takashi kadono / Mbed OS Nucleo_446

Dependencies:   ssd1331

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers Thread.cpp Source File

Thread.cpp

00001 /* mbed Microcontroller Library
00002  * Copyright (c) 2006-2012 ARM Limited
00003  *
00004  * Permission is hereby granted, free of charge, to any person obtaining a copy
00005  * of this software and associated documentation files (the "Software"), to deal
00006  * in the Software without restriction, including without limitation the rights
00007  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
00008  * copies of the Software, and to permit persons to whom the Software is
00009  * furnished to do so, subject to the following conditions:
00010  *
00011  * The above copyright notice and this permission notice shall be included in
00012  * all copies or substantial portions of the Software.
00013  *
00014  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
00015  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
00016  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
00017  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
00018  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00019  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
00020  * SOFTWARE.
00021  */
00022 #include "rtos/Thread.h"
00023 #include "rtos/ThisThread.h"
00024 
00025 #include "mbed.h"
00026 #include "rtos/rtos_idle.h"
00027 #include "rtos/rtos_handlers.h"
00028 #include "mbed_assert.h"
00029 
00030 #define ALIGN_UP(pos, align) ((pos) % (align) ? (pos) +  ((align) - (pos) % (align)) : (pos))
00031 MBED_STATIC_ASSERT(ALIGN_UP(0, 8) == 0, "ALIGN_UP macro error");
00032 MBED_STATIC_ASSERT(ALIGN_UP(1, 8) == 8, "ALIGN_UP macro error");
00033 
00034 #define ALIGN_DOWN(pos, align) ((pos) - ((pos) % (align)))
00035 MBED_STATIC_ASSERT(ALIGN_DOWN(7, 8) == 0, "ALIGN_DOWN macro error");
00036 MBED_STATIC_ASSERT(ALIGN_DOWN(8, 8) == 8, "ALIGN_DOWN macro error");
00037 
00038 namespace rtos {
00039 
00040 #ifndef MBED_TZ_DEFAULT_ACCESS
00041 #define MBED_TZ_DEFAULT_ACCESS   0
00042 #endif
00043 
00044 void Thread::constructor(uint32_t tz_module, osPriority priority,
00045                          uint32_t stack_size, unsigned char *stack_mem, const char *name)
00046 {
00047 
00048     const uintptr_t unaligned_mem = reinterpret_cast<uintptr_t>(stack_mem);
00049     const uintptr_t aligned_mem = ALIGN_UP(unaligned_mem, 8);
00050     const uint32_t offset = aligned_mem - unaligned_mem;
00051     const uint32_t aligned_size = ALIGN_DOWN(stack_size - offset, 8);
00052 
00053     _tid = 0;
00054     _dynamic_stack = (stack_mem == NULL);
00055     _finished = false;
00056     memset(&_obj_mem, 0, sizeof(_obj_mem));
00057     memset(&_attr, 0, sizeof(_attr));
00058     _attr.priority = priority;
00059     _attr.stack_size = aligned_size;
00060     _attr.name = name ? name : "application_unnamed_thread";
00061     _attr.stack_mem = reinterpret_cast<uint32_t *>(aligned_mem);
00062     _attr.tz_module = tz_module;
00063 }
00064 
00065 void Thread::constructor(osPriority priority,
00066                          uint32_t stack_size, unsigned char *stack_mem, const char *name)
00067 {
00068     constructor(MBED_TZ_DEFAULT_ACCESS, priority, stack_size, stack_mem, name);
00069 }
00070 
