takashi kadono / Mbed OS Nucleo_446

Dependencies:   ssd1331

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers mbed_ticker_api.c Source File

mbed_ticker_api.c

00001 /* mbed Microcontroller Library
00002  * Copyright (c) 2015 ARM Limited
00003  *
00004  * Licensed under the Apache License, Version 2.0 (the "License");
00005  * you may not use this file except in compliance with the License.
00006  * You may obtain a copy of the License at
00007  *
00008  *     http://www.apache.org/licenses/LICENSE-2.0
00009  *
00010  * Unless required by applicable law or agreed to in writing, software
00011  * distributed under the License is distributed on an "AS IS" BASIS,
00012  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00013  * See the License for the specific language governing permissions and
00014  * limitations under the License.
00015  */
00016 #include <stdio.h>
00017 #include <stddef.h>
00018 #include "hal/ticker_api.h"
00019 #include "platform/mbed_critical.h"
00020 #include "platform/mbed_assert.h"
00021 
00022 static void schedule_interrupt(const ticker_data_t *const ticker);
00023 static void update_present_time(const ticker_data_t *const ticker);
00024 
00025 /*
00026  * Initialize a ticker instance.
00027  */
00028 static void initialize(const ticker_data_t *ticker)
00029 {
00030     // return if the queue has already been initialized, in that case the
00031     // interface used by the queue is already initialized.
00032     if (ticker->queue->initialized) {
00033         return;
00034     }
00035     if (ticker->queue->suspended) {
00036         return;
00037     }
00038 
00039     ticker->interface->init();
00040 
00041     const ticker_info_t *info = ticker->interface->get_info();
00042     uint32_t frequency = info->frequency;
00043     if (info->frequency == 0) {
00044         MBED_ASSERT(0);
00045         frequency = 1000000;
00046     }
00047 
00048     uint8_t frequency_shifts = 0;
00049     for (uint8_t i = 31; i > 0; --i) {
00050         if ((1U << i) == frequency) {
00051             frequency_shifts = i;
00052             break;
00053         }
00054     }
00055 
00056     uint32_t bits = info->bits;
00057     if ((info->bits > 32) || (info->bits < 4)) {
00058         MBED_ASSERT(0);
00059         bits = 32;
00060     }
00061     uint32_t max_delta = 0x7 << (bits - 4); // 7/16th
00062     uint64_t max_delta_us =
00063         ((uint64_t)max_delta * 1000000 + frequency - 1) / frequency;
00064 
00065     ticker->queue->event_handler = NULL;
00066     ticker->queue->head = NULL;
00067     ticker->queue->tick_last_read = ticker->interface->read();
00068     ticker->queue->tick_remainder = 0;
00069     ticker->queue->frequency = frequency;
00070     ticker->queue->frequency_shifts = frequency_shifts;
00071     ticker->queue->bitmask = ((uint64_t)1 << bits) - 1;
00072     ticker->queue->max_delta = max_delta;
00073     ticker->queue->max_delta_us = max_delta_us;
00074     ticker->queue->present_time = 0;
00075     ticker->queue->dispatching = false;
00076     ticker->queue->suspended = false;
00077     ticker->queue->initialized = true;
00078 
00079     update_present_time(ticker);
00080     schedule_interrupt(ticker);
00081 }
00082 
00083 /**
00084  * Set the event handler function of a ticker instance.
00085  */
00086 static void set_handler(const ticker_data_t *const ticker, ticker_event_handler handler)
00087 {
00088     ticker->queue->event_handler = handler;
00089 }
00090 
00091 /*
00092  * Convert a 32 bit timestamp into a 64 bit timestamp.
00093  *
00094  * A 64 bit timestamp is used as the point of time of reference while the
00095  * timestamp to convert is relative to this point of time.
00096  *
00097  * The lower 32 bits of the timestamp returned will be equal to the timestamp to
00098  * convert.
00099  *
00100  * If the timestamp to convert is less than the lower 32 bits of the time
00101  * reference then the timestamp to convert is seen as an overflowed value and
00102  * the upper 32 bit of the timestamp returned will be equal to the upper 32 bit
00103  * of the reference point + 1.
00104  * Otherwise, the upper 32 bit returned will be equal to the upper 32 bit of the
00105  * reference point.
