 119:aae6fcc7d9bb 5577 /* Intermediate product is calculated by (Ibeta * cosVal) */
Kojto 119:aae6fcc7d9bb 5578 product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
Kojto 119:aae6fcc7d9bb 5579
Kojto 119:aae6fcc7d9bb 5580 /* Calculate pId by adding the two intermediate products 1 and 2 */
Kojto 119:aae6fcc7d9bb 5581 *pId = __QADD(product1, product2);
Kojto 119:aae6fcc7d9bb 5582
Kojto 119:aae6fcc7d9bb 5583 /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
Kojto 119:aae6fcc7d9bb 5584 *pIq = __QSUB(product4, product3);
Kojto 119:aae6fcc7d9bb 5585 }
Kojto 119:aae6fcc7d9bb 5586
Kojto 119:aae6fcc7d9bb 5587 /**
Kojto 119:aae6fcc7d9bb 5588 * @} end of park group
Kojto 119:aae6fcc7d9bb 5589 */
Kojto 119:aae6fcc7d9bb 5590
Kojto 119:aae6fcc7d9bb 5591 /**
Kojto 119:aae6fcc7d9bb 5592 * @brief Converts the elements of the Q7 vector to floating-point vector.
Kojto 119:aae6fcc7d9bb 5593 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 5594 * @param[out] *pDst is output pointer
Kojto 119:aae6fcc7d9bb 5595 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 5596 * @return none.
Kojto 119:aae6fcc7d9bb 5597 */
Kojto 119:aae6fcc7d9bb 5598 void arm_q7_to_float(
Kojto 119:aae6fcc7d9bb 5599 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 5600 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 5601 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 5602
Kojto 119:aae6fcc7d9bb 5603
Kojto 119:aae6fcc7d9bb 5604 /**
Kojto 119:aae6fcc7d9bb 5605 * @ingroup groupController
Kojto 119:aae6fcc7d9bb 5606 */
Kojto 119:aae6fcc7d9bb 5607
Kojto 119:aae6fcc7d9bb 5608 /**
Kojto 119:aae6fcc7d9bb 5609 * @defgroup inv_park Vector Inverse Park transform
Kojto 119:aae6fcc7d9bb 5610 * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
Kojto 119:aae6fcc7d9bb 5611 *
Kojto 119:aae6fcc7d9bb 5612 * The function operates on a single sample of data and each call to the function returns the processed output.
Kojto 119:aae6fcc7d9bb 5613 * The library provides separate functions for Q31 and floating-point data types.
Kojto 119:aae6fcc7d9bb 5614 * \par Algorithm
Kojto 119:aae6fcc7d9bb 5615 * \image html parkInvFormula.gif
Kojto 119:aae6fcc7d9bb 5616 * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
Kojto 119:aae6fcc7d9bb 5617 * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
Kojto 119:aae6fcc7d9bb 5618 * cosine and sine values of theta (rotor flux position).
Kojto 119:aae6fcc7d9bb 5619 * \par Fixed-Point Behavior
Kojto 119:aae6fcc7d9bb 5620 * Care must be taken when using the Q31 version of the Park transform.
Kojto 119:aae6fcc7d9bb 5621 * In particular, the overflow and saturation behavior of the accumulator used must be considered.
Kojto 119:aae6fcc7d9bb 5622 * Refer to the function specific documentation below for usage guidelines.
Kojto 119:aae6fcc7d9bb 5623 */
Kojto 119:aae6fcc7d9bb 5624
Kojto 119:aae6fcc7d9bb 5625 /**
Kojto 119:aae6fcc7d9bb 5626 * @addtogroup inv_park
Kojto 119:aae6fcc7d9bb 5627 * @{
Kojto 119:aae6fcc7d9bb 5628 */
Kojto 119:aae6fcc7d9bb 5629
Kojto 119:aae6fcc7d9bb 5630 /**
Kojto 119:aae6fcc7d9bb 5631 * @brief Floating-point Inverse Park transform
Kojto 119:aae6fcc7d9bb 5632 * @param[in] Id input coordinate of rotor reference frame d
Kojto 119:aae6fcc7d9bb 5633 * @param[in] Iq input coordinate of rotor reference frame q
Kojto 119:aae6fcc7d9bb 5634 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 119:aae6fcc7d9bb 5635 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 119:aae6fcc7d9bb 5636 * @param[in] sinVal sine value of rotation angle theta
Kojto 119:aae6fcc7d9bb 5637 * @param[in] cosVal cosine value of rotation angle theta
Kojto 119:aae6fcc7d9bb 5638 * @return none.
Kojto 119:aae6fcc7d9bb 5639 */
Kojto 119:aae6fcc7d9bb 5640
Kojto 119:aae6fcc7d9bb 5641 static __INLINE void arm_inv_park_f32(
Kojto 119:aae6fcc7d9bb 5642 float32_t Id,
Kojto 119:aae6fcc7d9bb 5643 float32_t Iq,
Kojto 119:aae6fcc7d9bb 5644 float32_t * pIalpha,
Kojto 119:aae6fcc7d9bb 5645 float32_t * pIbeta,
Kojto 119:aae6fcc7d9bb 5646 float32_t sinVal,
Kojto 119:aae6fcc7d9bb 5647 float32_t cosVal)
Kojto 119:aae6fcc7d9bb 5648 {
Kojto 119:aae6fcc7d9bb 5649 /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
Kojto 119:aae6fcc7d9bb 5650 *pIalpha = Id * cosVal - Iq * sinVal;
Kojto 119:aae6fcc7d9bb 5651
Kojto 119:aae6fcc7d9bb 5652 /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
Kojto 119:aae6fcc7d9bb 5653 *pIbeta = Id * sinVal + Iq * cosVal;
Kojto 119:aae6fcc7d9bb 5654
Kojto 119:aae6fcc7d9bb 5655 }
Kojto 119:aae6fcc7d9bb 5656
Kojto 119:aae6fcc7d9bb 5657
Kojto 119:aae6fcc7d9bb 5658 /**
Kojto 119:aae6fcc7d9bb 5659 * @brief Inverse Park transform for Q31 version
Kojto 119:aae6fcc7d9bb 5660 * @param[in] Id input coordinate of rotor reference frame d
Kojto 119:aae6fcc7d9bb 5661 * @param[in] Iq input coordinate of rotor reference frame q
Kojto 119:aae6fcc7d9bb 5662 * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
Kojto 119:aae6fcc7d9bb 5663 * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
Kojto 119:aae6fcc7d9bb 5664 * @param[in] sinVal sine value of rotation angle theta
Kojto 119:aae6fcc7d9bb 5665 * @param[in] cosVal cosine value of rotation angle theta
Kojto 119:aae6fcc7d9bb 5666 * @return none.
Kojto 119:aae6fcc7d9bb 5667 *
Kojto 119:aae6fcc7d9bb 5668 * <b>Scaling and Overflow Behavior:</b>
Kojto 119:aae6fcc7d9bb 5669 * \par
Kojto 119:aae6fcc7d9bb 5670 * The function is implemented using an internal 32-bit accumulator.
Kojto 119:aae6fcc7d9bb 5671 * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
Kojto 119:aae6fcc7d9bb 5672 * There is saturation on the addition, hence there is no risk of overflow.
Kojto 119:aae6fcc7d9bb 5673 */
Kojto 119:aae6fcc7d9bb 5674
Kojto 119:aae6fcc7d9bb 5675
Kojto 119:aae6fcc7d9bb 5676 static __INLINE void arm_inv_park_q31(
Kojto 119:aae6fcc7d9bb 5677 q31_t Id,
Kojto 119:aae6fcc7d9bb 5678 q31_t Iq,
Kojto 119:aae6fcc7d9bb 5679 q31_t * pIalpha,
Kojto 119:aae6fcc7d9bb 5680 q31_t * pIbeta,
Kojto 119:aae6fcc7d9bb 5681 q31_t sinVal,
Kojto 119:aae6fcc7d9bb 5682 q31_t cosVal)
Kojto 119:aae6fcc7d9bb 5683 {
Kojto 119:aae6fcc7d9bb 5684 q31_t product1, product2; /* Temporary variables used to store intermediate results */
Kojto 119:aae6fcc7d9bb 5685 q31_t product3, product4; /* Temporary variables used to store intermediate results */
Kojto 119:aae6fcc7d9bb 5686
Kojto 119:aae6fcc7d9bb 5687 /* Intermediate product is calculated by (Id * cosVal) */
Kojto 119:aae6fcc7d9bb 5688 product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
Kojto 119:aae6fcc7d9bb 5689
Kojto 119:aae6fcc7d9bb 5690 /* Intermediate product is calculated by (Iq * sinVal) */
Kojto 119:aae6fcc7d9bb 5691 product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
Kojto 119:aae6fcc7d9bb 5692
Kojto 119:aae6fcc7d9bb 5693
Kojto 119:aae6fcc7d9bb 5694 /* Intermediate product is calculated by (Id * sinVal) */
Kojto 119:aae6fcc7d9bb 5695 product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
Kojto 119:aae6fcc7d9bb 5696
Kojto 119:aae6fcc7d9bb 5697 /* Intermediate product is calculated by (Iq * cosVal) */
Kojto 119:aae6fcc7d9bb 5698 product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
Kojto 119:aae6fcc7d9bb 5699
Kojto 119:aae6fcc7d9bb 5700 /* Calculate pIalpha by using the two intermediate products 1 and 2 */
Kojto 119:aae6fcc7d9bb 5701 *pIalpha = __QSUB(product1, product2);
Kojto 119:aae6fcc7d9bb 5702
Kojto 119:aae6fcc7d9bb 5703 /* Calculate pIbeta by using the two intermediate products 3 and 4 */
Kojto 119:aae6fcc7d9bb 5704 *pIbeta = __QADD(product4, product3);
Kojto 119:aae6fcc7d9bb 5705
Kojto 119:aae6fcc7d9bb 5706 }
Kojto 119:aae6fcc7d9bb 5707
Kojto 119:aae6fcc7d9bb 5708 /**
Kojto 119:aae6fcc7d9bb 5709 * @} end of Inverse park group
Kojto 119:aae6fcc7d9bb 5710 */
Kojto 119:aae6fcc7d9bb 5711
Kojto 119:aae6fcc7d9bb 5712
Kojto 119:aae6fcc7d9bb 5713 /**
Kojto 119:aae6fcc7d9bb 5714 * @brief Converts the elements of the Q31 vector to floating-point vector.
Kojto 119:aae6fcc7d9bb 5715 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 5716 * @param[out] *pDst is output pointer
Kojto 119:aae6fcc7d9bb 5717 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 5718 * @return none.
Kojto 119:aae6fcc7d9bb 5719 */
Kojto 119:aae6fcc7d9bb 5720 void arm_q31_to_float(
Kojto 119:aae6fcc7d9bb 5721 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 5722 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 5723 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 5724
Kojto 119:aae6fcc7d9bb 5725 /**
Kojto 119:aae6fcc7d9bb 5726 * @ingroup groupInterpolation
Kojto 119:aae6fcc7d9bb 5727 */
Kojto 119:aae6fcc7d9bb 5728
Kojto 119:aae6fcc7d9bb 5729 /**
Kojto 119:aae6fcc7d9bb 5730 * @defgroup LinearInterpolate Linear Interpolation
Kojto 119:aae6fcc7d9bb 5731 *
Kojto 119:aae6fcc7d9bb 5732 * Linear interpolation is a method of curve fitting using linear polynomials.
Kojto 119:aae6fcc7d9bb 5733 * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
Kojto 119:aae6fcc7d9bb 5734 *
Kojto 119:aae6fcc7d9bb 5735 * \par
Kojto 119:aae6fcc7d9bb 5736 * \image html LinearInterp.gif "Linear interpolation"
Kojto 119:aae6fcc7d9bb 5737 *
Kojto 119:aae6fcc7d9bb 5738 * \par
Kojto 119:aae6fcc7d9bb 5739 * A Linear Interpolate function calculates an output value(y), for the input(x)
Kojto 119:aae6fcc7d9bb 5740 * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
Kojto 119:aae6fcc7d9bb 5741 *
Kojto 119:aae6fcc7d9bb 5742 * \par Algorithm:
Kojto 119:aae6fcc7d9bb 5743 * <pre>
Kojto 119:aae6fcc7d9bb 5744 * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
Kojto 119:aae6fcc7d9bb 5745 * where x0, x1 are nearest values of input x
Kojto 119:aae6fcc7d9bb 5746 * y0, y1 are nearest values to output y
Kojto 119:aae6fcc7d9bb 5747 * </pre>
Kojto 119:aae6fcc7d9bb 5748 *
Kojto 119:aae6fcc7d9bb 5749 * \par
Kojto 119:aae6fcc7d9bb 5750 * This set of functions implements Linear interpolation process
Kojto 119:aae6fcc7d9bb 5751 * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
Kojto 119:aae6fcc7d9bb 5752 * sample of data and each call to the function returns a single processed value.
Kojto 119:aae6fcc7d9bb 5753 * <code>S</code> points to an instance of the Linear Interpolate function data structure.
Kojto 119:aae6fcc7d9bb 5754 * <code>x</code> is the input sample value. The functions returns the output value.
Kojto 119:aae6fcc7d9bb 5755 *
Kojto 119:aae6fcc7d9bb 5756 * \par
Kojto 119:aae6fcc7d9bb 5757 * if x is outside of the table boundary, Linear interpolation returns first value of the table
Kojto 119:aae6fcc7d9bb 5758 * if x is below input range and returns last value of table if x is above range.
Kojto 119:aae6fcc7d9bb 5759 */
Kojto 119:aae6fcc7d9bb 5760
Kojto 119:aae6fcc7d9bb 5761 /**
Kojto 119:aae6fcc7d9bb 5762 * @addtogroup LinearInterpolate
Kojto 119:aae6fcc7d9bb 5763 * @{
Kojto 119:aae6fcc7d9bb 5764 */
Kojto 119:aae6fcc7d9bb 5765
Kojto 119:aae6fcc7d9bb 5766 /**
Kojto 119:aae6fcc7d9bb 5767 * @brief Process function for the floating-point Linear Interpolation Function.
Kojto 119:aae6fcc7d9bb 5768 * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
Kojto 119:aae6fcc7d9bb 5769 * @param[in] x input sample to process
Kojto 119:aae6fcc7d9bb 5770 * @return y processed output sample.
Kojto 119:aae6fcc7d9bb 5771 *
Kojto 119:aae6fcc7d9bb 5772 */
Kojto 119:aae6fcc7d9bb 5773
Kojto 119:aae6fcc7d9bb 5774 static __INLINE float32_t arm_linear_interp_f32(
Kojto 119:aae6fcc7d9bb 5775 arm_linear_interp_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 5776 float32_t x)
Kojto 119:aae6fcc7d9bb 5777 {
Kojto 119:aae6fcc7d9bb 5778
Kojto 119:aae6fcc7d9bb 5779 float32_t y;
Kojto 119:aae6fcc7d9bb 5780 float32_t x0, x1; /* Nearest input values */
Kojto 119:aae6fcc7d9bb 5781 float32_t y0, y1; /* Nearest output values */
Kojto 119:aae6fcc7d9bb 5782 float32_t xSpacing = S->xSpacing; /* spacing between input values */
Kojto 119:aae6fcc7d9bb 5783 int32_t i; /* Index variable */
Kojto 119:aae6fcc7d9bb 5784 float32_t *pYData = S->pYData; /* pointer to output table */
Kojto 119:aae6fcc7d9bb 5785
Kojto 119:aae6fcc7d9bb 5786 /* Calculation of index */
Kojto 119:aae6fcc7d9bb 5787 i = (int32_t) ((x - S->x1) / xSpacing);
Kojto 119:aae6fcc7d9bb 5788
Kojto 119:aae6fcc7d9bb 5789 if(i < 0)
Kojto 119:aae6fcc7d9bb 5790 {
Kojto 119:aae6fcc7d9bb 5791 /* Iniatilize output for below specified range as least output value of table */
Kojto 119:aae6fcc7d9bb 5792 y = pYData[0];
Kojto 119:aae6fcc7d9bb 5793 }
Kojto 119:aae6fcc7d9bb 5794 else if((uint32_t)i >= S->nValues)
Kojto 119:aae6fcc7d9bb 5795 {
Kojto 119:aae6fcc7d9bb 5796 /* Iniatilize output for above specified range as last output value of table */
Kojto 119:aae6fcc7d9bb 5797 y = pYData[S->nValues - 1];
Kojto 119:aae6fcc7d9bb 5798 }
Kojto 119:aae6fcc7d9bb 5799 else
Kojto 119:aae6fcc7d9bb 5800 {
Kojto 119:aae6fcc7d9bb 5801 /* Calculation of nearest input values */
Kojto 119:aae6fcc7d9bb 5802 x0 = S->x1 + i * xSpacing;
Kojto 119:aae6fcc7d9bb 5803 x1 = S->x1 + (i + 1) * xSpacing;
Kojto 119:aae6fcc7d9bb 5804
Kojto 119:aae6fcc7d9bb 5805 /* Read of nearest output values */
Kojto 119:aae6fcc7d9bb 5806 y0 = pYData[i];
Kojto 119:aae6fcc7d9bb 5807 y1 = pYData[i + 1];
Kojto 119:aae6fcc7d9bb 5808
Kojto 119:aae6fcc7d9bb 5809 /* Calculation of output */
Kojto 119:aae6fcc7d9bb 5810 y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
Kojto 119:aae6fcc7d9bb 5811
Kojto 119:aae6fcc7d9bb 5812 }
Kojto 119:aae6fcc7d9bb 5813
Kojto 119:aae6fcc7d9bb 5814 /* returns output value */
Kojto 119:aae6fcc7d9bb 5815 return (y);
Kojto 119:aae6fcc7d9bb 5816 }
Kojto 119:aae6fcc7d9bb 5817
Kojto 119:aae6fcc7d9bb 5818 /**
Kojto 119:aae6fcc7d9bb 5819 *
Kojto 119:aae6fcc7d9bb 5820 * @brief Process function for the Q31 Linear Interpolation Function.