00071 void Thread::constructor(Callback<void()> task,
00072                          osPriority priority, uint32_t stack_size, unsigned char *stack_mem, const char *name)
00073 {
00074     constructor(MBED_TZ_DEFAULT_ACCESS, priority, stack_size, stack_mem, name);
00075 
00076     switch (start(task)) {
00077         case osErrorResource:
00078             MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_OUT_OF_RESOURCES), "OS ran out of threads!\n", task);
00079             break;
00080         case osErrorParameter:
00081             MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_ALREADY_IN_USE), "Thread already running!\n", task);
00082             break;
00083         case osErrorNoMemory:
00084             MBED_ERROR1(MBED_MAKE_ERROR(MBED_MODULE_PLATFORM, MBED_ERROR_CODE_OUT_OF_MEMORY), "Error allocating the stack memory\n", task);
00085         default:
00086             break;
00087     }
00088 }
00089 
00090 osStatus Thread::start(Callback<void()> task)
00091 {
00092     _mutex.lock();
00093 
00094     if ((_tid != 0) || _finished) {
00095         _mutex.unlock();
00096         return osErrorParameter;
00097     }
00098 
00099     if (_attr.stack_mem == NULL) {
00100         _attr.stack_mem = new uint32_t[_attr.stack_size / sizeof(uint32_t)];
00101         MBED_ASSERT(_attr.stack_mem != NULL);
00102     }
00103 
00104     //Fill the stack with a magic word for maximum usage checking
00105     for (uint32_t i = 0; i < (_attr.stack_size / sizeof(uint32_t)); i++) {
00106         ((uint32_t *)_attr.stack_mem)[i] = osRtxStackMagicWord;
00107     }
00108 
00109     memset(&_obj_mem, 0, sizeof(_obj_mem));
00110     _attr.cb_size = sizeof(_obj_mem);
00111     _attr.cb_mem = &_obj_mem;
00112     _task = task;
00113     _tid = osThreadNew(Thread::_thunk, this, &_attr);
00114     if (_tid == NULL) {
00115         if (_dynamic_stack) {
00116             delete[](uint32_t *)(_attr.stack_mem);
00117             _attr.stack_mem = (uint32_t *)NULL;
00118         }
00119         _mutex.unlock();
00120         _join_sem.release();
00121         return osErrorResource;
00122     }
00123 
00124     _mutex.unlock();
00125     return osOK;
00126 }
00127 
00128 osStatus Thread::terminate()
00129 {
00130     osStatus_t ret = osOK;
00131     _mutex.lock();
00132 
00133     // Set the Thread's tid to NULL and
00134     // release the semaphore before terminating
00135     // since this thread could be terminating itself
00136     osThreadId_t local_id = _tid;
00137     _join_sem.release();
00138     _tid = (osThreadId_t)NULL;
00139     if (!_finished) {
00140         _finished = true;
00141         // if local_id == 0 Thread was not started in first place
00142         // and does not have to be terminated
00143         if (local_id != 0) {
00144             ret = osThreadTerminate(local_id);
00145         }
00146     }
00147     _mutex.unlock();
00148     return ret;
00149 }
00150 
00151 osStatus Thread::join()
00152 {
00153     int32_t ret = _join_sem.wait();
00154     if (ret < 0) {
00155         return osError;
00156     }
00157 
00158     // The semaphore has been released so this thread is being
00159     // terminated or has been terminated. Once the mutex has
00160     // been locked it is ensured that the thread is deleted.