00106  *
00107  * @param ref: The 64 bit timestamp of reference.
00108  * @param timestamp: The timestamp to convert.
00109  */
00110 static us_timestamp_t convert_timestamp(us_timestamp_t ref, timestamp_t timestamp)
00111 {
00112     bool overflow = timestamp < ((timestamp_t) ref) ? true : false;
00113 
00114     us_timestamp_t result = (ref & ~((us_timestamp_t)UINT32_MAX)) | timestamp;
00115     if (overflow) {
00116         result += (1ULL << 32);
00117     }
00118 
00119     return result;
00120 }
00121 
00122 /**
00123  * Update the present timestamp value of a ticker.
00124  */
00125 static void update_present_time(const ticker_data_t *const ticker)
00126 {
00127     ticker_event_queue_t *queue = ticker->queue;
00128     if (queue->suspended) {
00129         return;
00130     }
00131     uint32_t ticker_time = ticker->interface->read();
00132     if (ticker_time == ticker->queue->tick_last_read) {
00133         // No work to do
00134         return;
00135     }
00136 
00137     uint64_t elapsed_ticks = (ticker_time - queue->tick_last_read) & queue->bitmask;
00138     queue->tick_last_read = ticker_time;
00139 
00140     uint64_t elapsed_us;
00141     if (1000000 == queue->frequency) {
00142         // Optimized for 1MHz
00143 
00144         elapsed_us = elapsed_ticks;
00145     } else if (0 != queue->frequency_shifts) {
00146         // Optimized for frequencies divisible by 2
00147         uint64_t us_x_ticks = elapsed_ticks * 1000000;
00148         elapsed_us = us_x_ticks >> queue->frequency_shifts;
00149 
00150         // Update remainder
00151         queue->tick_remainder += us_x_ticks - (elapsed_us << queue->frequency_shifts);
00152         if (queue->tick_remainder >= queue->frequency) {
00153             elapsed_us += 1;
00154             queue->tick_remainder -= queue->frequency;
00155         }
00156     } else {
00157         // General case
00158 
00159         uint64_t us_x_ticks = elapsed_ticks * 1000000;
00160         elapsed_us = us_x_ticks / queue->frequency;
00161 
00162         // Update remainder
00163         queue->tick_remainder += us_x_ticks - elapsed_us * queue->frequency;
00164         if (queue->tick_remainder >= queue->frequency) {
00165             elapsed_us += 1;
00166             queue->tick_remainder -= queue->frequency;
00167         }
00168     }
00169 
00170     // Update current time
00171     queue->present_time += elapsed_us;
00172 }
00173 
00174 /**
00175  * Given the absolute timestamp compute the hal tick timestamp rounded up.
00176  */
00177 static timestamp_t compute_tick_round_up(const ticker_data_t *const ticker, us_timestamp_t timestamp)
00178 {
00179     ticker_event_queue_t *queue = ticker->queue;
00180     us_timestamp_t delta_us = timestamp - queue->present_time;
00181 
00182     timestamp_t delta = ticker->queue->max_delta;
00183     if (delta_us <=  ticker->queue->max_delta_us) {
00184         // Checking max_delta_us ensures the operation will not overflow
00185 
00186         if (1000000 == queue->frequency) {
00187             // Optimized for 1MHz
00188 
00189             delta = delta_us;
00190             if (delta > ticker->queue->max_delta) {
00191                 delta = ticker->queue->max_delta;
00192             }
00193         } else if (0 != queue->frequency_shifts) {
00194             // Optimized frequencies divisible by 2
00195 
00196             delta = ((delta_us << ticker->queue->frequency_shifts) + 1000000 - 1) / 1000000;
00197             if (delta > ticker->queue->max_delta) {
00198                 delta = ticker->queue->max_delta;
00199             }
00200         } else {
00201             // General case
00202 
00203             delta = (delta_us * queue->frequency + 1000000 - 1) / 1000000;
00204             if (delta > ticker->queue->max_delta) {
00205                 delta = ticker->queue->max_delta;
00206             }
00207         }
00208     }
00209     return (queue->tick_last_read + delta) & queue->bitmask;
00210 }
00211 
00212 /**
00213  * Return 1 if the tick has incremented to or past match_tick, otherwise 0.