Kojto 119:aae6fcc7d9bb 5821 * @param[in] *pYData pointer to Q31 Linear Interpolation table
Kojto 119:aae6fcc7d9bb 5822 * @param[in] x input sample to process
Kojto 119:aae6fcc7d9bb 5823 * @param[in] nValues number of table values
Kojto 119:aae6fcc7d9bb 5824 * @return y processed output sample.
Kojto 119:aae6fcc7d9bb 5825 *
Kojto 119:aae6fcc7d9bb 5826 * \par
Kojto 119:aae6fcc7d9bb 5827 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 119:aae6fcc7d9bb 5828 * This function can support maximum of table size 2^12.
Kojto 119:aae6fcc7d9bb 5829 *
Kojto 119:aae6fcc7d9bb 5830 */
Kojto 119:aae6fcc7d9bb 5831
Kojto 119:aae6fcc7d9bb 5832
Kojto 119:aae6fcc7d9bb 5833 static __INLINE q31_t arm_linear_interp_q31(
Kojto 119:aae6fcc7d9bb 5834 q31_t * pYData,
Kojto 119:aae6fcc7d9bb 5835 q31_t x,
Kojto 119:aae6fcc7d9bb 5836 uint32_t nValues)
Kojto 119:aae6fcc7d9bb 5837 {
Kojto 119:aae6fcc7d9bb 5838 q31_t y; /* output */
Kojto 119:aae6fcc7d9bb 5839 q31_t y0, y1; /* Nearest output values */
Kojto 119:aae6fcc7d9bb 5840 q31_t fract; /* fractional part */
Kojto 119:aae6fcc7d9bb 5841 int32_t index; /* Index to read nearest output values */
Kojto 119:aae6fcc7d9bb 5842
Kojto 119:aae6fcc7d9bb 5843 /* Input is in 12.20 format */
Kojto 119:aae6fcc7d9bb 5844 /* 12 bits for the table index */
Kojto 119:aae6fcc7d9bb 5845 /* Index value calculation */
Kojto 119:aae6fcc7d9bb 5846 index = ((x & 0xFFF00000) >> 20);
Kojto 119:aae6fcc7d9bb 5847
Kojto 119:aae6fcc7d9bb 5848 if(index >= (int32_t)(nValues - 1))
Kojto 119:aae6fcc7d9bb 5849 {
Kojto 119:aae6fcc7d9bb 5850 return (pYData[nValues - 1]);
Kojto 119:aae6fcc7d9bb 5851 }
Kojto 119:aae6fcc7d9bb 5852 else if(index < 0)
Kojto 119:aae6fcc7d9bb 5853 {
Kojto 119:aae6fcc7d9bb 5854 return (pYData[0]);
Kojto 119:aae6fcc7d9bb 5855 }
Kojto 119:aae6fcc7d9bb 5856 else
Kojto 119:aae6fcc7d9bb 5857 {
Kojto 119:aae6fcc7d9bb 5858
Kojto 119:aae6fcc7d9bb 5859 /* 20 bits for the fractional part */
Kojto 119:aae6fcc7d9bb 5860 /* shift left by 11 to keep fract in 1.31 format */
Kojto 119:aae6fcc7d9bb 5861 fract = (x & 0x000FFFFF) << 11;
Kojto 119:aae6fcc7d9bb 5862
Kojto 119:aae6fcc7d9bb 5863 /* Read two nearest output values from the index in 1.31(q31) format */
Kojto 119:aae6fcc7d9bb 5864 y0 = pYData[index];
Kojto 119:aae6fcc7d9bb 5865 y1 = pYData[index + 1u];
Kojto 119:aae6fcc7d9bb 5866
Kojto 119:aae6fcc7d9bb 5867 /* Calculation of y0 * (1-fract) and y is in 2.30 format */
Kojto 119:aae6fcc7d9bb 5868 y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
Kojto 119:aae6fcc7d9bb 5869
Kojto 119:aae6fcc7d9bb 5870 /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
Kojto 119:aae6fcc7d9bb 5871 y += ((q31_t) (((q63_t) y1 * fract) >> 32));
Kojto 119:aae6fcc7d9bb 5872
Kojto 119:aae6fcc7d9bb 5873 /* Convert y to 1.31 format */
Kojto 119:aae6fcc7d9bb 5874 return (y << 1u);
Kojto 119:aae6fcc7d9bb 5875
Kojto 119:aae6fcc7d9bb 5876 }
Kojto 119:aae6fcc7d9bb 5877
Kojto 119:aae6fcc7d9bb 5878 }
Kojto 119:aae6fcc7d9bb 5879
Kojto 119:aae6fcc7d9bb 5880 /**
Kojto 119:aae6fcc7d9bb 5881 *
Kojto 119:aae6fcc7d9bb 5882 * @brief Process function for the Q15 Linear Interpolation Function.
Kojto 119:aae6fcc7d9bb 5883 * @param[in] *pYData pointer to Q15 Linear Interpolation table
Kojto 119:aae6fcc7d9bb 5884 * @param[in] x input sample to process
Kojto 119:aae6fcc7d9bb 5885 * @param[in] nValues number of table values
Kojto 119:aae6fcc7d9bb 5886 * @return y processed output sample.
Kojto 119:aae6fcc7d9bb 5887 *
Kojto 119:aae6fcc7d9bb 5888 * \par
Kojto 119:aae6fcc7d9bb 5889 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 119:aae6fcc7d9bb 5890 * This function can support maximum of table size 2^12.
Kojto 119:aae6fcc7d9bb 5891 *
Kojto 119:aae6fcc7d9bb 5892 */
Kojto 119:aae6fcc7d9bb 5893
Kojto 119:aae6fcc7d9bb 5894
Kojto 119:aae6fcc7d9bb 5895 static __INLINE q15_t arm_linear_interp_q15(
Kojto 119:aae6fcc7d9bb 5896 q15_t * pYData,
Kojto 119:aae6fcc7d9bb 5897 q31_t x,
Kojto 119:aae6fcc7d9bb 5898 uint32_t nValues)
Kojto 119:aae6fcc7d9bb 5899 {
Kojto 119:aae6fcc7d9bb 5900 q63_t y; /* output */
Kojto 119:aae6fcc7d9bb 5901 q15_t y0, y1; /* Nearest output values */
Kojto 119:aae6fcc7d9bb 5902 q31_t fract; /* fractional part */
Kojto 119:aae6fcc7d9bb 5903 int32_t index; /* Index to read nearest output values */
Kojto 119:aae6fcc7d9bb 5904
Kojto 119:aae6fcc7d9bb 5905 /* Input is in 12.20 format */
Kojto 119:aae6fcc7d9bb 5906 /* 12 bits for the table index */
Kojto 119:aae6fcc7d9bb 5907 /* Index value calculation */
Kojto 119:aae6fcc7d9bb 5908 index = ((x & 0xFFF00000) >> 20u);
Kojto 119:aae6fcc7d9bb 5909
Kojto 119:aae6fcc7d9bb 5910 if(index >= (int32_t)(nValues - 1))
Kojto 119:aae6fcc7d9bb 5911 {
Kojto 119:aae6fcc7d9bb 5912 return (pYData[nValues - 1]);
Kojto 119:aae6fcc7d9bb 5913 }
Kojto 119:aae6fcc7d9bb 5914 else if(index < 0)
Kojto 119:aae6fcc7d9bb 5915 {
Kojto 119:aae6fcc7d9bb 5916 return (pYData[0]);
Kojto 119:aae6fcc7d9bb 5917 }
Kojto 119:aae6fcc7d9bb 5918 else
Kojto 119:aae6fcc7d9bb 5919 {
Kojto 119:aae6fcc7d9bb 5920 /* 20 bits for the fractional part */
Kojto 119:aae6fcc7d9bb 5921 /* fract is in 12.20 format */
Kojto 119:aae6fcc7d9bb 5922 fract = (x & 0x000FFFFF);
Kojto 119:aae6fcc7d9bb 5923
Kojto 119:aae6fcc7d9bb 5924 /* Read two nearest output values from the index */
Kojto 119:aae6fcc7d9bb 5925 y0 = pYData[index];
Kojto 119:aae6fcc7d9bb 5926 y1 = pYData[index + 1u];
Kojto 119:aae6fcc7d9bb 5927
Kojto 119:aae6fcc7d9bb 5928 /* Calculation of y0 * (1-fract) and y is in 13.35 format */
Kojto 119:aae6fcc7d9bb 5929 y = ((q63_t) y0 * (0xFFFFF - fract));
Kojto 119:aae6fcc7d9bb 5930
Kojto 119:aae6fcc7d9bb 5931 /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
Kojto 119:aae6fcc7d9bb 5932 y += ((q63_t) y1 * (fract));
Kojto 119:aae6fcc7d9bb 5933
Kojto 119:aae6fcc7d9bb 5934 /* convert y to 1.15 format */
Kojto 119:aae6fcc7d9bb 5935 return (y >> 20);
Kojto 119:aae6fcc7d9bb 5936 }
Kojto 119:aae6fcc7d9bb 5937
Kojto 119:aae6fcc7d9bb 5938
Kojto 119:aae6fcc7d9bb 5939 }
Kojto 119:aae6fcc7d9bb 5940
Kojto 119:aae6fcc7d9bb 5941 /**
Kojto 119:aae6fcc7d9bb 5942 *
Kojto 119:aae6fcc7d9bb 5943 * @brief Process function for the Q7 Linear Interpolation Function.
Kojto 119:aae6fcc7d9bb 5944 * @param[in] *pYData pointer to Q7 Linear Interpolation table
Kojto 119:aae6fcc7d9bb 5945 * @param[in] x input sample to process
Kojto 119:aae6fcc7d9bb 5946 * @param[in] nValues number of table values
Kojto 119:aae6fcc7d9bb 5947 * @return y processed output sample.
Kojto 119:aae6fcc7d9bb 5948 *
Kojto 119:aae6fcc7d9bb 5949 * \par
Kojto 119:aae6fcc7d9bb 5950 * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
Kojto 119:aae6fcc7d9bb 5951 * This function can support maximum of table size 2^12.
Kojto 119:aae6fcc7d9bb 5952 */
Kojto 119:aae6fcc7d9bb 5953
Kojto 119:aae6fcc7d9bb 5954
Kojto 119:aae6fcc7d9bb 5955 static __INLINE q7_t arm_linear_interp_q7(
Kojto 119:aae6fcc7d9bb 5956 q7_t * pYData,
Kojto 119:aae6fcc7d9bb 5957 q31_t x,
Kojto 119:aae6fcc7d9bb 5958 uint32_t nValues)
Kojto 119:aae6fcc7d9bb 5959 {
Kojto 119:aae6fcc7d9bb 5960 q31_t y; /* output */
Kojto 119:aae6fcc7d9bb 5961 q7_t y0, y1; /* Nearest output values */
Kojto 119:aae6fcc7d9bb 5962 q31_t fract; /* fractional part */
Kojto 119:aae6fcc7d9bb 5963 uint32_t index; /* Index to read nearest output values */
Kojto 119:aae6fcc7d9bb 5964
Kojto 119:aae6fcc7d9bb 5965 /* Input is in 12.20 format */
Kojto 119:aae6fcc7d9bb 5966 /* 12 bits for the table index */
Kojto 119:aae6fcc7d9bb 5967 /* Index value calculation */
Kojto 119:aae6fcc7d9bb 5968 if (x < 0)
Kojto 119:aae6fcc7d9bb 5969 {
Kojto 119:aae6fcc7d9bb 5970 return (pYData[0]);
Kojto 119:aae6fcc7d9bb 5971 }
Kojto 119:aae6fcc7d9bb 5972 index = (x >> 20) & 0xfff;
Kojto 119:aae6fcc7d9bb 5973
Kojto 119:aae6fcc7d9bb 5974
Kojto 119:aae6fcc7d9bb 5975 if(index >= (nValues - 1))
Kojto 119:aae6fcc7d9bb 5976 {
Kojto 119:aae6fcc7d9bb 5977 return (pYData[nValues - 1]);
Kojto 119:aae6fcc7d9bb 5978 }
Kojto 119:aae6fcc7d9bb 5979 else
Kojto 119:aae6fcc7d9bb 5980 {
Kojto 119:aae6fcc7d9bb 5981
Kojto 119:aae6fcc7d9bb 5982 /* 20 bits for the fractional part */
Kojto 119:aae6fcc7d9bb 5983 /* fract is in 12.20 format */
Kojto 119:aae6fcc7d9bb 5984 fract = (x & 0x000FFFFF);
Kojto 119:aae6fcc7d9bb 5985
Kojto 119:aae6fcc7d9bb 5986 /* Read two nearest output values from the index and are in 1.7(q7) format */
Kojto 119:aae6fcc7d9bb 5987 y0 = pYData[index];
Kojto 119:aae6fcc7d9bb 5988 y1 = pYData[index + 1u];
Kojto 119:aae6fcc7d9bb 5989
Kojto 119:aae6fcc7d9bb 5990 /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
Kojto 119:aae6fcc7d9bb 5991 y = ((y0 * (0xFFFFF - fract)));
Kojto 119:aae6fcc7d9bb 5992
Kojto 119:aae6fcc7d9bb 5993 /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
Kojto 119:aae6fcc7d9bb 5994 y += (y1 * fract);
Kojto 119:aae6fcc7d9bb 5995
Kojto 119:aae6fcc7d9bb 5996 /* convert y to 1.7(q7) format */
Kojto 119:aae6fcc7d9bb 5997 return (y >> 20u);
Kojto 119:aae6fcc7d9bb 5998
Kojto 119:aae6fcc7d9bb 5999 }
Kojto 119:aae6fcc7d9bb 6000
Kojto 119:aae6fcc7d9bb 6001 }
Kojto 119:aae6fcc7d9bb 6002 /**
Kojto 119:aae6fcc7d9bb 6003 * @} end of LinearInterpolate group
Kojto 119:aae6fcc7d9bb 6004 */
Kojto 119:aae6fcc7d9bb 6005
Kojto 119:aae6fcc7d9bb 6006 /**
Kojto 119:aae6fcc7d9bb 6007 * @brief Fast approximation to the trigonometric sine function for floating-point data.
Kojto 119:aae6fcc7d9bb 6008 * @param[in] x input value in radians.
Kojto 119:aae6fcc7d9bb 6009 * @return sin(x).
Kojto 119:aae6fcc7d9bb 6010 */
Kojto 119:aae6fcc7d9bb 6011
Kojto 119:aae6fcc7d9bb 6012 float32_t arm_sin_f32(
Kojto 119:aae6fcc7d9bb 6013 float32_t x);
Kojto 119:aae6fcc7d9bb 6014
Kojto 119:aae6fcc7d9bb 6015 /**
Kojto 119:aae6fcc7d9bb 6016 * @brief Fast approximation to the trigonometric sine function for Q31 data.
Kojto 119:aae6fcc7d9bb 6017 * @param[in] x Scaled input value in radians.
Kojto 119:aae6fcc7d9bb 6018 * @return sin(x).
Kojto 119:aae6fcc7d9bb 6019 */
Kojto 119:aae6fcc7d9bb 6020
Kojto 119:aae6fcc7d9bb 6021 q31_t arm_sin_q31(
Kojto 119:aae6fcc7d9bb 6022 q31_t x);
Kojto 119:aae6fcc7d9bb 6023
Kojto 119:aae6fcc7d9bb 6024 /**
Kojto 119:aae6fcc7d9bb 6025 * @brief Fast approximation to the trigonometric sine function for Q15 data.
Kojto 119:aae6fcc7d9bb 6026 * @param[in] x Scaled input value in radians.
Kojto 119:aae6fcc7d9bb 6027 * @return sin(x).
Kojto 119:aae6fcc7d9bb 6028 */
Kojto 119:aae6fcc7d9bb 6029
Kojto 119:aae6fcc7d9bb 6030 q15_t arm_sin_q15(
Kojto 119:aae6fcc7d9bb 6031 q15_t x);
Kojto 119:aae6fcc7d9bb 6032
Kojto 119:aae6fcc7d9bb 6033 /**
Kojto 119:aae6fcc7d9bb 6034 * @brief Fast approximation to the trigonometric cosine function for floating-point data.
Kojto 119:aae6fcc7d9bb 6035 * @param[in] x input value in radians.
Kojto 119:aae6fcc7d9bb 6036 * @return cos(x).
