takashi kadono
/
Nucleo446_SSD1331
Color Oled(SSD1331) connect to STMicroelectronics Nucleo-F466
mbed-os/targets/TARGET_STM/can_api.c
- Committer:
- kadonotakashi
- Date:
- 2018-10-11
- Revision:
- 3:f3764f852aa8
- Parent:
- 0:8fdf9a60065b
File content as of revision 3:f3764f852aa8:
/* mbed Microcontroller Library * Copyright (c) 2006-2017 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "can_api.h" #if DEVICE_CAN #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" #include "mbed_error.h" #include "can_device.h" // Specific to STM32 serie #include <math.h> #include <string.h> static uint32_t can_irq_ids[CAN_NUM] = {0}; static can_irq_handler irq_handler; static void can_registers_init(can_t *obj) { if (HAL_CAN_Init(&obj->CanHandle) != HAL_OK) { error("Cannot initialize CAN"); } // Set initial CAN frequency to specified frequency if (can_frequency(obj, obj->hz) != 1) { error("Can frequency could not be set\n"); } } void can_init(can_t *obj, PinName rd, PinName td) { can_init_freq(obj, rd, td, 100000); } void can_init_freq(can_t *obj, PinName rd, PinName td, int hz) { CANName can_rd = (CANName)pinmap_peripheral(rd, PinMap_CAN_RD); CANName can_td = (CANName)pinmap_peripheral(td, PinMap_CAN_TD); CANName can = (CANName)pinmap_merge(can_rd, can_td); MBED_ASSERT((int)can != NC); if (can == CAN_1) { __HAL_RCC_CAN1_CLK_ENABLE(); obj->index = 0; } #if defined(CAN2_BASE) && (CAN_NUM > 1) else if (can == CAN_2) { __HAL_RCC_CAN1_CLK_ENABLE(); // needed to set filters __HAL_RCC_CAN2_CLK_ENABLE(); obj->index = 1; } #endif #if defined(CAN3_BASE) && (CAN_NUM > 2) else if (can == CAN_3) { __HAL_RCC_CAN3_CLK_ENABLE(); obj->index = 2; } #endif else { return; } // Configure the CAN pins pinmap_pinout(rd, PinMap_CAN_RD); pinmap_pinout(td, PinMap_CAN_TD); if (rd != NC) { pin_mode(rd, PullUp); } if (td != NC) { pin_mode(td, PullUp); } /* Use default values for rist init */ obj->CanHandle.Instance = (CAN_TypeDef *)can; obj->CanHandle.Init.TTCM = DISABLE; obj->CanHandle.Init.ABOM = DISABLE; obj->CanHandle.Init.AWUM = DISABLE; obj->CanHandle.Init.NART = DISABLE; obj->CanHandle.Init.RFLM = DISABLE; obj->CanHandle.Init.TXFP = DISABLE; obj->CanHandle.Init.Mode = CAN_MODE_NORMAL; obj->CanHandle.Init.SJW = CAN_SJW_1TQ; obj->CanHandle.Init.BS1 = CAN_BS1_6TQ; obj->CanHandle.Init.BS2 = CAN_BS2_8TQ; obj->CanHandle.Init.Prescaler = 2; /* Store frequency to be restored in case of reset */ obj->hz = hz; can_registers_init(obj); /* Bits 27:14 are available for dual CAN configuration and are reserved for single CAN configuration: */ #if defined(CAN3_BASE) && (CAN_NUM > 2) uint32_t filter_number = (can == CAN_1 || can == CAN_3) ? 0 : 14; #else uint32_t filter_number = (can == CAN_1) ? 