00161     _mutex.lock();
00162     MBED_ASSERT(NULL == _tid);
00163     _mutex.unlock();
00164 
00165     // Release sem so any other threads joining this thread wake up
00166     _join_sem.release();
00167     return osOK;
00168 }
00169 
00170 osStatus Thread::set_priority(osPriority priority)
00171 {
00172     osStatus_t ret;
00173     _mutex.lock();
00174 
00175     ret = osThreadSetPriority(_tid, priority);
00176 
00177     _mutex.unlock();
00178     return ret;
00179 }
00180 
00181 osPriority Thread::get_priority() const
00182 {
00183     osPriority_t ret;
00184     _mutex.lock();
00185 
00186     ret = osThreadGetPriority(_tid);
00187 
00188     _mutex.unlock();
00189     return ret;
00190 }
00191 
00192 uint32_t Thread::flags_set(uint32_t flags)
00193 {
00194     flags = osThreadFlagsSet(_tid, flags);
00195     MBED_ASSERT(!(flags & osFlagsError));
00196     return flags;
00197 }
00198 
00199 int32_t Thread::signal_set(int32_t flags)
00200 {
00201     return osThreadFlagsSet(_tid, flags);
00202 }
00203 
00204 Thread::State Thread::get_state() const
00205 {
00206     uint8_t state = osThreadTerminated;
00207 
00208     _mutex.lock();
00209 
00210     if (_tid != NULL) {
00211 #if defined(MBED_OS_BACKEND_RTX5)
00212         state = _obj_mem.state;
00213 #else
00214         state = osThreadGetState(_tid);
00215 #endif
00216     }
00217 
00218     _mutex.unlock();
00219 
00220     State user_state;
00221 
00222     switch (state) {
00223         case osThreadInactive:
00224             user_state = Inactive;
00225             break;
00226         case osThreadReady:
00227             user_state = Ready;
00228             break;
00229         case osThreadRunning:
00230             user_state = Running;
00231             break;
00232 #if defined(MBED_OS_BACKEND_RTX5)
00233         case osRtxThreadWaitingDelay:
00234             user_state = WaitingDelay;
00235             break;
00236         case osRtxThreadWaitingJoin:
00237             user_state = WaitingJoin;
00238             break;
00239         case osRtxThreadWaitingThreadFlags:
00240             user_state = WaitingThreadFlag;
00241             break;
00242         case osRtxThreadWaitingEventFlags:
00243             user_state = WaitingEventFlag;
00244             break;
00245         case osRtxThreadWaitingMutex:
00246             user_state = WaitingMutex;
00247             break;
00248         case osRtxThreadWaitingSemaphore:
00249             user_state = WaitingSemaphore;
00250             break;
00251         case osRtxThreadWaitingMemoryPool:
00252             user_state = WaitingMemoryPool;
00253             break;
00254         case osRtxThreadWaitingMessageGet:
00255             user_state = WaitingMessageGet;
00256             break;
00257         case osRtxThreadWaitingMessagePut:
00258             user_state = WaitingMessagePut;
00259             break;
00260 #endif
00261         case osThreadTerminated:
00262         default:
00263             user_state = Deleted;
00264             break;
00265     }
00266 
00267     return user_state;
00268 }
00269 
00270 uint32_t Thread::stack_size() const
00271 {
00272     uint32_t size = 0;
00273     _mutex.lock();
00274 
00275     if (_tid != NULL) {
00276         size = osThreadGetStackSize(_tid);
00277     }
00278 
00279     _mutex.unlock();
00280     return size;
00281 }
00282 
00283 uint32_t Thread::free_stack() const
00284 {
00285     uint32_t size = 0;
00286     _mutex.lock();
00287 
00288 #if defined(MBED_OS_BACKEND_RTX5)
00289     if (_tid != NULL) {
00290         mbed_rtos_storage_thread_t *thread = (mbed_rtos_storage_thread_t *)_tid;
00291         size = (uint32_t)thread->sp - (uint32_t)thread->stack_mem;
00292     }
00293 #endif
00294 
00295     _mutex.unlock();
00296     return size;
00297 }
00298 
00299 uint32_t Thread::used_stack() const
00300 {
00301     uint32_t size = 0;