Kojto 119:aae6fcc7d9bb 6037 */
Kojto 119:aae6fcc7d9bb 6038
Kojto 119:aae6fcc7d9bb 6039 float32_t arm_cos_f32(
Kojto 119:aae6fcc7d9bb 6040 float32_t x);
Kojto 119:aae6fcc7d9bb 6041
Kojto 119:aae6fcc7d9bb 6042 /**
Kojto 119:aae6fcc7d9bb 6043 * @brief Fast approximation to the trigonometric cosine function for Q31 data.
Kojto 119:aae6fcc7d9bb 6044 * @param[in] x Scaled input value in radians.
Kojto 119:aae6fcc7d9bb 6045 * @return cos(x).
Kojto 119:aae6fcc7d9bb 6046 */
Kojto 119:aae6fcc7d9bb 6047
Kojto 119:aae6fcc7d9bb 6048 q31_t arm_cos_q31(
Kojto 119:aae6fcc7d9bb 6049 q31_t x);
Kojto 119:aae6fcc7d9bb 6050
Kojto 119:aae6fcc7d9bb 6051 /**
Kojto 119:aae6fcc7d9bb 6052 * @brief Fast approximation to the trigonometric cosine function for Q15 data.
Kojto 119:aae6fcc7d9bb 6053 * @param[in] x Scaled input value in radians.
Kojto 119:aae6fcc7d9bb 6054 * @return cos(x).
Kojto 119:aae6fcc7d9bb 6055 */
Kojto 119:aae6fcc7d9bb 6056
Kojto 119:aae6fcc7d9bb 6057 q15_t arm_cos_q15(
Kojto 119:aae6fcc7d9bb 6058 q15_t x);
Kojto 119:aae6fcc7d9bb 6059
Kojto 119:aae6fcc7d9bb 6060
Kojto 119:aae6fcc7d9bb 6061 /**
Kojto 119:aae6fcc7d9bb 6062 * @ingroup groupFastMath
Kojto 119:aae6fcc7d9bb 6063 */
Kojto 119:aae6fcc7d9bb 6064
Kojto 119:aae6fcc7d9bb 6065
Kojto 119:aae6fcc7d9bb 6066 /**
Kojto 119:aae6fcc7d9bb 6067 * @defgroup SQRT Square Root
Kojto 119:aae6fcc7d9bb 6068 *
Kojto 119:aae6fcc7d9bb 6069 * Computes the square root of a number.
Kojto 119:aae6fcc7d9bb 6070 * There are separate functions for Q15, Q31, and floating-point data types.
Kojto 119:aae6fcc7d9bb 6071 * The square root function is computed using the Newton-Raphson algorithm.
Kojto 119:aae6fcc7d9bb 6072 * This is an iterative algorithm of the form:
Kojto 119:aae6fcc7d9bb 6073 * <pre>
Kojto 119:aae6fcc7d9bb 6074 * x1 = x0 - f(x0)/f'(x0)
Kojto 119:aae6fcc7d9bb 6075 * </pre>
Kojto 119:aae6fcc7d9bb 6076 * where <code>x1</code> is the current estimate,
Kojto 119:aae6fcc7d9bb 6077 * <code>x0</code> is the previous estimate, and
Kojto 119:aae6fcc7d9bb 6078 * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
Kojto 119:aae6fcc7d9bb 6079 * For the square root function, the algorithm reduces to:
Kojto 119:aae6fcc7d9bb 6080 * <pre>
Kojto 119:aae6fcc7d9bb 6081 * x0 = in/2 [initial guess]
Kojto 119:aae6fcc7d9bb 6082 * x1 = 1/2 * ( x0 + in / x0) [each iteration]
Kojto 119:aae6fcc7d9bb 6083 * </pre>
Kojto 119:aae6fcc7d9bb 6084 */
Kojto 119:aae6fcc7d9bb 6085
Kojto 119:aae6fcc7d9bb 6086
Kojto 119:aae6fcc7d9bb 6087 /**
Kojto 119:aae6fcc7d9bb 6088 * @addtogroup SQRT
Kojto 119:aae6fcc7d9bb 6089 * @{
Kojto 119:aae6fcc7d9bb 6090 */
Kojto 119:aae6fcc7d9bb 6091
Kojto 119:aae6fcc7d9bb 6092 /**
Kojto 119:aae6fcc7d9bb 6093 * @brief Floating-point square root function.
Kojto 119:aae6fcc7d9bb 6094 * @param[in] in input value.
Kojto 119:aae6fcc7d9bb 6095 * @param[out] *pOut square root of input value.
Kojto 119:aae6fcc7d9bb 6096 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 119:aae6fcc7d9bb 6097 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 119:aae6fcc7d9bb 6098 */
Kojto 119:aae6fcc7d9bb 6099
Kojto 119:aae6fcc7d9bb 6100 static __INLINE arm_status arm_sqrt_f32(
Kojto 119:aae6fcc7d9bb 6101 float32_t in,
Kojto 119:aae6fcc7d9bb 6102 float32_t * pOut)
Kojto 119:aae6fcc7d9bb 6103 {
Kojto 119:aae6fcc7d9bb 6104 if(in >= 0.0f)
Kojto 119:aae6fcc7d9bb 6105 {
Kojto 119:aae6fcc7d9bb 6106
Kojto 119:aae6fcc7d9bb 6107 // #if __FPU_USED
Kojto 119:aae6fcc7d9bb 6108 #if (__FPU_USED == 1) && defined ( __CC_ARM )
Kojto 119:aae6fcc7d9bb 6109 *pOut = __sqrtf(in);
Kojto 119:aae6fcc7d9bb 6110 #else
Kojto 119:aae6fcc7d9bb 6111 *pOut = sqrtf(in);
Kojto 119:aae6fcc7d9bb 6112 #endif
Kojto 119:aae6fcc7d9bb 6113
Kojto 119:aae6fcc7d9bb 6114 return (ARM_MATH_SUCCESS);
Kojto 119:aae6fcc7d9bb 6115 }
Kojto 119:aae6fcc7d9bb 6116 else
Kojto 119:aae6fcc7d9bb 6117 {
Kojto 119:aae6fcc7d9bb 6118 *pOut = 0.0f;
Kojto 119:aae6fcc7d9bb 6119 return (ARM_MATH_ARGUMENT_ERROR);
Kojto 119:aae6fcc7d9bb 6120 }
Kojto 119:aae6fcc7d9bb 6121
Kojto 119:aae6fcc7d9bb 6122 }
Kojto 119:aae6fcc7d9bb 6123
Kojto 119:aae6fcc7d9bb 6124
Kojto 119:aae6fcc7d9bb 6125 /**
Kojto 119:aae6fcc7d9bb 6126 * @brief Q31 square root function.
Kojto 119:aae6fcc7d9bb 6127 * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
Kojto 119:aae6fcc7d9bb 6128 * @param[out] *pOut square root of input value.
Kojto 119:aae6fcc7d9bb 6129 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 119:aae6fcc7d9bb 6130 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 119:aae6fcc7d9bb 6131 */
Kojto 119:aae6fcc7d9bb 6132 arm_status arm_sqrt_q31(
Kojto 119:aae6fcc7d9bb 6133 q31_t in,
Kojto 119:aae6fcc7d9bb 6134 q31_t * pOut);
Kojto 119:aae6fcc7d9bb 6135
Kojto 119:aae6fcc7d9bb 6136 /**
Kojto 119:aae6fcc7d9bb 6137 * @brief Q15 square root function.
Kojto 119:aae6fcc7d9bb 6138 * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
Kojto 119:aae6fcc7d9bb 6139 * @param[out] *pOut square root of input value.
Kojto 119:aae6fcc7d9bb 6140 * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
Kojto 119:aae6fcc7d9bb 6141 * <code>in</code> is negative value and returns zero output for negative values.
Kojto 119:aae6fcc7d9bb 6142 */
Kojto 119:aae6fcc7d9bb 6143 arm_status arm_sqrt_q15(
Kojto 119:aae6fcc7d9bb 6144 q15_t in,
Kojto 119:aae6fcc7d9bb 6145 q15_t * pOut);
Kojto 119:aae6fcc7d9bb 6146
Kojto 119:aae6fcc7d9bb 6147 /**
Kojto 119:aae6fcc7d9bb 6148 * @} end of SQRT group
Kojto 119:aae6fcc7d9bb 6149 */
Kojto 119:aae6fcc7d9bb 6150
Kojto 119:aae6fcc7d9bb 6151
Kojto 119:aae6fcc7d9bb 6152
Kojto 119:aae6fcc7d9bb 6153
Kojto 119:aae6fcc7d9bb 6154
Kojto 119:aae6fcc7d9bb 6155
Kojto 119:aae6fcc7d9bb 6156 /**
Kojto 119:aae6fcc7d9bb 6157 * @brief floating-point Circular write function.
Kojto 119:aae6fcc7d9bb 6158 */
Kojto 119:aae6fcc7d9bb 6159
Kojto 119:aae6fcc7d9bb 6160 static __INLINE void arm_circularWrite_f32(
Kojto 119:aae6fcc7d9bb 6161 int32_t * circBuffer,
Kojto 119:aae6fcc7d9bb 6162 int32_t L,
Kojto 119:aae6fcc7d9bb 6163 uint16_t * writeOffset,
Kojto 119:aae6fcc7d9bb 6164 int32_t bufferInc,
Kojto 119:aae6fcc7d9bb 6165 const int32_t * src,
Kojto 119:aae6fcc7d9bb 6166 int32_t srcInc,
Kojto 119:aae6fcc7d9bb 6167 uint32_t blockSize)
Kojto 119:aae6fcc7d9bb 6168 {
Kojto 119:aae6fcc7d9bb 6169 uint32_t i = 0u;
Kojto 119:aae6fcc7d9bb 6170 int32_t wOffset;
Kojto 119:aae6fcc7d9bb 6171
Kojto 119:aae6fcc7d9bb 6172 /* Copy the value of Index pointer that points
Kojto 119:aae6fcc7d9bb 6173 * to the current location where the input samples to be copied */
Kojto 119:aae6fcc7d9bb 6174 wOffset = *writeOffset;
Kojto 119:aae6fcc7d9bb 6175
Kojto 119:aae6fcc7d9bb 6176 /* Loop over the blockSize */
Kojto 119:aae6fcc7d9bb 6177 i = blockSize;
Kojto 119:aae6fcc7d9bb 6178
Kojto 119:aae6fcc7d9bb 6179 while(i > 0u)
Kojto 119:aae6fcc7d9bb 6180 {
Kojto 119:aae6fcc7d9bb 6181 /* copy the input sample to the circular buffer */
Kojto 119:aae6fcc7d9bb 6182 circBuffer[wOffset] = *src;
Kojto 119:aae6fcc7d9bb 6183
Kojto 119:aae6fcc7d9bb 6184 /* Update the input pointer */
Kojto 119:aae6fcc7d9bb 6185 src += srcInc;
Kojto 119:aae6fcc7d9bb 6186
Kojto 119:aae6fcc7d9bb 6187 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 119:aae6fcc7d9bb 6188 wOffset += bufferInc;
Kojto 119:aae6fcc7d9bb 6189 if(wOffset >= L)
Kojto 119:aae6fcc7d9bb 6190 wOffset -= L;
Kojto 119:aae6fcc7d9bb 6191
Kojto 119:aae6fcc7d9bb 6192 /* Decrement the loop counter */
Kojto 119:aae6fcc7d9bb 6193 i--;
Kojto 119:aae6fcc7d9bb 6194 }
Kojto 119:aae6fcc7d9bb 6195
Kojto 119:aae6fcc7d9bb 6196 /* Update the index pointer */
Kojto 119:aae6fcc7d9bb 6197 *writeOffset = wOffset;
Kojto 119:aae6fcc7d9bb 6198 }
Kojto 119:aae6fcc7d9bb 6199
Kojto 119:aae6fcc7d9bb 6200
Kojto 119:aae6fcc7d9bb 6201
Kojto 119:aae6fcc7d9bb 6202 /**
Kojto 119:aae6fcc7d9bb 6203 * @brief floating-point Circular Read function.
Kojto 119:aae6fcc7d9bb 6204 */
Kojto 119:aae6fcc7d9bb 6205 static __INLINE void arm_circularRead_f32(
Kojto 119:aae6fcc7d9bb 6206 int32_t * circBuffer,
Kojto 119:aae6fcc7d9bb 6207 int32_t L,
Kojto 119:aae6fcc7d9bb 6208 int32_t * readOffset,
Kojto 119:aae6fcc7d9bb 6209 int32_t bufferInc,
Kojto 119:aae6fcc7d9bb 6210 int32_t * dst,
Kojto 119:aae6fcc7d9bb 6211 int32_t * dst_base,
Kojto 119:aae6fcc7d9bb 6212 int32_t dst_length,
Kojto 119:aae6fcc7d9bb 6213 int32_t dstInc,
Kojto 119:aae6fcc7d9bb 6214 uint32_t blockSize)
Kojto 119:aae6fcc7d9bb 6215 {
Kojto 119:aae6fcc7d9bb 6216 uint32_t i = 0u;
Kojto 119:aae6fcc7d9bb 6217 int32_t rOffset, dst_end;
Kojto 119:aae6fcc7d9bb 6218
Kojto 119:aae6fcc7d9bb 6219 /* Copy the value of Index pointer that points
Kojto 119:aae6fcc7d9bb 6220 * to the current location from where the input samples to be read */
Kojto 119:aae6fcc7d9bb 6221 rOffset = *readOffset;
Kojto 119:aae6fcc7d9bb 6222 dst_end = (int32_t) (dst_base + dst_length);
Kojto 119:aae6fcc7d9bb 6223
Kojto 119:aae6fcc7d9bb 6224 /* Loop over the blockSize */
Kojto 119:aae6fcc7d9bb 6225 i = blockSize;
Kojto 119:aae6fcc7d9bb 6226
Kojto 119:aae6fcc7d9bb 6227 while(i > 0u)
Kojto 119:aae6fcc7d9bb 6228 {
Kojto 119:aae6fcc7d9bb 6229 /* copy the sample from the circular buffer to the destination buffer */
Kojto 119:aae6fcc7d9bb 6230 *dst = circBuffer[rOffset];
Kojto 119:aae6fcc7d9bb 6231
Kojto 119:aae6fcc7d9bb 6232 /* Update the input pointer */
Kojto 119:aae6fcc7d9bb 6233 dst += dstInc;
Kojto 119:aae6fcc7d9bb 6234
Kojto 119:aae6fcc7d9bb 6235 if(dst == (int32_t *) dst_end)
Kojto 119:aae6fcc7d9bb 6236 {
Kojto 119:aae6fcc7d9bb 6237 dst = dst_base;
Kojto 119:aae6fcc7d9bb 6238 }
Kojto 119:aae6fcc7d9bb 6239
Kojto 119:aae6fcc7d9bb 6240 /* Circularly update rOffset. Watch out for positive and negative value */
Kojto 119:aae6fcc7d9bb 6241 rOffset += bufferInc;
Kojto 119:aae6fcc7d9bb 6242
Kojto 119:aae6fcc7d9bb 6243 if(rOffset >= L)
Kojto 119:aae6fcc7d9bb 6244 {
Kojto 119:aae6fcc7d9bb 6245 rOffset -= L;
Kojto 119:aae6fcc7d9bb 6246 }
Kojto 119:aae6fcc7d9bb 6247
Kojto 119:aae6fcc7d9bb 6248 /* Decrement the loop counter */
Kojto 119:aae6fcc7d9bb 6249 i--;
Kojto 119:aae6fcc7d9bb 6250 }
Kojto 119:aae6fcc7d9bb 6251
Kojto 119:aae6fcc7d9bb 6252 /* Update the index pointer */
Kojto 119:aae6fcc7d9bb 6253 *readOffset = rOffset;
Kojto 119:aae6fcc7d9bb 6254 }
Kojto 119:aae6fcc7d9bb 6255
Kojto 119:aae6fcc7d9bb 6256 /**
Kojto 119:aae6fcc7d9bb 6257 * @brief Q15 Circular write function.