00214  */
00215 int _ticker_match_interval_passed(timestamp_t prev_tick, timestamp_t cur_tick, timestamp_t match_tick)
00216 {
00217     if (match_tick > prev_tick) {
00218         return (cur_tick >= match_tick) || (cur_tick < prev_tick);
00219     } else {
00220         return (cur_tick < prev_tick) && (cur_tick >= match_tick);
00221     }
00222 }
00223 
00224 /**
00225  * Compute the time when the interrupt has to be triggered and schedule it.
00226  *
00227  * If there is no event in the queue or the next event to execute is in more
00228  * than ticker.queue.max_delta ticks from now then the ticker irq will be
00229  * scheduled in ticker.queue.max_delta ticks. Otherwise the irq will be
00230  * scheduled to happen when the running counter reach the timestamp of the
00231  * first event in the queue.
00232  *
00233  * @note If there is no event in the queue then the interrupt is scheduled to
00234  * in ticker.queue.max_delta. This is necessary to keep track
00235  * of the timer overflow.
00236  */
00237 static void schedule_interrupt(const ticker_data_t *const ticker)
00238 {
00239     ticker_event_queue_t *queue = ticker->queue;
00240     if (queue->suspended || ticker->queue->dispatching) {
00241         // Don't schedule the next interrupt until dispatching is
00242         // finished. This prevents repeated calls to interface->set_interrupt
00243         return;
00244     }
00245 
00246     update_present_time(ticker);
00247 
00248     if (ticker->queue->head) {
00249         us_timestamp_t present = ticker->queue->present_time;
00250         us_timestamp_t match_time = ticker->queue->head->timestamp;
00251 
00252         // if the event at the head of the queue is in the past then schedule
00253         // it immediately.
00254         if (match_time <= present) {
00255             ticker->interface->fire_interrupt();
00256             return;
00257         }
00258 
00259         timestamp_t match_tick = compute_tick_round_up(ticker, match_time);
00260 
00261         // The same tick should never occur since match_tick is rounded up.
00262         // If the same tick is returned scheduling will not work correctly.
00263         MBED_ASSERT(match_tick != queue->tick_last_read);
00264 
00265         ticker->interface->set_interrupt(match_tick);
00266         timestamp_t cur_tick = ticker->interface->read();
00267 
00268         if (_ticker_match_interval_passed(queue->tick_last_read, cur_tick, match_tick)) {
00269             ticker->interface->fire_interrupt();
00270         }
00271     } else {
00272         uint32_t match_tick =
00273             (queue->tick_last_read + queue->max_delta) & queue->bitmask;
00274         ticker->interface->set_interrupt(match_tick);
00275     }
00276 }
00277 
00278 void ticker_set_handler(const ticker_data_t *const ticker, ticker_event_handler handler)
00279 {
00280     initialize(ticker);
00281 
00282     core_util_critical_section_enter();
00283     set_handler(ticker, handler);
00284     core_util_critical_section_exit();
00285 }
00286 
00287 void ticker_irq_handler(const ticker_data_t *const ticker)
00288 {
00289     core_util_critical_section_enter();
00290 
00291     ticker->interface->clear_interrupt();
00292     if (ticker->queue->suspended) {
00293         core_util_critical_section_exit();
00294         return;
00295     }
00296 
00297     /* Go through all the pending TimerEvents */
00298     ticker->queue->dispatching = true;
00299     while (1) {
00300         if (ticker->queue->head == NULL) {
00301             break;
00302         }
00303 
00304         // update the current timestamp used by the queue
00305         update_present_time(ticker);
00306 
00307         if (ticker->queue->head->timestamp <= ticker->queue->present_time) {
00308             // This event was in the past:
00309             //      point to the following one and execute its handler
00310             ticker_event_t *p = ticker->queue->head;
00311             ticker->queue->head = ticker->queue->head->next;
00312             if (ticker->queue->event_handler != NULL) {
00313                 (*ticker->queue->event_handler)(p->id); // NOTE: the handler can set new events
00314             }
00315             /* Note: We continue back to examining the head because calling the
00316              * event handler may have altered the chain of pending events. */
00317         } else {
00318             break;
00319         }
00320     }
00321     ticker->queue->dispatching = false;
00322 
00323     schedule_interrupt(ticker);