0 : 14; #endif can_filter(obj, 0, 0, CANStandard, filter_number); } void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) { irq_handler = handler; can_irq_ids[obj->index] = id; } void can_irq_free(can_t *obj) { CAN_TypeDef *can = obj->CanHandle.Instance; can->IER &= ~(CAN_IT_FMP0 | CAN_IT_FMP1 | CAN_IT_TME | \ CAN_IT_ERR | CAN_IT_EPV | CAN_IT_BOF); can_irq_ids[obj->index] = 0; } void can_free(can_t *obj) { CANName can = (CANName) obj->CanHandle.Instance; // Reset CAN and disable clock if (can == CAN_1) { __HAL_RCC_CAN1_FORCE_RESET(); __HAL_RCC_CAN1_RELEASE_RESET(); __HAL_RCC_CAN1_CLK_DISABLE(); } #if defined(CAN2_BASE) && (CAN_NUM > 1) if (can == CAN_2) { __HAL_RCC_CAN2_FORCE_RESET(); __HAL_RCC_CAN2_RELEASE_RESET(); __HAL_RCC_CAN2_CLK_DISABLE(); } #endif #if defined(CAN3_BASE) && (CAN_NUM > 2) if (can == CAN_3) { __HAL_RCC_CAN3_FORCE_RESET(); __HAL_RCC_CAN3_RELEASE_RESET(); __HAL_RCC_CAN3_CLK_DISABLE(); } #endif } // The following table is used to program bit_timing. It is an adjustment of the sample // point by synchronizing on the start-bit edge and resynchronizing on the following edges. // This table has the sampling points as close to 75% as possible (most commonly used). // The first value is TSEG1, the second TSEG2. static const int timing_pts[23][2] = { {0x0, 0x0}, // 2, 50% {0x1, 0x0}, // 3, 67% {0x2, 0x0}, // 4, 75% {0x3, 0x0}, // 5, 80% {0x3, 0x1}, // 6, 67% {0x4, 0x1}, // 7, 71% {0x5, 0x1}, // 8, 75% {0x6, 0x1}, // 9, 78% {0x6, 0x2}, // 10, 70% {0x7, 0x2}, // 11, 73% {0x8, 0x2}, // 12, 75% {0x9, 0x2}, // 13, 77% {0x9, 0x3}, // 14, 71% {0xA, 0x3}, // 15, 73% {0xB, 0x3}, // 16, 75% {0xC, 0x3}, // 17, 76% {0xD, 0x3}, // 18, 78% {0xD, 0x4}, // 19, 74% {0xE, 0x4}, // 20, 75% {0xF, 0x4}, // 21, 76% {0xF, 0x5}, // 22, 73% {0xF, 0x6}, // 23, 70% {0xF, 0x7}, // 24, 67% }; static unsigned int can_speed(unsigned int pclk, unsigned int cclk, unsigned char psjw) { uint32_t btr; uint16_t brp = 0; uint32_t calcbit; uint32_t bitwidth; int hit = 0; int bits; bitwidth = (pclk / cclk); brp = bitwidth / 0x18; while ((!hit) && (brp < bitwidth / 4)) { brp++; for (bits = 22; bits > 0; bits--) { calcbit = (bits + 3) * (brp + 1); if (calcbit == bitwidth) { hit = 1; break; } } } if (hit) { btr = ((timing_pts[bits][1] << CAN_BTR_TS2_Pos) & CAN_BTR_TS2) | ((timing_pts[bits][0] << CAN_BTR_TS1_Pos) & CAN_BTR_TS1) | ((psjw << CAN_BTR_SJW_Pos) & CAN_BTR_SJW) | ((brp << CAN_BTR_BRP_Pos) & CAN_BTR_BRP); } else { btr = 0xFFFFFFFF; } return btr; } int can_frequency(can_t *obj, int f) { int pclk = HAL_RCC_GetPCLK1Freq(); int btr = can_speed(pclk, (unsigned int)f, 1); CAN_TypeDef *can = obj->CanHandle.Instance; uint32_t tickstart = 0; int status = 1; if (btr > 0) { can->MCR |= CAN_MCR_INRQ ; /* Get tick */ tickstart = HAL_GetTick(); while ((can->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) { if ((HAL_GetTick() - tickstart) > 