Kojto 119:aae6fcc7d9bb 6258 */
Kojto 119:aae6fcc7d9bb 6259
Kojto 119:aae6fcc7d9bb 6260 static __INLINE void arm_circularWrite_q15(
Kojto 119:aae6fcc7d9bb 6261 q15_t * circBuffer,
Kojto 119:aae6fcc7d9bb 6262 int32_t L,
Kojto 119:aae6fcc7d9bb 6263 uint16_t * writeOffset,
Kojto 119:aae6fcc7d9bb 6264 int32_t bufferInc,
Kojto 119:aae6fcc7d9bb 6265 const q15_t * src,
Kojto 119:aae6fcc7d9bb 6266 int32_t srcInc,
Kojto 119:aae6fcc7d9bb 6267 uint32_t blockSize)
Kojto 119:aae6fcc7d9bb 6268 {
Kojto 119:aae6fcc7d9bb 6269 uint32_t i = 0u;
Kojto 119:aae6fcc7d9bb 6270 int32_t wOffset;
Kojto 119:aae6fcc7d9bb 6271
Kojto 119:aae6fcc7d9bb 6272 /* Copy the value of Index pointer that points
Kojto 119:aae6fcc7d9bb 6273 * to the current location where the input samples to be copied */
Kojto 119:aae6fcc7d9bb 6274 wOffset = *writeOffset;
Kojto 119:aae6fcc7d9bb 6275
Kojto 119:aae6fcc7d9bb 6276 /* Loop over the blockSize */
Kojto 119:aae6fcc7d9bb 6277 i = blockSize;
Kojto 119:aae6fcc7d9bb 6278
Kojto 119:aae6fcc7d9bb 6279 while(i > 0u)
Kojto 119:aae6fcc7d9bb 6280 {
Kojto 119:aae6fcc7d9bb 6281 /* copy the input sample to the circular buffer */
Kojto 119:aae6fcc7d9bb 6282 circBuffer[wOffset] = *src;
Kojto 119:aae6fcc7d9bb 6283
Kojto 119:aae6fcc7d9bb 6284 /* Update the input pointer */
Kojto 119:aae6fcc7d9bb 6285 src += srcInc;
Kojto 119:aae6fcc7d9bb 6286
Kojto 119:aae6fcc7d9bb 6287 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 119:aae6fcc7d9bb 6288 wOffset += bufferInc;
Kojto 119:aae6fcc7d9bb 6289 if(wOffset >= L)
Kojto 119:aae6fcc7d9bb 6290 wOffset -= L;
Kojto 119:aae6fcc7d9bb 6291
Kojto 119:aae6fcc7d9bb 6292 /* Decrement the loop counter */
Kojto 119:aae6fcc7d9bb 6293 i--;
Kojto 119:aae6fcc7d9bb 6294 }
Kojto 119:aae6fcc7d9bb 6295
Kojto 119:aae6fcc7d9bb 6296 /* Update the index pointer */
Kojto 119:aae6fcc7d9bb 6297 *writeOffset = wOffset;
Kojto 119:aae6fcc7d9bb 6298 }
Kojto 119:aae6fcc7d9bb 6299
Kojto 119:aae6fcc7d9bb 6300
Kojto 119:aae6fcc7d9bb 6301
Kojto 119:aae6fcc7d9bb 6302 /**
Kojto 119:aae6fcc7d9bb 6303 * @brief Q15 Circular Read function.
Kojto 119:aae6fcc7d9bb 6304 */
Kojto 119:aae6fcc7d9bb 6305 static __INLINE void arm_circularRead_q15(
Kojto 119:aae6fcc7d9bb 6306 q15_t * circBuffer,
Kojto 119:aae6fcc7d9bb 6307 int32_t L,
Kojto 119:aae6fcc7d9bb 6308 int32_t * readOffset,
Kojto 119:aae6fcc7d9bb 6309 int32_t bufferInc,
Kojto 119:aae6fcc7d9bb 6310 q15_t * dst,
Kojto 119:aae6fcc7d9bb 6311 q15_t * dst_base,
Kojto 119:aae6fcc7d9bb 6312 int32_t dst_length,
Kojto 119:aae6fcc7d9bb 6313 int32_t dstInc,
Kojto 119:aae6fcc7d9bb 6314 uint32_t blockSize)
Kojto 119:aae6fcc7d9bb 6315 {
Kojto 119:aae6fcc7d9bb 6316 uint32_t i = 0;
Kojto 119:aae6fcc7d9bb 6317 int32_t rOffset, dst_end;
Kojto 119:aae6fcc7d9bb 6318
Kojto 119:aae6fcc7d9bb 6319 /* Copy the value of Index pointer that points
Kojto 119:aae6fcc7d9bb 6320 * to the current location from where the input samples to be read */
Kojto 119:aae6fcc7d9bb 6321 rOffset = *readOffset;
Kojto 119:aae6fcc7d9bb 6322
Kojto 119:aae6fcc7d9bb 6323 dst_end = (int32_t) (dst_base + dst_length);
Kojto 119:aae6fcc7d9bb 6324
Kojto 119:aae6fcc7d9bb 6325 /* Loop over the blockSize */
Kojto 119:aae6fcc7d9bb 6326 i = blockSize;
Kojto 119:aae6fcc7d9bb 6327
Kojto 119:aae6fcc7d9bb 6328 while(i > 0u)
Kojto 119:aae6fcc7d9bb 6329 {
Kojto 119:aae6fcc7d9bb 6330 /* copy the sample from the circular buffer to the destination buffer */
Kojto 119:aae6fcc7d9bb 6331 *dst = circBuffer[rOffset];
Kojto 119:aae6fcc7d9bb 6332
Kojto 119:aae6fcc7d9bb 6333 /* Update the input pointer */
Kojto 119:aae6fcc7d9bb 6334 dst += dstInc;
Kojto 119:aae6fcc7d9bb 6335
Kojto 119:aae6fcc7d9bb 6336 if(dst == (q15_t *) dst_end)
Kojto 119:aae6fcc7d9bb 6337 {
Kojto 119:aae6fcc7d9bb 6338 dst = dst_base;
Kojto 119:aae6fcc7d9bb 6339 }
Kojto 119:aae6fcc7d9bb 6340
Kojto 119:aae6fcc7d9bb 6341 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 119:aae6fcc7d9bb 6342 rOffset += bufferInc;
Kojto 119:aae6fcc7d9bb 6343
Kojto 119:aae6fcc7d9bb 6344 if(rOffset >= L)
Kojto 119:aae6fcc7d9bb 6345 {
Kojto 119:aae6fcc7d9bb 6346 rOffset -= L;
Kojto 119:aae6fcc7d9bb 6347 }
Kojto 119:aae6fcc7d9bb 6348
Kojto 119:aae6fcc7d9bb 6349 /* Decrement the loop counter */
Kojto 119:aae6fcc7d9bb 6350 i--;
Kojto 119:aae6fcc7d9bb 6351 }
Kojto 119:aae6fcc7d9bb 6352
Kojto 119:aae6fcc7d9bb 6353 /* Update the index pointer */
Kojto 119:aae6fcc7d9bb 6354 *readOffset = rOffset;
Kojto 119:aae6fcc7d9bb 6355 }
Kojto 119:aae6fcc7d9bb 6356
Kojto 119:aae6fcc7d9bb 6357
Kojto 119:aae6fcc7d9bb 6358 /**
Kojto 119:aae6fcc7d9bb 6359 * @brief Q7 Circular write function.
Kojto 119:aae6fcc7d9bb 6360 */
Kojto 119:aae6fcc7d9bb 6361
Kojto 119:aae6fcc7d9bb 6362 static __INLINE void arm_circularWrite_q7(
Kojto 119:aae6fcc7d9bb 6363 q7_t * circBuffer,
Kojto 119:aae6fcc7d9bb 6364 int32_t L,
Kojto 119:aae6fcc7d9bb 6365 uint16_t * writeOffset,
Kojto 119:aae6fcc7d9bb 6366 int32_t bufferInc,
Kojto 119:aae6fcc7d9bb 6367 const q7_t * src,
Kojto 119:aae6fcc7d9bb 6368 int32_t srcInc,
Kojto 119:aae6fcc7d9bb 6369 uint32_t blockSize)
Kojto 119:aae6fcc7d9bb 6370 {
Kojto 119:aae6fcc7d9bb 6371 uint32_t i = 0u;
Kojto 119:aae6fcc7d9bb 6372 int32_t wOffset;
Kojto 119:aae6fcc7d9bb 6373
Kojto 119:aae6fcc7d9bb 6374 /* Copy the value of Index pointer that points
Kojto 119:aae6fcc7d9bb 6375 * to the current location where the input samples to be copied */
Kojto 119:aae6fcc7d9bb 6376 wOffset = *writeOffset;
Kojto 119:aae6fcc7d9bb 6377
Kojto 119:aae6fcc7d9bb 6378 /* Loop over the blockSize */
Kojto 119:aae6fcc7d9bb 6379 i = blockSize;
Kojto 119:aae6fcc7d9bb 6380
Kojto 119:aae6fcc7d9bb 6381 while(i > 0u)
Kojto 119:aae6fcc7d9bb 6382 {
Kojto 119:aae6fcc7d9bb 6383 /* copy the input sample to the circular buffer */
Kojto 119:aae6fcc7d9bb 6384 circBuffer[wOffset] = *src;
Kojto 119:aae6fcc7d9bb 6385
Kojto 119:aae6fcc7d9bb 6386 /* Update the input pointer */
Kojto 119:aae6fcc7d9bb 6387 src += srcInc;
Kojto 119:aae6fcc7d9bb 6388
Kojto 119:aae6fcc7d9bb 6389 /* Circularly update wOffset. Watch out for positive and negative value */
Kojto 119:aae6fcc7d9bb 6390 wOffset += bufferInc;
Kojto 119:aae6fcc7d9bb 6391 if(wOffset >= L)
Kojto 119:aae6fcc7d9bb 6392 wOffset -= L;
Kojto 119:aae6fcc7d9bb 6393
Kojto 119:aae6fcc7d9bb 6394 /* Decrement the loop counter */
Kojto 119:aae6fcc7d9bb 6395 i--;
Kojto 119:aae6fcc7d9bb 6396 }
Kojto 119:aae6fcc7d9bb 6397
Kojto 119:aae6fcc7d9bb 6398 /* Update the index pointer */
Kojto 119:aae6fcc7d9bb 6399 *writeOffset = wOffset;
Kojto 119:aae6fcc7d9bb 6400 }
Kojto 119:aae6fcc7d9bb 6401
Kojto 119:aae6fcc7d9bb 6402
Kojto 119:aae6fcc7d9bb 6403
Kojto 119:aae6fcc7d9bb 6404 /**
Kojto 119:aae6fcc7d9bb 6405 * @brief Q7 Circular Read function.
Kojto 119:aae6fcc7d9bb 6406 */
Kojto 119:aae6fcc7d9bb 6407 static __INLINE void arm_circularRead_q7(
Kojto 119:aae6fcc7d9bb 6408 q7_t * circBuffer,
Kojto 119:aae6fcc7d9bb 6409 int32_t L,
Kojto 119:aae6fcc7d9bb 6410 int32_t * readOffset,
Kojto 119:aae6fcc7d9bb 6411 int32_t bufferInc,
Kojto 119:aae6fcc7d9bb 6412 q7_t * dst,
Kojto 119:aae6fcc7d9bb 6413 q7_t * dst_base,
Kojto 119:aae6fcc7d9bb 6414 int32_t dst_length,
Kojto 119:aae6fcc7d9bb 6415 int32_t dstInc,
Kojto 119:aae6fcc7d9bb 6416 uint32_t blockSize)
Kojto 119:aae6fcc7d9bb 6417 {
Kojto 119:aae6fcc7d9bb 6418 uint32_t i = 0;
Kojto 119:aae6fcc7d9bb 6419 int32_t rOffset, dst_end;
Kojto 119:aae6fcc7d9bb 6420
Kojto 119:aae6fcc7d9bb 6421 /* Copy the value of Index pointer that points
Kojto 119:aae6fcc7d9bb 6422 * to the current location from where the input samples to be read */
Kojto 119:aae6fcc7d9bb 6423 rOffset = *readOffset;
Kojto 119:aae6fcc7d9bb 6424
Kojto 119:aae6fcc7d9bb 6425 dst_end = (int32_t) (dst_base + dst_length);
Kojto 119:aae6fcc7d9bb 6426
Kojto 119:aae6fcc7d9bb 6427 /* Loop over the blockSize */
Kojto 119:aae6fcc7d9bb 6428 i = blockSize;
Kojto 119:aae6fcc7d9bb 6429
Kojto 119:aae6fcc7d9bb 6430 while(i > 0u)
Kojto 119:aae6fcc7d9bb 6431 {
Kojto 119:aae6fcc7d9bb 6432 /* copy the sample from the circular buffer to the destination buffer */
Kojto 119:aae6fcc7d9bb 6433 *dst = circBuffer[rOffset];
Kojto 119:aae6fcc7d9bb 6434
Kojto 119:aae6fcc7d9bb 6435 /* Update the input pointer */
Kojto 119:aae6fcc7d9bb 6436 dst += dstInc;
Kojto 119:aae6fcc7d9bb 6437
Kojto 119:aae6fcc7d9bb 6438 if(dst == (q7_t *) dst_end)
Kojto 119:aae6fcc7d9bb 6439 {
Kojto 119:aae6fcc7d9bb 6440 dst = dst_base;
Kojto 119:aae6fcc7d9bb 6441 }
Kojto 119:aae6fcc7d9bb 6442
Kojto 119:aae6fcc7d9bb 6443 /* Circularly update rOffset. Watch out for positive and negative value */
Kojto 119:aae6fcc7d9bb 6444 rOffset += bufferInc;
Kojto 119:aae6fcc7d9bb 6445
Kojto 119:aae6fcc7d9bb 6446 if(rOffset >= L)
Kojto 119:aae6fcc7d9bb 6447 {
Kojto 119:aae6fcc7d9bb 6448 rOffset -= L;
Kojto 119:aae6fcc7d9bb 6449 }
Kojto 119:aae6fcc7d9bb 6450
Kojto 119:aae6fcc7d9bb 6451 /* Decrement the loop counter */
Kojto 119:aae6fcc7d9bb 6452 i--;
Kojto 119:aae6fcc7d9bb 6453 }
Kojto 119:aae6fcc7d9bb 6454
Kojto 119:aae6fcc7d9bb 6455 /* Update the index pointer */
Kojto 119:aae6fcc7d9bb 6456 *readOffset = rOffset;
Kojto 119:aae6fcc7d9bb 6457 }
Kojto 119:aae6fcc7d9bb 6458
Kojto 119:aae6fcc7d9bb 6459
Kojto 119:aae6fcc7d9bb 6460 /**
Kojto 119:aae6fcc7d9bb 6461 * @brief Sum of the squares of the elements of a Q31 vector.
Kojto 119:aae6fcc7d9bb 6462 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6463 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6464 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6465 * @return none.
Kojto 119:aae6fcc7d9bb 6466 */
Kojto 119:aae6fcc7d9bb 6467
Kojto 119:aae6fcc7d9bb 6468 void arm_power_q31(
Kojto 119:aae6fcc7d9bb 6469 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 6470 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6471 q63_t * pResult);
Kojto 119:aae6fcc7d9bb 6472
Kojto 119:aae6fcc7d9bb 6473 /**
Kojto 119:aae6fcc7d9bb 6474 * @brief Sum of the squares of the elements of a floating-point vector.
Kojto 119:aae6fcc7d9bb 6475 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6476 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6477 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6478 * @return none.
Kojto 119:aae6fcc7d9bb 6479 */
Kojto 119:aae6fcc7d9bb 6480
Kojto 119:aae6fcc7d9bb 6481 void arm_power_f32(
Kojto 119:aae6fcc7d9bb 6482 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6483 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6484 float32_t * pResult);
Kojto 119:aae6fcc7d9bb 6485
Kojto 119:aae6fcc7d9bb 6486 /**
Kojto 119:aae6fcc7d9bb 6487 * @brief Sum of the squares of the elements of a Q15 vector.
Kojto 119:aae6fcc7d9bb 6488 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6489 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6490 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6491 * @return none.
Kojto 119:aae6fcc7d9bb 6492 */
Kojto 119:aae6fcc7d9bb 6493
Kojto 119:aae6fcc7d9bb 6494 void arm_power_q15(
Kojto 119:aae6fcc7d9bb 6495 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 6496 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6497 q63_t * pResult);
Kojto 119:aae6fcc7d9bb 6498
Kojto 119:aae6fcc7d9bb 6499 /**
Kojto 119:aae6fcc7d9bb 6500 * @brief Sum of the squares of the elements of a Q7 vector.
Kojto 119:aae6fcc7d9bb 6501 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6502 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6503 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6504 * @return none.
Kojto 119:aae6fcc7d9bb 6505 */
Kojto 119:aae6fcc7d9bb 6506
Kojto 119:aae6fcc7d9bb 6507 void arm_power_q7(
Kojto 119:aae6fcc7d9bb 6508 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 6509 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6510 q31_t * pResult);
Kojto 119:aae6fcc7d9bb 6511
Kojto 119:aae6fcc7d9bb 6512 /**
Kojto 119:aae6fcc7d9bb 6513 * @brief Mean value of a Q7 vector.
Kojto 119:aae6fcc7d9bb 6514 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6515 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6516 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6517 * @return none.
Kojto 119:aae6fcc7d9bb 6518 */
Kojto 119:aae6fcc7d9bb 6519
Kojto 119:aae6fcc7d9bb 6520 void arm_mean_q7(
Kojto 119:aae6fcc7d9bb 6521 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 6522 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6523 q7_t * pResult);
Kojto 119:aae6fcc7d9bb 6524
Kojto 119:aae6fcc7d9bb 6525 /**
Kojto 119:aae6fcc7d9bb 6526 * @brief Mean value of a Q15 vector.
Kojto 119:aae6fcc7d9bb 6527 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6528 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6529 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6530 * @return none.
Kojto 119:aae6fcc7d9bb 6531 */
Kojto 119:aae6fcc7d9bb 6532 void arm_mean_q15(
Kojto 119:aae6fcc7d9bb 6533 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 6534 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6535 q15_t * pResult);
Kojto 119:aae6fcc7d9bb 6536
Kojto 119:aae6fcc7d9bb 6537 /**
Kojto 119:aae6fcc7d9bb 6538 * @brief Mean value of a Q31 vector.