00324 
00325     core_util_critical_section_exit();
00326 }
00327 
00328 void ticker_insert_event(const ticker_data_t *const ticker, ticker_event_t *obj, timestamp_t timestamp, uint32_t id)
00329 {
00330     core_util_critical_section_enter();
00331 
00332     // update the current timestamp
00333     update_present_time(ticker);
00334     us_timestamp_t absolute_timestamp = convert_timestamp(
00335                                             ticker->queue->present_time,
00336                                             timestamp
00337                                         );
00338 
00339     // defer to ticker_insert_event_us
00340     ticker_insert_event_us(
00341         ticker,
00342         obj, absolute_timestamp, id
00343     );
00344 
00345     core_util_critical_section_exit();
00346 }
00347 
00348 void ticker_insert_event_us(const ticker_data_t *const ticker, ticker_event_t *obj, us_timestamp_t timestamp, uint32_t id)
00349 {
00350     core_util_critical_section_enter();
00351 
00352     // update the current timestamp
00353     update_present_time(ticker);
00354 
00355     // initialise our data
00356     obj->timestamp = timestamp;
00357     obj->id = id;
00358 
00359     /* Go through the list until we either reach the end, or find
00360        an element this should come before (which is possibly the
00361        head). */
00362     ticker_event_t *prev = NULL, *p = ticker->queue->head;
00363     while (p != NULL) {
00364         /* check if we come before p */
00365         if (timestamp < p->timestamp) {
00366             break;
00367         }
00368         /* go to the next element */
00369         prev = p;
00370         p = p->next;
00371     }
00372 
00373     /* if we're at the end p will be NULL, which is correct */
00374     obj->next = p;
00375 
00376     /* if prev is NULL we're at the head */
00377     if (prev == NULL) {
00378         ticker->queue->head = obj;
00379         schedule_interrupt(ticker);
00380     } else {
00381         prev->next = obj;
00382     }
00383 
00384     core_util_critical_section_exit();
00385 }
00386 
00387 void ticker_remove_event(const ticker_data_t *const ticker, ticker_event_t *obj)
00388 {
00389     core_util_critical_section_enter();
00390 
00391     // remove this object from the list
00392     if (ticker->queue->head == obj) {
00393         // first in the list, so just drop me
00394         ticker->queue->head = obj->next;
00395         schedule_interrupt(ticker);
00396     } else {
00397         // find the object before me, then drop me
00398         ticker_event_t *p = ticker->queue->head;
00399         while (p != NULL) {
00400             if (p->next == obj) {
00401                 p->next = obj->next;
00402                 break;
00403             }
00404             p = p->next;
00405         }
00406     }
00407 
00408     core_util_critical_section_exit();
00409 }
00410 
00411 timestamp_t ticker_read(const ticker_data_t *const ticker)
00412 {
00413     return ticker_read_us(ticker);
00414 }
00415 
00416 us_timestamp_t ticker_read_us(const ticker_data_t *const ticker)
00417 {
00418     initialize(ticker);
00419 
00420     core_util_critical_section_enter();
00421     update_present_time(ticker);
00422     core_util_critical_section_exit();
00423 
00424     return ticker->queue->present_time;
00425 }
00426 
00427 int ticker_get_next_timestamp(const ticker_data_t *const data, timestamp_t *timestamp)
00428 {
00429     int ret = 0;
00430 
00431     /* if head is NULL, there are no pending events */
00432     core_util_critical_section_enter();
00433     if (data->queue->head != NULL) {
00434         *timestamp = data->queue->head->timestamp;
00435         ret = 1;
00436     }
00437     core_util_critical_section_exit();
00438 
00439     return ret;
00440 }
00441 
00442 void ticker_suspend(const ticker_data_t *const ticker)
00443 {
00444     core_util_critical_section_enter();
00445 
00446     ticker->queue->suspended = true;
00447 
00448     core_util_critical_section_exit();
00449 }
00450 
00451 void ticker_resume(const ticker_data_t *const ticker)
00452 {
00453     core_util_critical_section_enter();
00454 
00455     ticker->queue->suspended = false;
00456     if (ticker->queue->initialized) {
00457         ticker->queue->tick_last_read = ticker->interface->read();
00458 
00459         update_present_time(ticker);
00460         schedule_interrupt(ticker);
00461     } else {
00462         initialize(ticker);
00463     }
00464 
00465     core_util_critical_section_exit();
00466 }