2) { status = 0; break; } } if (status != 0) { /* Do not erase all BTR registers (e.g. silent mode), only the * ones calculated in can_speed */ can->BTR &= ~(CAN_BTR_TS2 | CAN_BTR_TS1 | CAN_BTR_SJW | CAN_BTR_BRP); can->BTR |= btr; can->MCR &= ~(uint32_t)CAN_MCR_INRQ; /* Get tick */ tickstart = HAL_GetTick(); while ((can->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) { if ((HAL_GetTick() - tickstart) > 2) { status = 0; break; } } if (status == 0) { error("can ESR 0x%04x.%04x + timeout status %d", (can->ESR & 0xFFFF0000) >> 16, (can->ESR & 0xFFFF), status); } } else { error("can init request timeout\n"); } } else { status = 0; } return status; } int can_write(can_t *obj, CAN_Message msg, int cc) { uint32_t transmitmailbox = CAN_TXSTATUS_NOMAILBOX; CAN_TypeDef *can = obj->CanHandle.Instance; /* Select one empty transmit mailbox */ if ((can->TSR & CAN_TSR_TME0) == CAN_TSR_TME0) { transmitmailbox = 0; } else if ((can->TSR & CAN_TSR_TME1) == CAN_TSR_TME1) { transmitmailbox = 1; } else if ((can->TSR & CAN_TSR_TME2) == CAN_TSR_TME2) { transmitmailbox = 2; } else { return 0; } can->sTxMailBox[transmitmailbox].TIR &= CAN_TI0R_TXRQ; if (!(msg.format)) { can->sTxMailBox[transmitmailbox].TIR |= ((msg.id << 21) | (msg.type << 1)); } else { can->sTxMailBox[transmitmailbox].TIR |= ((msg.id << 3) | CAN_ID_EXT | (msg.type << 1)); } /* Set up the DLC */ can->sTxMailBox[transmitmailbox].TDTR &= (uint32_t)0xFFFFFFF0; can->sTxMailBox[transmitmailbox].TDTR |= (msg.len & (uint8_t)0x0000000F); /* Set up the data field */ can->sTxMailBox[transmitmailbox].TDLR = (((uint32_t)msg.data[3] << 24) | ((uint32_t)msg.data[2] << 16) | ((uint32_t)msg.data[1] << 8) | ((uint32_t)msg.data[0])); can->sTxMailBox[transmitmailbox].TDHR = (((uint32_t)msg.data[7] << 24) | ((uint32_t)msg.data[6] << 16) | ((uint32_t)msg.data[5] << 8) | ((uint32_t)msg.data[4])); /* Request transmission */ can->sTxMailBox[transmitmailbox].TIR |= CAN_TI0R_TXRQ; return 1; } int can_read(can_t *obj, CAN_Message *msg, int handle) { //handle is the FIFO number CAN_TypeDef *can = obj->CanHandle.Instance; // check FPM0 which holds the pending message count in FIFO 0 // if no message is pending, return 0 if ((can->RF0R & CAN_RF0R_FMP0) == 0) { return 0; } /* Get the Id */ msg->format = (CANFormat)(((uint8_t)0x04 & can->sFIFOMailBox[handle].RIR) >> 2); if (!msg->format) { msg->id = (uint32_t)0x000007FF & (can->sFIFOMailBox[handle].RIR >> 21); } else { msg->id = (uint32_t)0x1FFFFFFF & (can->sFIFOMailBox[handle].RIR >> 3); } msg->type = (CANType)(((uint8_t)0x02 & can->sFIFOMailBox[handle].RIR) >> 1); /* Get the DLC */ msg->len = (uint8_t)0x0F & can->sFIFOMailBox[handle].RDTR; /* Get the FMI */ // msg->FMI = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDTR >> 8); /* Get the data field */ msg->data[0] = (uint8_t)0xFF & can->sFIFOMailBox[handle].RDLR; msg->data[1] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDLR >> 8); msg->data[2] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDLR >> 16); msg->data[3] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDLR >> 24); msg->data[4] = (uint8_t)0xFF & can->sFIFOMailBox[handle].RDHR; msg->data[5] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDHR >> 8); msg->data[6] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDHR >> 16); msg->data[7] = (uint8_t)0xFF & (can->sFIFOMailBox[handle].RDHR >> 24); /* Release the FIFO */ if (handle == CAN_FIFO0) { /* Release FIFO0 */ can->RF0R |= CAN_RF0R_RFOM0; } else { /* FIFONumber == CAN_FIFO1 */ /* Release FIFO1 */ can->RF1R |= CAN_RF1R_RFOM1; } return 1; } void can_reset(can_t *obj) { CAN_TypeDef *can = obj->CanHandle.Instance; /* Reset IP and delete errors */ can->MCR |= CAN_MCR_RESET; can->ESR = 0x0; /* restore registers state as saved in obj context */ can_registers_init(obj); } unsigned char can_rderror(can_t *obj) { CAN_TypeDef *can = obj->CanHandle.Instance; return (can->ESR >> 24) & 0xFF; } unsigned char can_tderror(can_t *obj) { CAN_TypeDef *can = obj->CanHandle.Instance; return (can->ESR >> 16) & 0xFF; } void can_monitor(can_t *obj, int silent) { CanMode mode = MODE_NORMAL; /* Update current state w/ or w/o silent */ if (silent) { switch (obj->CanHandle.Init.Mode) { case CAN_MODE_LOOPBACK: case CAN_MODE_SILENT_LOOPBACK: mode = MODE_TEST_SILENT; break; default: mode = MODE_SILENT; break; } } else { switch (obj->CanHandle.Init.Mode) { case CAN_MODE_LOOPBACK: case CAN_MODE_SILENT_LOOPBACK: mode = MODE_TEST_LOCAL; break; default: mode = MODE_NORMAL; break; } } can_mode(obj, mode); } int can_mode(can_t *obj, CanMode mode) { int success = 0; CAN_TypeDef *can = obj->CanHandle.Instance; can->MCR |= CAN_MCR_INRQ ; while ((can->MSR & CAN_MSR_INAK) != CAN_MSR_INAK) { } switch (mode) { case MODE_NORMAL: obj->CanHandle.Init.Mode = CAN_MODE_NORMAL; can->BTR &= ~(CAN_BTR_SILM | CAN_BTR_LBKM); success = 1; break; case MODE_SILENT: obj->CanHandle.Init.Mode = CAN_MODE_SILENT; can->BTR |= CAN_BTR_SILM; can->BTR &= ~CAN_BTR_LBKM; success = 1; break; case MODE_TEST_GLOBAL: case MODE_TEST_LOCAL: obj->CanHandle.Init.Mode = CAN_MODE_LOOPBACK; can->BTR |= CAN_BTR_LBKM; can->BTR &= ~CAN_BTR_SILM; success = 1; break; case MODE_TEST_SILENT: obj->CanHandle.Init.Mode = CAN_MODE_SILENT_LOOPBACK; can->BTR |= (CAN_BTR_SILM | CAN_BTR_LBKM); success = 1; break; default: success = 0; break; } can->MCR &= ~(uint32_t)CAN_MCR_INRQ; while ((can->MSR & CAN_MSR_INAK) == CAN_MSR_INAK) { } return success; } int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) { int retval = 0; // filter for CANAny format cannot be configured for STM32 if ((format == CANStandard) || (format == CANExtended)) { CAN_FilterConfTypeDef sFilterConfig; sFilterConfig.FilterNumber = handle; sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK; sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT; if (format == CANStandard) { sFilterConfig.FilterIdHigh = id << 5; sFilterConfig.FilterIdLow = 0x0; sFilterConfig.FilterMaskIdHigh = mask << 5; sFilterConfig.FilterMaskIdLow = 0x0; // allows both remote and data frames } else { // format == CANExtended sFilterConfig.FilterIdHigh = id >> 13; // EXTID[28:13] sFilterConfig.FilterIdLow = (0xFFFF & (id << 3)) | (1 << 2); // EXTID[12:0] + IDE sFilterConfig.FilterMaskIdHigh = mask >> 13; sFilterConfig.FilterMaskIdLow = (0xFFFF & (mask << 3)) | (1 << 2); } sFilterConfig.FilterFIFOAssignment = 0; sFilterConfig.FilterActivation = ENABLE; sFilterConfig.BankNumber = 14 + handle; HAL_CAN_ConfigFilter(&obj->CanHandle, &sFilterConfig); retval = handle; } return retval; } static void can_irq(CANName name, int id) { uint32_t tmp1 = 0, tmp2 = 0, tmp3 = 0; CAN_HandleTypeDef CanHandle; CanHandle.Instance = (CAN_TypeDef *)name; if (__HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_TME)) { tmp1 = __HAL_CAN_TRANSMIT_STATUS(&CanHandle, CAN_TXMAILBOX_0); tmp2 = __HAL_CAN_TRANSMIT_STATUS(&CanHandle, CAN_TXMAILBOX_1); tmp3 = __HAL_CAN_TRANSMIT_STATUS(&CanHandle, CAN_TXMAILBOX_2); if (tmp1) { __HAL_CAN_CLEAR_FLAG(&CanHandle, CAN_FLAG_RQCP0); } if (tmp2) { __HAL_CAN_CLEAR_FLAG(&CanHandle, CAN_FLAG_RQCP1); } if (tmp3) { __HAL_CAN_CLEAR_FLAG(&CanHandle, CAN_FLAG_RQCP2); } if (tmp1 || tmp2 || tmp3) { irq_handler(can_irq_ids[id], IRQ_TX); } } tmp1 = __HAL_CAN_MSG_PENDING(&CanHandle, CAN_FIFO0); tmp2 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_FMP0); if ((tmp1 != 0) && tmp2) { irq_handler(can_irq_ids[id], IRQ_RX); } tmp1 = __HAL_CAN_GET_FLAG(&CanHandle, CAN_FLAG_EPV); tmp2 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_EPV); tmp3 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_ERR); if (tmp1 && tmp2 && tmp3) { irq_handler(can_irq_ids[id], IRQ_PASSIVE); } tmp1 = __HAL_CAN_GET_FLAG(&CanHandle, CAN_FLAG_BOF); tmp2 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_BOF); tmp3 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_ERR); if (tmp1 && tmp2 && tmp3) { irq_handler(can_irq_ids[id], IRQ_BUS); } tmp3 = __HAL_CAN_GET_IT_SOURCE(&CanHandle, CAN_IT_ERR); if (tmp1 && tmp2 && tmp3) { irq_handler(can_irq_ids[id], IRQ_ERROR); } } #if defined(TARGET_STM32F0) void CAN_IRQHandler(void) { can_irq(CAN_1, 0); } #elif defined(TARGET_STM32F3) void CAN_RX0_IRQHandler(void) { can_irq(CAN_1, 0); } void CAN_TX_IRQHandler(void) { can_irq(CAN_1, 0); } void CAN_SCE_IRQHandler(void) { can_irq(CAN_1, 0); } #else void CAN1_RX0_IRQHandler(void) { can_irq(CAN_1, 0); } void