Kojto 119:aae6fcc7d9bb 6539 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6540 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6541 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6542 * @return none.
Kojto 119:aae6fcc7d9bb 6543 */
Kojto 119:aae6fcc7d9bb 6544 void arm_mean_q31(
Kojto 119:aae6fcc7d9bb 6545 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 6546 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6547 q31_t * pResult);
Kojto 119:aae6fcc7d9bb 6548
Kojto 119:aae6fcc7d9bb 6549 /**
Kojto 119:aae6fcc7d9bb 6550 * @brief Mean value of a floating-point vector.
Kojto 119:aae6fcc7d9bb 6551 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6552 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6553 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6554 * @return none.
Kojto 119:aae6fcc7d9bb 6555 */
Kojto 119:aae6fcc7d9bb 6556 void arm_mean_f32(
Kojto 119:aae6fcc7d9bb 6557 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6558 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6559 float32_t * pResult);
Kojto 119:aae6fcc7d9bb 6560
Kojto 119:aae6fcc7d9bb 6561 /**
Kojto 119:aae6fcc7d9bb 6562 * @brief Variance of the elements of a floating-point vector.
Kojto 119:aae6fcc7d9bb 6563 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6564 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6565 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6566 * @return none.
Kojto 119:aae6fcc7d9bb 6567 */
Kojto 119:aae6fcc7d9bb 6568
Kojto 119:aae6fcc7d9bb 6569 void arm_var_f32(
Kojto 119:aae6fcc7d9bb 6570 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6571 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6572 float32_t * pResult);
Kojto 119:aae6fcc7d9bb 6573
Kojto 119:aae6fcc7d9bb 6574 /**
Kojto 119:aae6fcc7d9bb 6575 * @brief Variance of the elements of a Q31 vector.
Kojto 119:aae6fcc7d9bb 6576 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6577 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6578 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6579 * @return none.
Kojto 119:aae6fcc7d9bb 6580 */
Kojto 119:aae6fcc7d9bb 6581
Kojto 119:aae6fcc7d9bb 6582 void arm_var_q31(
Kojto 119:aae6fcc7d9bb 6583 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 6584 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6585 q31_t * pResult);
Kojto 119:aae6fcc7d9bb 6586
Kojto 119:aae6fcc7d9bb 6587 /**
Kojto 119:aae6fcc7d9bb 6588 * @brief Variance of the elements of a Q15 vector.
Kojto 119:aae6fcc7d9bb 6589 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6590 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6591 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6592 * @return none.
Kojto 119:aae6fcc7d9bb 6593 */
Kojto 119:aae6fcc7d9bb 6594
Kojto 119:aae6fcc7d9bb 6595 void arm_var_q15(
Kojto 119:aae6fcc7d9bb 6596 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 6597 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6598 q15_t * pResult);
Kojto 119:aae6fcc7d9bb 6599
Kojto 119:aae6fcc7d9bb 6600 /**
Kojto 119:aae6fcc7d9bb 6601 * @brief Root Mean Square of the elements of a floating-point vector.
Kojto 119:aae6fcc7d9bb 6602 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6603 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6604 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6605 * @return none.
Kojto 119:aae6fcc7d9bb 6606 */
Kojto 119:aae6fcc7d9bb 6607
Kojto 119:aae6fcc7d9bb 6608 void arm_rms_f32(
Kojto 119:aae6fcc7d9bb 6609 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6610 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6611 float32_t * pResult);
Kojto 119:aae6fcc7d9bb 6612
Kojto 119:aae6fcc7d9bb 6613 /**
Kojto 119:aae6fcc7d9bb 6614 * @brief Root Mean Square of the elements of a Q31 vector.
Kojto 119:aae6fcc7d9bb 6615 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6616 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6617 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6618 * @return none.
Kojto 119:aae6fcc7d9bb 6619 */
Kojto 119:aae6fcc7d9bb 6620
Kojto 119:aae6fcc7d9bb 6621 void arm_rms_q31(
Kojto 119:aae6fcc7d9bb 6622 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 6623 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6624 q31_t * pResult);
Kojto 119:aae6fcc7d9bb 6625
Kojto 119:aae6fcc7d9bb 6626 /**
Kojto 119:aae6fcc7d9bb 6627 * @brief Root Mean Square of the elements of a Q15 vector.
Kojto 119:aae6fcc7d9bb 6628 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6629 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6630 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6631 * @return none.
Kojto 119:aae6fcc7d9bb 6632 */
Kojto 119:aae6fcc7d9bb 6633
Kojto 119:aae6fcc7d9bb 6634 void arm_rms_q15(
Kojto 119:aae6fcc7d9bb 6635 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 6636 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6637 q15_t * pResult);
Kojto 119:aae6fcc7d9bb 6638
Kojto 119:aae6fcc7d9bb 6639 /**
Kojto 119:aae6fcc7d9bb 6640 * @brief Standard deviation of the elements of a floating-point vector.
Kojto 119:aae6fcc7d9bb 6641 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6642 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6643 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6644 * @return none.
Kojto 119:aae6fcc7d9bb 6645 */
Kojto 119:aae6fcc7d9bb 6646
Kojto 119:aae6fcc7d9bb 6647 void arm_std_f32(
Kojto 119:aae6fcc7d9bb 6648 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6649 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6650 float32_t * pResult);
Kojto 119:aae6fcc7d9bb 6651
Kojto 119:aae6fcc7d9bb 6652 /**
Kojto 119:aae6fcc7d9bb 6653 * @brief Standard deviation of the elements of a Q31 vector.
Kojto 119:aae6fcc7d9bb 6654 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6655 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6656 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6657 * @return none.
Kojto 119:aae6fcc7d9bb 6658 */
Kojto 119:aae6fcc7d9bb 6659
Kojto 119:aae6fcc7d9bb 6660 void arm_std_q31(
Kojto 119:aae6fcc7d9bb 6661 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 6662 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6663 q31_t * pResult);
Kojto 119:aae6fcc7d9bb 6664
Kojto 119:aae6fcc7d9bb 6665 /**
Kojto 119:aae6fcc7d9bb 6666 * @brief Standard deviation of the elements of a Q15 vector.
Kojto 119:aae6fcc7d9bb 6667 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6668 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6669 * @param[out] *pResult is output value.
Kojto 119:aae6fcc7d9bb 6670 * @return none.
Kojto 119:aae6fcc7d9bb 6671 */
Kojto 119:aae6fcc7d9bb 6672
Kojto 119:aae6fcc7d9bb 6673 void arm_std_q15(
Kojto 119:aae6fcc7d9bb 6674 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 6675 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6676 q15_t * pResult);
Kojto 119:aae6fcc7d9bb 6677
Kojto 119:aae6fcc7d9bb 6678 /**
Kojto 119:aae6fcc7d9bb 6679 * @brief Floating-point complex magnitude
Kojto 119:aae6fcc7d9bb 6680 * @param[in] *pSrc points to the complex input vector
Kojto 119:aae6fcc7d9bb 6681 * @param[out] *pDst points to the real output vector
Kojto 119:aae6fcc7d9bb 6682 * @param[in] numSamples number of complex samples in the input vector
Kojto 119:aae6fcc7d9bb 6683 * @return none.
Kojto 119:aae6fcc7d9bb 6684 */
Kojto 119:aae6fcc7d9bb 6685
Kojto 119:aae6fcc7d9bb 6686 void arm_cmplx_mag_f32(
Kojto 119:aae6fcc7d9bb 6687 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6688 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 6689 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 6690
Kojto 119:aae6fcc7d9bb 6691 /**
Kojto 119:aae6fcc7d9bb 6692 * @brief Q31 complex magnitude
Kojto 119:aae6fcc7d9bb 6693 * @param[in] *pSrc points to the complex input vector
Kojto 119:aae6fcc7d9bb 6694 * @param[out] *pDst points to the real output vector
Kojto 119:aae6fcc7d9bb 6695 * @param[in] numSamples number of complex samples in the input vector
Kojto 119:aae6fcc7d9bb 6696 * @return none.
Kojto 119:aae6fcc7d9bb 6697 */
Kojto 119:aae6fcc7d9bb 6698
Kojto 119:aae6fcc7d9bb 6699 void arm_cmplx_mag_q31(
Kojto 119:aae6fcc7d9bb 6700 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 6701 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 6702 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 6703
Kojto 119:aae6fcc7d9bb 6704 /**
Kojto 119:aae6fcc7d9bb 6705 * @brief Q15 complex magnitude
Kojto 119:aae6fcc7d9bb 6706 * @param[in] *pSrc points to the complex input vector
Kojto 119:aae6fcc7d9bb 6707 * @param[out] *pDst points to the real output vector
Kojto 119:aae6fcc7d9bb 6708 * @param[in] numSamples number of complex samples in the input vector
Kojto 119:aae6fcc7d9bb 6709 * @return none.
Kojto 119:aae6fcc7d9bb 6710 */
Kojto 119:aae6fcc7d9bb 6711
Kojto 119:aae6fcc7d9bb 6712 void arm_cmplx_mag_q15(
Kojto 119:aae6fcc7d9bb 6713 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 6714 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 6715 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 6716
Kojto 119:aae6fcc7d9bb 6717 /**
Kojto 119:aae6fcc7d9bb 6718 * @brief Q15 complex dot product
Kojto 119:aae6fcc7d9bb 6719 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 6720 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 6721 * @param[in] numSamples number of complex samples in each vector
Kojto 119:aae6fcc7d9bb 6722 * @param[out] *realResult real part of the result returned here
Kojto 119:aae6fcc7d9bb 6723 * @param[out] *imagResult imaginary part of the result returned here
Kojto 119:aae6fcc7d9bb 6724 * @return none.
Kojto 119:aae6fcc7d9bb 6725 */
Kojto 119:aae6fcc7d9bb 6726
Kojto 119:aae6fcc7d9bb 6727 void arm_cmplx_dot_prod_q15(
Kojto 119:aae6fcc7d9bb 6728 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 6729 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 6730 uint32_t numSamples,
Kojto 119:aae6fcc7d9bb 6731 q31_t * realResult,
Kojto 119:aae6fcc7d9bb 6732 q31_t * imagResult);
Kojto 119:aae6fcc7d9bb 6733
Kojto 119:aae6fcc7d9bb 6734 /**
Kojto 119:aae6fcc7d9bb 6735 * @brief Q31 complex dot product
Kojto 119:aae6fcc7d9bb 6736 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 6737 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 6738 * @param[in] numSamples number of complex samples in each vector
Kojto 119:aae6fcc7d9bb 6739 * @param[out] *realResult real part of the result returned here
Kojto 119:aae6fcc7d9bb 6740 * @param[out] *imagResult imaginary part of the result returned here
Kojto 119:aae6fcc7d9bb 6741 * @return none.
Kojto 119:aae6fcc7d9bb 6742 */
Kojto 119:aae6fcc7d9bb 6743
Kojto 119:aae6fcc7d9bb 6744 void arm_cmplx_dot_prod_q31(
Kojto 119:aae6fcc7d9bb 6745 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 6746 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 6747 uint32_t numSamples,
Kojto 119:aae6fcc7d9bb 6748 q63_t * realResult,
Kojto 119:aae6fcc7d9bb 6749 q63_t * imagResult);
Kojto 119:aae6fcc7d9bb 6750
Kojto 119:aae6fcc7d9bb 6751 /**
Kojto 119:aae6fcc7d9bb 6752 * @brief Floating-point complex dot product
Kojto 119:aae6fcc7d9bb 6753 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 6754 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 6755 * @param[in] numSamples number of complex samples in each vector
Kojto 119:aae6fcc7d9bb 6756 * @param[out] *realResult real part of the result returned here
Kojto 119:aae6fcc7d9bb 6757 * @param[out] *imagResult imaginary part of the result returned here
Kojto 119:aae6fcc7d9bb 6758 * @return none.
Kojto 119:aae6fcc7d9bb 6759 */
Kojto 119:aae6fcc7d9bb 6760
Kojto 119:aae6fcc7d9bb 6761 void arm_cmplx_dot_prod_f32(
Kojto 119:aae6fcc7d9bb 6762 float32_t * pSrcA,
Kojto 119:aae6fcc7d9bb 6763 float32_t * pSrcB,
Kojto 119:aae6fcc7d9bb 6764 uint32_t numSamples,
Kojto 119:aae6fcc7d9bb 6765 float32_t * realResult,
Kojto 119:aae6fcc7d9bb 6766 float32_t * imagResult);
Kojto 119:aae6fcc7d9bb 6767
Kojto 119:aae6fcc7d9bb 6768 /**
Kojto 119:aae6fcc7d9bb 6769 * @brief Q15 complex-by-real multiplication
Kojto 119:aae6fcc7d9bb 6770 * @param[in] *pSrcCmplx points to the complex input vector
Kojto 119:aae6fcc7d9bb 6771 * @param[in] *pSrcReal points to the real input vector
Kojto 119:aae6fcc7d9bb 6772 * @param[out] *pCmplxDst points to the complex output vector
Kojto 119:aae6fcc7d9bb 6773 * @param[in] numSamples number of samples in each vector
Kojto 119:aae6fcc7d9bb 6774 * @return none.
Kojto 119:aae6fcc7d9bb 6775 */
Kojto 119:aae6fcc7d9bb 6776
Kojto 119:aae6fcc7d9bb 6777 void arm_cmplx_mult_real_q15(
Kojto 119:aae6fcc7d9bb 6778 q15_t * pSrcCmplx,
Kojto 119:aae6fcc7d9bb 6779 q15_t * pSrcReal,
Kojto 119:aae6fcc7d9bb 6780 q15_t * pCmplxDst,
Kojto 119:aae6fcc7d9bb 6781 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 6782
Kojto 119:aae6fcc7d9bb 6783 /**
Kojto 119:aae6fcc7d9bb 6784 * @brief Q31 complex-by-real multiplication
Kojto 119:aae6fcc7d9bb 6785 * @param[in] *pSrcCmplx points to the complex input vector
Kojto 119:aae6fcc7d9bb 6786 * @param[in] *pSrcReal points to the real input vector
Kojto 119:aae6fcc7d9bb 6787 * @param[out] *pCmplxDst points to the complex output vector
Kojto 119:aae6fcc7d9bb 6788 * @param[in] numSamples number of samples in each vector
Kojto 119:aae6fcc7d9bb 6789 * @return none.
Kojto 119:aae6fcc7d9bb 6790 */
Kojto 119:aae6fcc7d9bb 6791
Kojto 119:aae6fcc7d9bb 6792 void arm_cmplx_mult_real_q31(
Kojto 119:aae6fcc7d9bb 6793 q31_t * pSrcCmplx,
Kojto 119:aae6fcc7d9bb 6794 q31_t * pSrcReal,
Kojto 119:aae6fcc7d9bb 6795 q31_t * pCmplxDst,
Kojto 119:aae6fcc7d9bb 6796 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 6797
Kojto 119:aae6fcc7d9bb 6798 /**
Kojto 119:aae6fcc7d9bb 6799 * @brief Floating-point complex-by-real multiplication
Kojto 119:aae6fcc7d9bb 6800 * @param[in] *pSrcCmplx points to the complex input vector
Kojto 119:aae6fcc7d9bb 6801 * @param[in] *pSrcReal points to the real input vector
Kojto 119:aae6fcc7d9bb 6802 * @param[out] *pCmplxDst points to the complex output vector
Kojto 119:aae6fcc7d9bb 6803 * @param[in] numSamples number of samples in each vector
Kojto 119:aae6fcc7d9bb 6804 * @return none.
Kojto 119:aae6fcc7d9bb 6805 */
Kojto 119:aae6fcc7d9bb 6806
Kojto 119:aae6fcc7d9bb 6807 void arm_cmplx_mult_real_f32(
Kojto 119:aae6fcc7d9bb 6808 float32_t * pSrcCmplx,
Kojto 119:aae6fcc7d9bb 6809 float32_t * pSrcReal,
Kojto 119:aae6fcc7d9bb 6810 float32_t * pCmplxDst,
Kojto 119:aae6fcc7d9bb 6811 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 6812
Kojto 119:aae6fcc7d9bb 6813 /**
Kojto 119:aae6fcc7d9bb 6814 * @brief Minimum value of a Q7 vector.
Kojto 119:aae6fcc7d9bb 6815 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6816 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6817 * @param[out] *result is output pointer
Kojto 119:aae6fcc7d9bb 6818 * @param[in] index is the array index of the minimum value in the input buffer.
Kojto 119:aae6fcc7d9bb 6819 * @return none.
Kojto 119:aae6fcc7d9bb 6820 */
Kojto 119:aae6fcc7d9bb 6821
Kojto 119:aae6fcc7d9bb 6822 void arm_min_q7(
Kojto 119:aae6fcc7d9bb 6823 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 6824 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6825 q7_t * result,
Kojto 119:aae6fcc7d9bb 6826 uint32_t * index);
Kojto 119:aae6fcc7d9bb 6827
Kojto 119:aae6fcc7d9bb 6828 /**
Kojto 119:aae6fcc7d9bb 6829 * @brief Minimum value of a Q15 vector.
Kojto 119:aae6fcc7d9bb 6830 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6831 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6832 * @param[out] *pResult is output pointer
Kojto 119:aae6fcc7d9bb 6833 * @param[in] *pIndex is the array index of the minimum value in the input buffer.