00302     _mutex.lock();
00303 
00304 #if defined(MBED_OS_BACKEND_RTX5)
00305     if (_tid != NULL) {
00306         mbed_rtos_storage_thread_t *thread = (mbed_rtos_storage_thread_t *)_tid;
00307         size = ((uint32_t)thread->stack_mem + thread->stack_size) - thread->sp;
00308     }
00309 #endif
00310 
00311     _mutex.unlock();
00312     return size;
00313 }
00314 
00315 uint32_t Thread::max_stack() const
00316 {
00317     uint32_t size = 0;
00318     _mutex.lock();
00319 
00320     if (_tid != NULL) {
00321 #if defined(MBED_OS_BACKEND_RTX5)
00322         mbed_rtos_storage_thread_t *thread = (mbed_rtos_storage_thread_t *)_tid;
00323         uint32_t high_mark = 0;
00324         while ((((uint32_t *)(thread->stack_mem))[high_mark] == osRtxStackMagicWord) || (((uint32_t *)(thread->stack_mem))[high_mark] == osRtxStackFillPattern)) {
00325             high_mark++;
00326         }
00327         size = thread->stack_size - (high_mark * sizeof(uint32_t));
00328 #else
00329         size = osThreadGetStackSize(_tid) - osThreadGetStackSpace(_tid);
00330 #endif
00331     }
00332 
00333     _mutex.unlock();
00334     return size;
00335 }
00336 
00337 const char *Thread::get_name() const
00338 {
00339     return _attr.name;
00340 }
00341 
00342 osThreadId_t Thread::get_id() const
00343 {
00344     return _tid;
00345 }
00346 
00347 int32_t Thread::signal_clr(int32_t flags)
00348 {
00349     return osThreadFlagsClear(flags);
00350 }
00351 
00352 osEvent Thread::signal_wait(int32_t signals, uint32_t millisec)
00353 {
00354     uint32_t res;
00355     osEvent evt;
00356     uint32_t options = osFlagsWaitAll;
00357     if (signals == 0) {
00358         options = osFlagsWaitAny;
00359         signals = 0x7FFFFFFF;
00360     }
00361     res = osThreadFlagsWait(signals, options, millisec);
00362     if (res & osFlagsError) {
00363         switch (res) {
00364             case osFlagsErrorISR:
00365                 evt.status = osErrorISR;
00366                 break;
00367             case osFlagsErrorResource:
00368                 evt.status = osOK;
00369                 break;
00370             case osFlagsErrorTimeout:
00371                 evt.status = (osStatus)osEventTimeout;
00372                 break;
00373             case osFlagsErrorParameter:
00374             default:
00375                 evt.status = (osStatus)osErrorValue;
00376                 break;
00377         }
00378     } else {
00379         evt.status = (osStatus)osEventSignal;
00380         evt.value.signals = res;
00381     }
00382 
00383     return evt;
00384 }
00385 
00386 osStatus Thread::wait(uint32_t millisec)
00387 {
00388     ThisThread::sleep_for(millisec);
00389     return osOK;
00390 }
00391 
00392 osStatus Thread::wait_until(uint64_t millisec)
00393 {
00394     ThisThread::sleep_until(millisec);
00395     return osOK;
00396 }
00397 
00398 osStatus Thread::yield()
00399 {
00400     return osThreadYield();
00401 }
00402 
00403 osThreadId Thread::gettid()
00404 {
00405     return osThreadGetId();
00406 }
00407 
00408 void Thread::attach_idle_hook(void (*fptr)(void))
00409 {
00410     rtos_attach_idle_hook (fptr);
00411 }
00412 
00413 void Thread::attach_terminate_hook(void (*fptr)(osThreadId_t id))
00414 {
00415     rtos_attach_thread_terminate_hook (fptr);
00416 }
00417 
00418 Thread::~Thread()
00419 {
00420     // terminate is thread safe
00421     terminate();
00422     if (_dynamic_stack) {
00423         delete[](uint32_t *)(_attr.stack_mem);
00424         _attr.stack_mem = (uint32_t *)NULL;
00425     }
00426 }
00427 
00428 void Thread::_thunk(void *thread_ptr)
00429 {
00430     Thread *t = (Thread *)thread_ptr;
00431     t->_task();
00432     t->_mutex.lock();
00433     t->_tid = (osThreadId)NULL;
00434     t->_finished = true;
00435     t->_join_sem.release();
00436     // rtos will release the mutex automatically
00437 }
00438 
00439 }