CAN1_TX_IRQHandler(void) { can_irq(CAN_1, 0); } void CAN1_SCE_IRQHandler(void) { can_irq(CAN_1, 0); } #if defined(CAN2_BASE) && (CAN_NUM > 1) void CAN2_RX0_IRQHandler(void) { can_irq(CAN_2, 1); } void CAN2_TX_IRQHandler(void) { can_irq(CAN_2, 1); } void CAN2_SCE_IRQHandler(void) { can_irq(CAN_2, 1); } #endif #if defined(CAN3_BASE) && (CAN_NUM > 2) void CAN3_RX0_IRQHandler(void) { can_irq(CAN_3, 2); } void CAN3_TX_IRQHandler(void) { can_irq(CAN_3, 2); } void CAN3_SCE_IRQHandler(void) { can_irq(CAN_3, 2); } #endif #endif // else void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) { CAN_TypeDef *can = obj->CanHandle.Instance; IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; uint32_t ier; if ((CANName) can == CAN_1) { switch (type) { case IRQ_RX: ier = CAN_IT_FMP0; irq_n = CAN1_IRQ_RX_IRQN; vector = (uint32_t)&CAN1_IRQ_RX_VECT; break; case IRQ_TX: ier = CAN_IT_TME; irq_n = CAN1_IRQ_TX_IRQN; vector = (uint32_t)&CAN1_IRQ_TX_VECT; break; case IRQ_ERROR: ier = CAN_IT_ERR; irq_n = CAN1_IRQ_ERROR_IRQN; vector = (uint32_t)&CAN1_IRQ_ERROR_VECT; break; case IRQ_PASSIVE: ier = CAN_IT_EPV; irq_n = CAN1_IRQ_PASSIVE_IRQN; vector = (uint32_t)&CAN1_IRQ_PASSIVE_VECT; break; case IRQ_BUS: ier = CAN_IT_BOF; irq_n = CAN1_IRQ_BUS_IRQN; vector = (uint32_t)&CAN1_IRQ_BUS_VECT; break; default: return; } } #if defined(CAN2_BASE) && (CAN_NUM > 1) else if ((CANName) can == CAN_2) { switch (type) { case IRQ_RX: ier = CAN_IT_FMP0; irq_n = CAN2_IRQ_RX_IRQN; vector = (uint32_t)&CAN2_IRQ_RX_VECT; break; case IRQ_TX: ier = CAN_IT_TME; irq_n = CAN2_IRQ_TX_IRQN; vector = (uint32_t)&CAN2_IRQ_TX_VECT; break; case IRQ_ERROR: ier = CAN_IT_ERR; irq_n = CAN2_IRQ_ERROR_IRQN; vector = (uint32_t)&CAN2_IRQ_ERROR_VECT; break; case IRQ_PASSIVE: ier = CAN_IT_EPV; irq_n = CAN2_IRQ_PASSIVE_IRQN; vector = (uint32_t)&CAN2_IRQ_PASSIVE_VECT; break; case IRQ_BUS: ier = CAN_IT_BOF; irq_n = CAN2_IRQ_BUS_IRQN; vector = (uint32_t)&CAN2_IRQ_BUS_VECT; break; default: return; } } #endif #if defined(CAN3_BASE) && (CAN_NUM > 2) else if ((CANName) can == CAN_3) { switch (type) { case IRQ_RX: ier = CAN_IT_FMP0; irq_n = CAN3_IRQ_RX_IRQN; vector = (uint32_t)&CAN3_IRQ_RX_VECT; break; case IRQ_TX: ier = CAN_IT_TME; irq_n = CAN3_IRQ_TX_IRQN; vector = (uint32_t)&CAN3_IRQ_TX_VECT; break; case IRQ_ERROR: ier = CAN_IT_ERR; irq_n = CAN3_IRQ_ERROR_IRQN; vector = (uint32_t)&CAN3_IRQ_ERROR_VECT; break; case IRQ_PASSIVE: ier = CAN_IT_EPV; irq_n = CAN3_IRQ_PASSIVE_IRQN; vector = (uint32_t)&CAN3_IRQ_PASSIVE_VECT; break; case IRQ_BUS: ier = CAN_IT_BOF; irq_n = CAN3_IRQ_BUS_IRQN; vector = (uint32_t)&CAN3_IRQ_BUS_VECT; break; default: return; } } #endif else { return; } if (enable) { can->IER |= ier; } else { can->IER &= ~ier; } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } #endif // DEVICE_CAN