Kojto 119:aae6fcc7d9bb 6834 * @return none.
Kojto 119:aae6fcc7d9bb 6835 */
Kojto 119:aae6fcc7d9bb 6836
Kojto 119:aae6fcc7d9bb 6837 void arm_min_q15(
Kojto 119:aae6fcc7d9bb 6838 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 6839 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6840 q15_t * pResult,
Kojto 119:aae6fcc7d9bb 6841 uint32_t * pIndex);
Kojto 119:aae6fcc7d9bb 6842
Kojto 119:aae6fcc7d9bb 6843 /**
Kojto 119:aae6fcc7d9bb 6844 * @brief Minimum value of a Q31 vector.
Kojto 119:aae6fcc7d9bb 6845 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6846 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6847 * @param[out] *pResult is output pointer
Kojto 119:aae6fcc7d9bb 6848 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
Kojto 119:aae6fcc7d9bb 6849 * @return none.
Kojto 119:aae6fcc7d9bb 6850 */
Kojto 119:aae6fcc7d9bb 6851 void arm_min_q31(
Kojto 119:aae6fcc7d9bb 6852 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 6853 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6854 q31_t * pResult,
Kojto 119:aae6fcc7d9bb 6855 uint32_t * pIndex);
Kojto 119:aae6fcc7d9bb 6856
Kojto 119:aae6fcc7d9bb 6857 /**
Kojto 119:aae6fcc7d9bb 6858 * @brief Minimum value of a floating-point vector.
Kojto 119:aae6fcc7d9bb 6859 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 6860 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 6861 * @param[out] *pResult is output pointer
Kojto 119:aae6fcc7d9bb 6862 * @param[out] *pIndex is the array index of the minimum value in the input buffer.
Kojto 119:aae6fcc7d9bb 6863 * @return none.
Kojto 119:aae6fcc7d9bb 6864 */
Kojto 119:aae6fcc7d9bb 6865
Kojto 119:aae6fcc7d9bb 6866 void arm_min_f32(
Kojto 119:aae6fcc7d9bb 6867 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6868 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6869 float32_t * pResult,
Kojto 119:aae6fcc7d9bb 6870 uint32_t * pIndex);
Kojto 119:aae6fcc7d9bb 6871
Kojto 119:aae6fcc7d9bb 6872 /**
Kojto 119:aae6fcc7d9bb 6873 * @brief Maximum value of a Q7 vector.
Kojto 119:aae6fcc7d9bb 6874 * @param[in] *pSrc points to the input buffer
Kojto 119:aae6fcc7d9bb 6875 * @param[in] blockSize length of the input vector
Kojto 119:aae6fcc7d9bb 6876 * @param[out] *pResult maximum value returned here
Kojto 119:aae6fcc7d9bb 6877 * @param[out] *pIndex index of maximum value returned here
Kojto 119:aae6fcc7d9bb 6878 * @return none.
Kojto 119:aae6fcc7d9bb 6879 */
Kojto 119:aae6fcc7d9bb 6880
Kojto 119:aae6fcc7d9bb 6881 void arm_max_q7(
Kojto 119:aae6fcc7d9bb 6882 q7_t * pSrc,
Kojto 119:aae6fcc7d9bb 6883 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6884 q7_t * pResult,
Kojto 119:aae6fcc7d9bb 6885 uint32_t * pIndex);
Kojto 119:aae6fcc7d9bb 6886
Kojto 119:aae6fcc7d9bb 6887 /**
Kojto 119:aae6fcc7d9bb 6888 * @brief Maximum value of a Q15 vector.
Kojto 119:aae6fcc7d9bb 6889 * @param[in] *pSrc points to the input buffer
Kojto 119:aae6fcc7d9bb 6890 * @param[in] blockSize length of the input vector
Kojto 119:aae6fcc7d9bb 6891 * @param[out] *pResult maximum value returned here
Kojto 119:aae6fcc7d9bb 6892 * @param[out] *pIndex index of maximum value returned here
Kojto 119:aae6fcc7d9bb 6893 * @return none.
Kojto 119:aae6fcc7d9bb 6894 */
Kojto 119:aae6fcc7d9bb 6895
Kojto 119:aae6fcc7d9bb 6896 void arm_max_q15(
Kojto 119:aae6fcc7d9bb 6897 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 6898 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6899 q15_t * pResult,
Kojto 119:aae6fcc7d9bb 6900 uint32_t * pIndex);
Kojto 119:aae6fcc7d9bb 6901
Kojto 119:aae6fcc7d9bb 6902 /**
Kojto 119:aae6fcc7d9bb 6903 * @brief Maximum value of a Q31 vector.
Kojto 119:aae6fcc7d9bb 6904 * @param[in] *pSrc points to the input buffer
Kojto 119:aae6fcc7d9bb 6905 * @param[in] blockSize length of the input vector
Kojto 119:aae6fcc7d9bb 6906 * @param[out] *pResult maximum value returned here
Kojto 119:aae6fcc7d9bb 6907 * @param[out] *pIndex index of maximum value returned here
Kojto 119:aae6fcc7d9bb 6908 * @return none.
Kojto 119:aae6fcc7d9bb 6909 */
Kojto 119:aae6fcc7d9bb 6910
Kojto 119:aae6fcc7d9bb 6911 void arm_max_q31(
Kojto 119:aae6fcc7d9bb 6912 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 6913 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6914 q31_t * pResult,
Kojto 119:aae6fcc7d9bb 6915 uint32_t * pIndex);
Kojto 119:aae6fcc7d9bb 6916
Kojto 119:aae6fcc7d9bb 6917 /**
Kojto 119:aae6fcc7d9bb 6918 * @brief Maximum value of a floating-point vector.
Kojto 119:aae6fcc7d9bb 6919 * @param[in] *pSrc points to the input buffer
Kojto 119:aae6fcc7d9bb 6920 * @param[in] blockSize length of the input vector
Kojto 119:aae6fcc7d9bb 6921 * @param[out] *pResult maximum value returned here
Kojto 119:aae6fcc7d9bb 6922 * @param[out] *pIndex index of maximum value returned here
Kojto 119:aae6fcc7d9bb 6923 * @return none.
Kojto 119:aae6fcc7d9bb 6924 */
Kojto 119:aae6fcc7d9bb 6925
Kojto 119:aae6fcc7d9bb 6926 void arm_max_f32(
Kojto 119:aae6fcc7d9bb 6927 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6928 uint32_t blockSize,
Kojto 119:aae6fcc7d9bb 6929 float32_t * pResult,
Kojto 119:aae6fcc7d9bb 6930 uint32_t * pIndex);
Kojto 119:aae6fcc7d9bb 6931
Kojto 119:aae6fcc7d9bb 6932 /**
Kojto 119:aae6fcc7d9bb 6933 * @brief Q15 complex-by-complex multiplication
Kojto 119:aae6fcc7d9bb 6934 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 6935 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 6936 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 6937 * @param[in] numSamples number of complex samples in each vector
Kojto 119:aae6fcc7d9bb 6938 * @return none.
Kojto 119:aae6fcc7d9bb 6939 */
Kojto 119:aae6fcc7d9bb 6940
Kojto 119:aae6fcc7d9bb 6941 void arm_cmplx_mult_cmplx_q15(
Kojto 119:aae6fcc7d9bb 6942 q15_t * pSrcA,
Kojto 119:aae6fcc7d9bb 6943 q15_t * pSrcB,
Kojto 119:aae6fcc7d9bb 6944 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 6945 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 6946
Kojto 119:aae6fcc7d9bb 6947 /**
Kojto 119:aae6fcc7d9bb 6948 * @brief Q31 complex-by-complex multiplication
Kojto 119:aae6fcc7d9bb 6949 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 6950 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 6951 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 6952 * @param[in] numSamples number of complex samples in each vector
Kojto 119:aae6fcc7d9bb 6953 * @return none.
Kojto 119:aae6fcc7d9bb 6954 */
Kojto 119:aae6fcc7d9bb 6955
Kojto 119:aae6fcc7d9bb 6956 void arm_cmplx_mult_cmplx_q31(
Kojto 119:aae6fcc7d9bb 6957 q31_t * pSrcA,
Kojto 119:aae6fcc7d9bb 6958 q31_t * pSrcB,
Kojto 119:aae6fcc7d9bb 6959 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 6960 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 6961
Kojto 119:aae6fcc7d9bb 6962 /**
Kojto 119:aae6fcc7d9bb 6963 * @brief Floating-point complex-by-complex multiplication
Kojto 119:aae6fcc7d9bb 6964 * @param[in] *pSrcA points to the first input vector
Kojto 119:aae6fcc7d9bb 6965 * @param[in] *pSrcB points to the second input vector
Kojto 119:aae6fcc7d9bb 6966 * @param[out] *pDst points to the output vector
Kojto 119:aae6fcc7d9bb 6967 * @param[in] numSamples number of complex samples in each vector
Kojto 119:aae6fcc7d9bb 6968 * @return none.
Kojto 119:aae6fcc7d9bb 6969 */
Kojto 119:aae6fcc7d9bb 6970
Kojto 119:aae6fcc7d9bb 6971 void arm_cmplx_mult_cmplx_f32(
Kojto 119:aae6fcc7d9bb 6972 float32_t * pSrcA,
Kojto 119:aae6fcc7d9bb 6973 float32_t * pSrcB,
Kojto 119:aae6fcc7d9bb 6974 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 6975 uint32_t numSamples);
Kojto 119:aae6fcc7d9bb 6976
Kojto 119:aae6fcc7d9bb 6977 /**
Kojto 119:aae6fcc7d9bb 6978 * @brief Converts the elements of the floating-point vector to Q31 vector.
Kojto 119:aae6fcc7d9bb 6979 * @param[in] *pSrc points to the floating-point input vector
Kojto 119:aae6fcc7d9bb 6980 * @param[out] *pDst points to the Q31 output vector
Kojto 119:aae6fcc7d9bb 6981 * @param[in] blockSize length of the input vector
Kojto 119:aae6fcc7d9bb 6982 * @return none.
Kojto 119:aae6fcc7d9bb 6983 */
Kojto 119:aae6fcc7d9bb 6984 void arm_float_to_q31(
Kojto 119:aae6fcc7d9bb 6985 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6986 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 6987 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 6988
Kojto 119:aae6fcc7d9bb 6989 /**
Kojto 119:aae6fcc7d9bb 6990 * @brief Converts the elements of the floating-point vector to Q15 vector.
Kojto 119:aae6fcc7d9bb 6991 * @param[in] *pSrc points to the floating-point input vector
Kojto 119:aae6fcc7d9bb 6992 * @param[out] *pDst points to the Q15 output vector
Kojto 119:aae6fcc7d9bb 6993 * @param[in] blockSize length of the input vector
Kojto 119:aae6fcc7d9bb 6994 * @return none
Kojto 119:aae6fcc7d9bb 6995 */
Kojto 119:aae6fcc7d9bb 6996 void arm_float_to_q15(
Kojto 119:aae6fcc7d9bb 6997 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 6998 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 6999 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 7000
Kojto 119:aae6fcc7d9bb 7001 /**
Kojto 119:aae6fcc7d9bb 7002 * @brief Converts the elements of the floating-point vector to Q7 vector.
Kojto 119:aae6fcc7d9bb 7003 * @param[in] *pSrc points to the floating-point input vector
Kojto 119:aae6fcc7d9bb 7004 * @param[out] *pDst points to the Q7 output vector
Kojto 119:aae6fcc7d9bb 7005 * @param[in] blockSize length of the input vector
Kojto 119:aae6fcc7d9bb 7006 * @return none
Kojto 119:aae6fcc7d9bb 7007 */
Kojto 119:aae6fcc7d9bb 7008 void arm_float_to_q7(
Kojto 119:aae6fcc7d9bb 7009 float32_t * pSrc,
Kojto 119:aae6fcc7d9bb 7010 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 7011 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 7012
Kojto 119:aae6fcc7d9bb 7013
Kojto 119:aae6fcc7d9bb 7014 /**
Kojto 119:aae6fcc7d9bb 7015 * @brief Converts the elements of the Q31 vector to Q15 vector.
Kojto 119:aae6fcc7d9bb 7016 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 7017 * @param[out] *pDst is output pointer
Kojto 119:aae6fcc7d9bb 7018 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 7019 * @return none.
Kojto 119:aae6fcc7d9bb 7020 */
Kojto 119:aae6fcc7d9bb 7021 void arm_q31_to_q15(
Kojto 119:aae6fcc7d9bb 7022 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 7023 q15_t * pDst,
Kojto 119:aae6fcc7d9bb 7024 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 7025
Kojto 119:aae6fcc7d9bb 7026 /**
Kojto 119:aae6fcc7d9bb 7027 * @brief Converts the elements of the Q31 vector to Q7 vector.
Kojto 119:aae6fcc7d9bb 7028 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 7029 * @param[out] *pDst is output pointer
Kojto 119:aae6fcc7d9bb 7030 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 7031 * @return none.
Kojto 119:aae6fcc7d9bb 7032 */
Kojto 119:aae6fcc7d9bb 7033 void arm_q31_to_q7(
Kojto 119:aae6fcc7d9bb 7034 q31_t * pSrc,
Kojto 119:aae6fcc7d9bb 7035 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 7036 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 7037
Kojto 119:aae6fcc7d9bb 7038 /**
Kojto 119:aae6fcc7d9bb 7039 * @brief Converts the elements of the Q15 vector to floating-point vector.
Kojto 119:aae6fcc7d9bb 7040 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 7041 * @param[out] *pDst is output pointer
Kojto 119:aae6fcc7d9bb 7042 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 7043 * @return none.
Kojto 119:aae6fcc7d9bb 7044 */
Kojto 119:aae6fcc7d9bb 7045 void arm_q15_to_float(
Kojto 119:aae6fcc7d9bb 7046 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 7047 float32_t * pDst,
Kojto 119:aae6fcc7d9bb 7048 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 7049
Kojto 119:aae6fcc7d9bb 7050
Kojto 119:aae6fcc7d9bb 7051 /**
Kojto 119:aae6fcc7d9bb 7052 * @brief Converts the elements of the Q15 vector to Q31 vector.
Kojto 119:aae6fcc7d9bb 7053 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 7054 * @param[out] *pDst is output pointer
Kojto 119:aae6fcc7d9bb 7055 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 7056 * @return none.
Kojto 119:aae6fcc7d9bb 7057 */
Kojto 119:aae6fcc7d9bb 7058 void arm_q15_to_q31(
Kojto 119:aae6fcc7d9bb 7059 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 7060 q31_t * pDst,
Kojto 119:aae6fcc7d9bb 7061 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 7062
Kojto 119:aae6fcc7d9bb 7063
Kojto 119:aae6fcc7d9bb 7064 /**
Kojto 119:aae6fcc7d9bb 7065 * @brief Converts the elements of the Q15 vector to Q7 vector.
Kojto 119:aae6fcc7d9bb 7066 * @param[in] *pSrc is input pointer
Kojto 119:aae6fcc7d9bb 7067 * @param[out] *pDst is output pointer
Kojto 119:aae6fcc7d9bb 7068 * @param[in] blockSize is the number of samples to process
Kojto 119:aae6fcc7d9bb 7069 * @return none.
Kojto 119:aae6fcc7d9bb 7070 */
Kojto 119:aae6fcc7d9bb 7071 void arm_q15_to_q7(
Kojto 119:aae6fcc7d9bb 7072 q15_t * pSrc,
Kojto 119:aae6fcc7d9bb 7073 q7_t * pDst,
Kojto 119:aae6fcc7d9bb 7074 uint32_t blockSize);
Kojto 119:aae6fcc7d9bb 7075
Kojto 119:aae6fcc7d9bb 7076
Kojto 119:aae6fcc7d9bb 7077 /**
Kojto 119:aae6fcc7d9bb 7078 * @ingroup groupInterpolation
Kojto 119:aae6fcc7d9bb 7079 */
Kojto 119:aae6fcc7d9bb 7080
Kojto 119:aae6fcc7d9bb 7081 /**
Kojto 119:aae6fcc7d9bb 7082 * @defgroup BilinearInterpolate Bilinear Interpolation
Kojto 119:aae6fcc7d9bb 7083 *
Kojto 119:aae6fcc7d9bb 7084 * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
Kojto 119:aae6fcc7d9bb 7085 * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
Kojto 119:aae6fcc7d9bb 7086 * determines values between the grid points.
Kojto 119:aae6fcc7d9bb 7087 * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
Kojto 119:aae6fcc7d9bb 7088 * Bilinear interpolation is often used in image processing to rescale images.
Kojto 119:aae6fcc7d9bb 7089 * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
Kojto 119:aae6fcc7d9bb 7090 *
Kojto 119:aae6fcc7d9bb 7091 * <b>Algorithm</b>
Kojto 119:aae6fcc7d9bb 7092 * \par
Kojto 119:aae6fcc7d9bb 7093 * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
Kojto 119:aae6fcc7d9bb 7094 * For floating-point, the instance structure is defined as:
Kojto 119:aae6fcc7d9bb 7095 * <pre>
Kojto 119:aae6fcc7d9bb 7096 * typedef struct
Kojto 119:aae6fcc7d9bb 7097 * {
Kojto 119:aae6fcc7d9bb 7098 * uint16_t numRows;
Kojto 119:aae6fcc7d9bb 7099 * uint16_t numCols;
Kojto 119:aae6fcc7d9bb 7100 * float32_t *pData;
Kojto 119:aae6fcc7d9bb 7101 * } arm_bilinear_interp_instance_f32;
Kojto 119:aae6fcc7d9bb 7102 * </pre>
Kojto 119:aae6fcc7d9bb 7103 *
Kojto 119:aae6fcc7d9bb 7104 * \par
Kojto 119:aae6fcc7d9bb 7105 * where <code>numRows</code> specifies the number of rows in the table;
Kojto 119:aae6fcc7d9bb 7106 * <code>numCols</code> specifies the number of columns in the table;
Kojto 119:aae6fcc7d9bb 7107 * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
Kojto 119:aae6fcc7d9bb 7108 * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
Kojto 119:aae6fcc7d9bb 7109 * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
Kojto 119:aae6fcc7d9bb 7110 *
Kojto 119:aae6fcc7d9bb 7111 * \par
Kojto 119:aae6fcc7d9bb 7112 * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
Kojto 119:aae6fcc7d9bb 7113 * <pre>
Kojto 119:aae6fcc7d9bb 7114 * XF = floor(x)
Kojto 119:aae6fcc7d9bb 7115 * YF = floor(y)
Kojto 119:aae6fcc7d9bb 7116 * </pre>
Kojto 119:aae6fcc7d9bb 7117 * \par
Kojto 119:aae6fcc7d9bb 7118 * The interpolated output point is computed as:
Kojto 119:aae6fcc7d9bb 7119 * <pre>
Kojto 119:aae6fcc7d9bb 7120 * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
Kojto 119:aae6fcc7d9bb 7121 * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
Kojto 119:aae6fcc7d9bb 7122 * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
Kojto 119:aae6fcc7d9bb 7123 * + f(XF+1, YF+1) * (x-XF)*(y-YF)
Kojto 119:aae6fcc7d9bb 7124 * </pre>
Kojto 119:aae6fcc7d9bb 7125 * Note that the coordinates (x, y) contain integer and fractional components.
Kojto 119:aae6fcc7d9bb 7126 * The integer components specify which portion of the table to use while the
Kojto 119:aae6fcc7d9bb 7127 * fractional components control the interpolation processor.
Kojto 119:aae6fcc7d9bb 7128 *
Kojto 119:aae6fcc7d9bb 7129 * \par
Kojto 119:aae6fcc7d9bb 7130 * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
Kojto 119:aae6fcc7d9bb 7131 */
Kojto 119:aae6fcc7d9bb 7132
Kojto 119:aae6fcc7d9bb 7133 /**
Kojto 119:aae6fcc7d9bb 7134 * @addtogroup BilinearInterpolate
Kojto 119:aae6fcc7d9bb 7135 * @{
Kojto 119:aae6fcc7d9bb 7136 */
Kojto 119:aae6fcc7d9bb 7137
Kojto 119:aae6fcc7d9bb 7138 /**
Kojto 119:aae6fcc7d9bb 7139 *
Kojto 119:aae6fcc7d9bb 7140 * @brief Floating-point bilinear interpolation.
Kojto 119:aae6fcc7d9bb 7141 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 119:aae6fcc7d9bb 7142 * @param[in] X interpolation coordinate.
Kojto 119:aae6fcc7d9bb 7143 * @param[in] Y interpolation coordinate.
Kojto 119:aae6fcc7d9bb 7144 * @return out interpolated value.
Kojto 119:aae6fcc7d9bb 7145 */
Kojto 119:aae6fcc7d9bb 7146
Kojto 119:aae6fcc7d9bb 7147
Kojto 119:aae6fcc7d9bb 7148 static __INLINE float32_t arm_bilinear_interp_f32(
Kojto 119:aae6fcc7d9bb 7149 const arm_bilinear_interp_instance_f32 * S,
Kojto 119:aae6fcc7d9bb 7150 float32_t X,
Kojto 119:aae6fcc7d9bb 7151 float32_t Y)
Kojto 119:aae6fcc7d9bb 7152 {
Kojto 119:aae6fcc7d9bb 7153 float32_t out;
Kojto 119:aae6fcc7d9bb 7154 float32_t f00, f01, f10, f11;
Kojto 119:aae6fcc7d9bb 7155 float32_t *pData = S->pData;
Kojto 119:aae6fcc7d9bb 7156 int32_t xIndex, yIndex, index;
Kojto 119:aae6fcc7d9bb 7157 float32_t xdiff, ydiff;
Kojto 119:aae6fcc7d9bb 7158 float32_t b1, b2, b3, b4;
Kojto 119:aae6fcc7d9bb 7159
Kojto 119:aae6fcc7d9bb 7160 xIndex = (int32_t) X;
Kojto 119:aae6fcc7d9bb 7161 yIndex = (int32_t) Y;
Kojto 119:aae6fcc7d9bb 7162
Kojto 119:aae6fcc7d9bb 7163 /* Care taken for table outside boundary */
Kojto 119:aae6fcc7d9bb 7164 /* Returns zero output when values are outside table boundary */
Kojto 119:aae6fcc7d9bb 7165 if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
Kojto 119:aae6fcc7d9bb 7166 || yIndex > (S->numCols - 1))
Kojto 119:aae6fcc7d9bb 7167 {
Kojto 119:aae6fcc7d9bb 7168 return (0);
Kojto 119:aae6fcc7d9bb 7169 }
Kojto 119:aae6fcc7d9bb 7170
Kojto 119:aae6fcc7d9bb 7171 /* Calculation of index for two nearest points in X-direction */
Kojto 119:aae6fcc7d9bb 7172 index = (xIndex - 1) + (yIndex - 1) * S->numCols;
Kojto 119:aae6fcc7d9bb 7173
Kojto 119:aae6fcc7d9bb 7174
Kojto 119:aae6fcc7d9bb 7175 /* Read two nearest points in X-direction */
Kojto 119:aae6fcc7d9bb 7176 f00 = pData[index];
Kojto 119:aae6fcc7d9bb 7177 f01 = pData[index + 1];
Kojto 119:aae6fcc7d9bb 7178
Kojto 119:aae6fcc7d9bb 7179 /* Calculation of index for two nearest points in Y-direction */
Kojto 119:aae6fcc7d9bb 7180 index = (xIndex - 1) + (yIndex) * S->numCols;
Kojto 119:aae6fcc7d9bb 7181
Kojto 119:aae6fcc7d9bb 7182
Kojto 119:aae6fcc7d9bb 7183 /* Read two nearest points in Y-direction */
Kojto 119:aae6fcc7d9bb 7184 f10 = pData[index];
Kojto 119:aae6fcc7d9bb 7185 f11 = pData[index + 1];
Kojto 119:aae6fcc7d9bb 7186
Kojto 119:aae6fcc7d9bb 7187 /* Calculation of intermediate values */
Kojto 119:aae6fcc7d9bb 7188 b1 = f00;
Kojto 119:aae6fcc7d9bb 7189 b2 = f01 - f00;
Kojto 119:aae6fcc7d9bb 7190 b3 = f10 - f00;
Kojto 119:aae6fcc7d9bb 7191 b4 = f00 - f01 - f10 + f11;
Kojto 119:aae6fcc7d9bb 7192
Kojto 119:aae6fcc7d9bb 7193 /* Calculation of fractional part in X */
Kojto 119:aae6fcc7d9bb 7194 xdiff = X - xIndex;
Kojto 119:aae6fcc7d9bb 7195
Kojto 119:aae6fcc7d9bb 7196 /* Calculation of fractional part in Y */
Kojto 119:aae6fcc7d9bb 7197 ydiff = Y - yIndex;
Kojto 119:aae6fcc7d9bb 7198
Kojto 119:aae6fcc7d9bb 7199 /* Calculation of bi-linear interpolated output */
Kojto 119:aae6fcc7d9bb 7200 out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
Kojto 119:aae6fcc7d9bb 7201
Kojto 119:aae6fcc7d9bb 7202 /* return to application */
Kojto 119:aae6fcc7d9bb 7203 return (out);
Kojto 119:aae6fcc7d9bb 7204
Kojto 119:aae6fcc7d9bb 7205 }
Kojto 119:aae6fcc7d9bb 7206
Kojto 119:aae6fcc7d9bb 7207 /**
Kojto 119:aae6fcc7d9bb 7208 *
Kojto 119:aae6fcc7d9bb 7209 * @brief Q31 bilinear interpolation.
Kojto 119:aae6fcc7d9bb 7210 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 119:aae6fcc7d9bb 7211 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 119:aae6fcc7d9bb 7212 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 119:aae6fcc7d9bb 7213 * @return out interpolated value.
Kojto 119:aae6fcc7d9bb 7214 */
Kojto 119:aae6fcc7d9bb 7215
Kojto 119:aae6fcc7d9bb 7216 static __INLINE q31_t arm_bilinear_interp_q31(
Kojto 119:aae6fcc7d9bb 7217 arm_bilinear_interp_instance_q31 * S,
Kojto 119:aae6fcc7d9bb 7218 q31_t X,
Kojto 119:aae6fcc7d9bb 7219 q31_t Y)
Kojto 119:aae6fcc7d9bb 7220 {
Kojto 119:aae6fcc7d9bb 7221 q31_t out; /* Temporary output */
Kojto 119:aae6fcc7d9bb 7222 q31_t acc = 0; /* output */
Kojto 119:aae6fcc7d9bb 7223 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 119:aae6fcc7d9bb 7224 q31_t x1, x2, y1, y2; /* Nearest output values */
Kojto 119:aae6fcc7d9bb 7225 int32_t rI, cI; /* Row and column indices */
Kojto 119:aae6fcc7d9bb 7226 q31_t *pYData = S->pData; /* pointer to output table values */
Kojto 119:aae6fcc7d9bb 7227 uint32_t nCols = S->numCols; /* num of rows */
Kojto 119:aae6fcc7d9bb 7228
Kojto 119:aae6fcc7d9bb 7229
Kojto 119:aae6fcc7d9bb 7230 /* Input is in 12.20 format */
Kojto 119:aae6fcc7d9bb 7231 /* 12 bits for the table index */
Kojto 119:aae6fcc7d9bb 7232 /* Index value calculation */
Kojto 119:aae6fcc7d9bb 7233 rI = ((X & 0xFFF00000) >> 20u);
Kojto 119:aae6fcc7d9bb 7234
Kojto 119:aae6fcc7d9bb 7235 /* Input is in 12.20 format */
Kojto 119:aae6fcc7d9bb 7236 /* 12 bits for the table index */
Kojto 119:aae6fcc7d9bb 7237 /* Index value calculation */
Kojto 119:aae6fcc7d9bb 7238 cI = ((Y & 0xFFF00000) >> 20u);
Kojto 119:aae6fcc7d9bb 7239
Kojto 119:aae6fcc7d9bb 7240 /* Care taken for table outside boundary */
Kojto 119:aae6fcc7d9bb 7241 /* Returns zero output when values are outside table boundary */
Kojto 119:aae6fcc7d9bb 7242 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 119:aae6fcc7d9bb 7243 {
Kojto 119:aae6fcc7d9bb 7244 return (0);
Kojto 119:aae6fcc7d9bb 7245 }
Kojto 119:aae6fcc7d9bb 7246
Kojto 119:aae6fcc7d9bb 7247 /* 20 bits for the fractional part */
Kojto 119:aae6fcc7d9bb 7248 /* shift left xfract by 11 to keep 1.31 format */
Kojto 119:aae6fcc7d9bb 7249 xfract = (X & 0x000FFFFF) << 11u;
Kojto 119:aae6fcc7d9bb 7250
Kojto 119:aae6fcc7d9bb 7251 /* Read two nearest output values from the index */
Kojto 119:aae6fcc7d9bb 7252 x1 = pYData[(rI) + nCols * (cI)];
Kojto 119:aae6fcc7d9bb 7253 x2 = pYData[(rI) + nCols * (cI) + 1u];
Kojto 119:aae6fcc7d9bb 7254
Kojto 119:aae6fcc7d9bb 7255 /* 20 bits for the fractional part */
Kojto 119:aae6fcc7d9bb 7256 /* shift left yfract by 11 to keep 1.31 format */
Kojto 119:aae6fcc7d9bb 7257 yfract = (Y & 0x000FFFFF) << 11u;
Kojto 119:aae6fcc7d9bb 7258
Kojto 119:aae6fcc7d9bb 7259 /* Read two nearest output values from the index */
Kojto 119:aae6fcc7d9bb 7260 y1 = pYData[(rI) + nCols * (cI + 1)];
Kojto 119:aae6fcc7d9bb 7261 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
Kojto 119:aae6fcc7d9bb 7262
Kojto 119:aae6fcc7d9bb 7263 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
Kojto 119:aae6fcc7d9bb 7264 out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
Kojto 119:aae6fcc7d9bb 7265 acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
Kojto 119:aae6fcc7d9bb 7266
Kojto 119:aae6fcc7d9bb 7267 /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
Kojto 119:aae6fcc7d9bb 7268 out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
Kojto 119:aae6fcc7d9bb 7269 acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
Kojto 119:aae6fcc7d9bb 7270
Kojto 119:aae6fcc7d9bb 7271 /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
Kojto 119:aae6fcc7d9bb 7272 out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
Kojto 119:aae6fcc7d9bb 7273 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
Kojto 119:aae6fcc7d9bb 7274
Kojto 119:aae6fcc7d9bb 7275 /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
Kojto 119:aae6fcc7d9bb 7276 out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
Kojto 119:aae6fcc7d9bb 7277 acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
Kojto 119:aae6fcc7d9bb 7278
Kojto 119:aae6fcc7d9bb 7279 /* Convert acc to 1.31(q31) format */
Kojto 119:aae6fcc7d9bb 7280 return (acc << 2u);
Kojto 119:aae6fcc7d9bb 7281
Kojto 119:aae6fcc7d9bb 7282 }
Kojto 119:aae6fcc7d9bb 7283
Kojto 119:aae6fcc7d9bb 7284 /**
Kojto 119:aae6fcc7d9bb 7285 * @brief Q15 bilinear interpolation.
Kojto 119:aae6fcc7d9bb 7286 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 119:aae6fcc7d9bb 7287 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 119:aae6fcc7d9bb 7288 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 119:aae6fcc7d9bb 7289 * @return out interpolated value.
Kojto 119:aae6fcc7d9bb 7290 */
Kojto 119:aae6fcc7d9bb 7291
Kojto 119:aae6fcc7d9bb 7292 static __INLINE q15_t arm_bilinear_interp_q15(
Kojto 119:aae6fcc7d9bb 7293 arm_bilinear_interp_instance_q15 * S,
Kojto 119:aae6fcc7d9bb 7294 q31_t X,
Kojto 119:aae6fcc7d9bb 7295 q31_t Y)
Kojto 119:aae6fcc7d9bb 7296 {
Kojto 119:aae6fcc7d9bb 7297 q63_t acc = 0; /* output */
Kojto 119:aae6fcc7d9bb 7298 q31_t out; /* Temporary output */
Kojto 119:aae6fcc7d9bb 7299 q15_t x1, x2, y1, y2; /* Nearest output values */
Kojto 119:aae6fcc7d9bb 7300 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 119:aae6fcc7d9bb 7301 int32_t rI, cI; /* Row and column indices */
Kojto 119:aae6fcc7d9bb 7302 q15_t *pYData = S->pData; /* pointer to output table values */
Kojto 119:aae6fcc7d9bb 7303 uint32_t nCols = S->numCols; /* num of rows */
Kojto 119:aae6fcc7d9bb 7304
Kojto 119:aae6fcc7d9bb 7305 /* Input is in 12.20 format */
Kojto 119:aae6fcc7d9bb 7306 /* 12 bits for the table index */
Kojto 119:aae6fcc7d9bb 7307 /* Index value calculation */
Kojto 119:aae6fcc7d9bb 7308 rI = ((X & 0xFFF00000) >> 20);
Kojto 119:aae6fcc7d9bb 7309
Kojto 119:aae6fcc7d9bb 7310 /* Input is in 12.20 format */
Kojto 119:aae6fcc7d9bb 7311 /* 12 bits for the table index */
Kojto 119:aae6fcc7d9bb 7312 /* Index value calculation */
Kojto 119:aae6fcc7d9bb 7313 cI = ((Y & 0xFFF00000) >> 20);
Kojto 119:aae6fcc7d9bb 7314
Kojto 119:aae6fcc7d9bb 7315 /* Care taken for table outside boundary */
Kojto 119:aae6fcc7d9bb 7316 /* Returns zero output when values are outside table boundary */
Kojto 119:aae6fcc7d9bb 7317 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 119:aae6fcc7d9bb 7318 {
Kojto 119:aae6fcc7d9bb 7319 return (0);
Kojto 119:aae6fcc7d9bb 7320 }
Kojto 119:aae6fcc7d9bb 7321
Kojto 119:aae6fcc7d9bb 7322 /* 20 bits for the fractional part */
Kojto 119:aae6fcc7d9bb 7323 /* xfract should be in 12.20 format */
Kojto 119:aae6fcc7d9bb 7324 xfract = (X & 0x000FFFFF);
Kojto 119:aae6fcc7d9bb 7325
Kojto 119:aae6fcc7d9bb 7326 /* Read two nearest output values from the index */
Kojto 119:aae6fcc7d9bb 7327 x1 = pYData[(rI) + nCols * (cI)];
Kojto 119:aae6fcc7d9bb 7328 x2 = pYData[(rI) + nCols * (cI) + 1u];
Kojto 119:aae6fcc7d9bb 7329
Kojto 119:aae6fcc7d9bb 7330
Kojto 119:aae6fcc7d9bb 7331 /* 20 bits for the fractional part */
Kojto 119:aae6fcc7d9bb 7332 /* yfract should be in 12.20 format */
Kojto 119:aae6fcc7d9bb 7333 yfract = (Y & 0x000FFFFF);
Kojto 119:aae6fcc7d9bb 7334
Kojto 119:aae6fcc7d9bb 7335 /* Read two nearest output values from the index */
Kojto 119:aae6fcc7d9bb 7336 y1 = pYData[(rI) + nCols * (cI + 1)];
Kojto 119:aae6fcc7d9bb 7337 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
Kojto 119:aae6fcc7d9bb 7338
Kojto 119:aae6fcc7d9bb 7339 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
Kojto 119:aae6fcc7d9bb 7340
Kojto 119:aae6fcc7d9bb 7341 /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
Kojto 119:aae6fcc7d9bb 7342 /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
Kojto 119:aae6fcc7d9bb 7343 out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
Kojto 119:aae6fcc7d9bb 7344 acc = ((q63_t) out * (0xFFFFF - yfract));
Kojto 119:aae6fcc7d9bb 7345
Kojto 119:aae6fcc7d9bb 7346 /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
Kojto 119:aae6fcc7d9bb 7347 out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
Kojto 119:aae6fcc7d9bb 7348 acc += ((q63_t) out * (xfract));
Kojto 119:aae6fcc7d9bb 7349
Kojto 119:aae6fcc7d9bb 7350 /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
Kojto 119:aae6fcc7d9bb 7351 out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
Kojto 119:aae6fcc7d9bb 7352 acc += ((q63_t) out * (yfract));
Kojto 119:aae6fcc7d9bb 7353
Kojto 119:aae6fcc7d9bb 7354 /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
Kojto 119:aae6fcc7d9bb 7355 out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
Kojto 119:aae6fcc7d9bb 7356 acc += ((q63_t) out * (yfract));
Kojto 119:aae6fcc7d9bb 7357
Kojto 119:aae6fcc7d9bb 7358 /* acc is in 13.51 format and down shift acc by 36 times */
Kojto 119:aae6fcc7d9bb 7359 /* Convert out to 1.15 format */
Kojto 119:aae6fcc7d9bb 7360 return (acc >> 36);
Kojto 119:aae6fcc7d9bb 7361
Kojto 119:aae6fcc7d9bb 7362 }
Kojto 119:aae6fcc7d9bb 7363
Kojto 119:aae6fcc7d9bb 7364 /**
Kojto 119:aae6fcc7d9bb 7365 * @brief Q7 bilinear interpolation.
Kojto 119:aae6fcc7d9bb 7366 * @param[in,out] *S points to an instance of the interpolation structure.
Kojto 119:aae6fcc7d9bb 7367 * @param[in] X interpolation coordinate in 12.20 format.
Kojto 119:aae6fcc7d9bb 7368 * @param[in] Y interpolation coordinate in 12.20 format.
Kojto 119:aae6fcc7d9bb 7369 * @return out interpolated value.
Kojto 119:aae6fcc7d9bb 7370 */
Kojto 119:aae6fcc7d9bb 7371
Kojto 119:aae6fcc7d9bb 7372 static __INLINE q7_t arm_bilinear_interp_q7(
Kojto 119:aae6fcc7d9bb 7373 arm_bilinear_interp_instance_q7 * S,
Kojto 119:aae6fcc7d9bb 7374 q31_t X,
Kojto 119:aae6fcc7d9bb 7375 q31_t Y)
Kojto 119:aae6fcc7d9bb 7376 {
Kojto 119:aae6fcc7d9bb 7377 q63_t acc = 0; /* output */
Kojto 119:aae6fcc7d9bb 7378 q31_t out; /* Temporary output */
Kojto 119:aae6fcc7d9bb 7379 q31_t xfract, yfract; /* X, Y fractional parts */
Kojto 119:aae6fcc7d9bb 7380 q7_t x1, x2, y1, y2; /* Nearest output values */
Kojto 119:aae6fcc7d9bb 7381 int32_t rI, cI; /* Row and column indices */
Kojto 119:aae6fcc7d9bb 7382 q7_t *pYData = S->pData; /* pointer to output table values */
Kojto 119:aae6fcc7d9bb 7383 uint32_t nCols = S->numCols; /* num of rows */
Kojto 119:aae6fcc7d9bb 7384
Kojto 119:aae6fcc7d9bb 7385 /* Input is in 12.20 format */
Kojto 119:aae6fcc7d9bb 7386 /* 12 bits for the table index */
Kojto 119:aae6fcc7d9bb 7387 /* Index value calculation */
Kojto 119:aae6fcc7d9bb 7388 rI = ((X & 0xFFF00000) >> 20);
Kojto 119:aae6fcc7d9bb 7389
Kojto 119:aae6fcc7d9bb 7390 /* Input is in 12.20 format */
Kojto 119:aae6fcc7d9bb 7391 /* 12 bits for the table index */
Kojto 119:aae6fcc7d9bb 7392 /* Index value calculation */
Kojto 119:aae6fcc7d9bb 7393 cI = ((Y & 0xFFF00000) >> 20);
Kojto 119:aae6fcc7d9bb 7394
Kojto 119:aae6fcc7d9bb 7395 /* Care taken for table outside boundary */
Kojto 119:aae6fcc7d9bb 7396 /* Returns zero output when values are outside table boundary */
Kojto 119:aae6fcc7d9bb 7397 if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
Kojto 119:aae6fcc7d9bb 7398 {
Kojto 119:aae6fcc7d9bb 7399 return (0);
Kojto 119:aae6fcc7d9bb 7400 }
Kojto 119:aae6fcc7d9bb 7401
Kojto 119:aae6fcc7d9bb 7402 /* 20 bits for the fractional part */
Kojto 119:aae6fcc7d9bb 7403 /* xfract should be in 12.20 format */
Kojto 119:aae6fcc7d9bb 7404 xfract = (X & 0x000FFFFF);
Kojto 119:aae6fcc7d9bb 7405
Kojto 119:aae6fcc7d9bb 7406 /* Read two nearest output values from the index */
Kojto 119:aae6fcc7d9bb 7407 x1 = pYData[(rI) + nCols * (cI)];
Kojto 119:aae6fcc7d9bb 7408 x2 = pYData[(rI) + nCols * (cI) + 1u];
Kojto 119:aae6fcc7d9bb 7409
Kojto 119:aae6fcc7d9bb 7410
Kojto 119:aae6fcc7d9bb 7411 /* 20 bits for the fractional part */
Kojto 119:aae6fcc7d9bb 7412 /* yfract should be in 12.20 format */
Kojto 119:aae6fcc7d9bb 7413 yfract = (Y & 0x000FFFFF);
Kojto 119:aae6fcc7d9bb 7414
Kojto 119:aae6fcc7d9bb 7415 /* Read two nearest output values from the index */
Kojto 119:aae6fcc7d9bb 7416 y1 = pYData[(rI) + nCols * (cI + 1)];
Kojto 119:aae6fcc7d9bb 7417 y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
Kojto 119:aae6fcc7d9bb 7418
Kojto 119:aae6fcc7d9bb 7419 /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
Kojto 119:aae6fcc7d9bb 7420 out = ((x1 * (0xFFFFF - xfract)));
Kojto 119:aae6fcc7d9bb 7421 acc = (((q63_t) out * (0xFFFFF - yfract)));
Kojto 119:aae6fcc7d9bb 7422
Kojto 119:aae6fcc7d9bb 7423 /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
Kojto 119:aae6fcc7d9bb 7424 out = ((x2 * (0xFFFFF - yfract)));
Kojto 119:aae6fcc7d9bb 7425 acc += (((q63_t) out * (xfract)));
Kojto 119:aae6fcc7d9bb 7426
Kojto 119:aae6fcc7d9bb 7427 /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
Kojto 119:aae6fcc7d9bb 7428 out = ((y1 * (0xFFFFF - xfract)));
Kojto 119:aae6fcc7d9bb 7429 acc += (((q63_t) out * (yfract)));
Kojto 119:aae6fcc7d9bb 7430
Kojto 119:aae6fcc7d9bb 7431 /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
Kojto 119:aae6fcc7d9bb 7432 out = ((y2 * (yfract)));
Kojto 119:aae6fcc7d9bb 7433 acc += (((q63_t) out * (xfract)));
Kojto 119:aae6fcc7d9bb 7434
Kojto 119:aae6fcc7d9bb 7435 /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
Kojto 119:aae6fcc7d9bb 7436 return (acc >> 40);
Kojto 119:aae6fcc7d9bb 7437
Kojto 119:aae6fcc7d9bb 7438 }
Kojto 119:aae6fcc7d9bb 7439
Kojto 119:aae6fcc7d9bb 7440 /**
Kojto 119:aae6fcc7d9bb 7441 * @} end of BilinearInterpolate group
Kojto 119:aae6fcc7d9bb 7442 */
Kojto 119:aae6fcc7d9bb 7443
Kojto 119:aae6fcc7d9bb 7444
Kojto 119:aae6fcc7d9bb 7445 //SMMLAR
Kojto 119:aae6fcc7d9bb 7446 #define multAcc_32x32_keep32_R(a, x, y) \
Kojto 119:aae6fcc7d9bb 7447 a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
Kojto 119:aae6fcc7d9bb 7448
Kojto 119:aae6fcc7d9bb 7449 //SMMLSR
Kojto 119:aae6fcc7d9bb 7450 #define multSub_32x32_keep32_R(a, x, y) \
Kojto 119:aae6fcc7d9bb 7451 a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
Kojto 119:aae6fcc7d9bb 7452
Kojto 119:aae6fcc7d9bb 7453 //SMMULR
Kojto 119:aae6fcc7d9bb 7454 #define mult_32x32_keep32_R(a, x, y) \
Kojto 119:aae6fcc7d9bb 7455 a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
Kojto 119:aae6fcc7d9bb 7456
Kojto 119:aae6fcc7d9bb 7457 //SMMLA
Kojto 119:aae6fcc7d9bb 7458 #define multAcc_32x32_keep32(a, x, y) \
Kojto 119:aae6fcc7d9bb 7459 a += (q31_t) (((q63_t) x * y) >> 32)
Kojto 119:aae6fcc7d9bb 7460
Kojto 119:aae6fcc7d9bb 7461 //SMMLS
Kojto 119:aae6fcc7d9bb 7462 #define multSub_32x32_keep32(a, x, y) \
Kojto 119:aae6fcc7d9bb 7463 a -= (q31_t) (((q63_t) x * y) >> 32)
Kojto 119:aae6fcc7d9bb 7464
Kojto 119:aae6fcc7d9bb 7465 //SMMUL
Kojto 119:aae6fcc7d9bb 7466 #define mult_32x32_keep32(a, x, y) \
Kojto 119:aae6fcc7d9bb 7467 a = (q31_t) (((q63_t) x * y ) >> 32)
Kojto 119:aae6fcc7d9bb 7468
Kojto 119:aae6fcc7d9bb 7469
Kojto 119:aae6fcc7d9bb 7470 #if defined ( __CC_ARM ) //Keil
Kojto 119:aae6fcc7d9bb 7471
Kojto 119:aae6fcc7d9bb 7472 //Enter low optimization region - place directly above function definition
Kojto 119:aae6fcc7d9bb 7473 #ifdef ARM_MATH_CM4
Kojto 119:aae6fcc7d9bb 7474 #define LOW_OPTIMIZATION_ENTER \
Kojto 119:aae6fcc7d9bb 7475 _Pragma ("push") \
Kojto 119:aae6fcc7d9bb 7476 _Pragma ("O1")
Kojto 119:aae6fcc7d9bb 7477 #else
Kojto 119:aae6fcc7d9bb 7478 #define LOW_OPTIMIZATION_ENTER
Kojto 119:aae6fcc7d9bb 7479 #endif
Kojto 119:aae6fcc7d9bb 7480
Kojto 119:aae6fcc7d9bb 7481 //Exit low optimization region - place directly after end of function definition
Kojto 119:aae6fcc7d9bb 7482 #ifdef ARM_MATH_CM4
Kojto 119:aae6fcc7d9bb 7483 #define LOW_OPTIMIZATION_EXIT \
Kojto 119:aae6fcc7d9bb 7484 _Pragma ("pop")
Kojto 119:aae6fcc7d9bb 7485 #else
Kojto 119:aae6fcc7d9bb 7486 #define LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7487 #endif
Kojto 119:aae6fcc7d9bb 7488
Kojto 119:aae6fcc7d9bb 7489 //Enter low optimization region - place directly above function definition
Kojto 119:aae6fcc7d9bb 7490 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 119:aae6fcc7d9bb 7491
Kojto 119:aae6fcc7d9bb 7492 //Exit low optimization region - place directly after end of function definition
Kojto 119:aae6fcc7d9bb 7493 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7494
Kojto 119:aae6fcc7d9bb 7495 #elif defined(__ICCARM__) //IAR
Kojto 119:aae6fcc7d9bb 7496
Kojto 119:aae6fcc7d9bb 7497 //Enter low optimization region - place directly above function definition
Kojto 119:aae6fcc7d9bb 7498 #ifdef ARM_MATH_CM4
Kojto 119:aae6fcc7d9bb 7499 #define LOW_OPTIMIZATION_ENTER \
Kojto 119:aae6fcc7d9bb 7500 _Pragma ("optimize=low")
Kojto 119:aae6fcc7d9bb 7501 #else
Kojto 119:aae6fcc7d9bb 7502 #define LOW_OPTIMIZATION_ENTER
Kojto 119:aae6fcc7d9bb 7503 #endif
Kojto 119:aae6fcc7d9bb 7504
Kojto 119:aae6fcc7d9bb 7505 //Exit low optimization region - place directly after end of function definition
Kojto 119:aae6fcc7d9bb 7506 #define LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7507
Kojto 119:aae6fcc7d9bb 7508 //Enter low optimization region - place directly above function definition
Kojto 119:aae6fcc7d9bb 7509 #ifdef ARM_MATH_CM4
Kojto 119:aae6fcc7d9bb 7510 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
Kojto 119:aae6fcc7d9bb 7511 _Pragma ("optimize=low")
Kojto 119:aae6fcc7d9bb 7512 #else
Kojto 119:aae6fcc7d9bb 7513 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 119:aae6fcc7d9bb 7514 #endif
Kojto 119:aae6fcc7d9bb 7515
Kojto 119:aae6fcc7d9bb 7516 //Exit low optimization region - place directly after end of function definition
Kojto 119:aae6fcc7d9bb 7517 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7518
Kojto 119:aae6fcc7d9bb 7519 #elif defined(__GNUC__)
Kojto 119:aae6fcc7d9bb 7520
Kojto 119:aae6fcc7d9bb 7521 #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
Kojto 119:aae6fcc7d9bb 7522
Kojto 119:aae6fcc7d9bb 7523 #define LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7524
Kojto 119:aae6fcc7d9bb 7525 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 119:aae6fcc7d9bb 7526
Kojto 119:aae6fcc7d9bb 7527 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7528
Kojto 119:aae6fcc7d9bb 7529 #elif defined(__CSMC__) // Cosmic
Kojto 119:aae6fcc7d9bb 7530
Kojto 119:aae6fcc7d9bb 7531 #define LOW_OPTIMIZATION_ENTER
Kojto 119:aae6fcc7d9bb 7532 #define LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7533 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 119:aae6fcc7d9bb 7534 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7535
Kojto 119:aae6fcc7d9bb 7536 #elif defined(__TASKING__) // TASKING
Kojto 119:aae6fcc7d9bb 7537
Kojto 119:aae6fcc7d9bb 7538 #define LOW_OPTIMIZATION_ENTER
Kojto 119:aae6fcc7d9bb 7539 #define LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7540 #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
Kojto 119:aae6fcc7d9bb 7541 #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
Kojto 119:aae6fcc7d9bb 7542
Kojto 119:aae6fcc7d9bb 7543 #endif
Kojto 119:aae6fcc7d9bb 7544
Kojto 119:aae6fcc7d9bb 7545
Kojto 119:aae6fcc7d9bb 7546 #ifdef __cplusplus
Kojto 119:aae6fcc7d9bb 7547 }
Kojto 119:aae6fcc7d9bb 7548 #endif
Kojto 119:aae6fcc7d9bb 7549
Kojto 119:aae6fcc7d9bb 7550
Kojto 119:aae6fcc7d9bb 7551 #endif /* _ARM_MATH_H */
Kojto 119:aae6fcc7d9bb 7552
Kojto 119:aae6fcc7d9bb 7553 /**
Kojto 119:aae6fcc7d9bb 7554 *
Kojto 119:aae6fcc7d9bb 7555 * End of file.
Kojto 119:aae6fcc7d9bb 7556 */