Color Oled(SSD1331) connect to STMicroelectronics Nucleo-F466

Dependencies:   ssd1331

Committer:
kadonotakashi
Date:
Thu Oct 11 02:27:46 2018 +0000
Revision:
3:f3764f852aa8
Parent:
0:8fdf9a60065b
Nucreo 446 + SSD1331 test version;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
kadonotakashi 0:8fdf9a60065b 1 /* mbed Microcontroller Library
kadonotakashi 0:8fdf9a60065b 2 * Copyright (c) 2015-2016 Nuvoton
kadonotakashi 0:8fdf9a60065b 3 *
kadonotakashi 0:8fdf9a60065b 4 * Licensed under the Apache License, Version 2.0 (the "License");
kadonotakashi 0:8fdf9a60065b 5 * you may not use this file except in compliance with the License.
kadonotakashi 0:8fdf9a60065b 6 * You may obtain a copy of the License at
kadonotakashi 0:8fdf9a60065b 7 *
kadonotakashi 0:8fdf9a60065b 8 * http://www.apache.org/licenses/LICENSE-2.0
kadonotakashi 0:8fdf9a60065b 9 *
kadonotakashi 0:8fdf9a60065b 10 * Unless required by applicable law or agreed to in writing, software
kadonotakashi 0:8fdf9a60065b 11 * distributed under the License is distributed on an "AS IS" BASIS,
kadonotakashi 0:8fdf9a60065b 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
kadonotakashi 0:8fdf9a60065b 13 * See the License for the specific language governing permissions and
kadonotakashi 0:8fdf9a60065b 14 * limitations under the License.
kadonotakashi 0:8fdf9a60065b 15 */
kadonotakashi 0:8fdf9a60065b 16
kadonotakashi 0:8fdf9a60065b 17 #include "spi_api.h"
kadonotakashi 0:8fdf9a60065b 18
kadonotakashi 0:8fdf9a60065b 19 #if DEVICE_SPI
kadonotakashi 0:8fdf9a60065b 20
kadonotakashi 0:8fdf9a60065b 21 #include "cmsis.h"
kadonotakashi 0:8fdf9a60065b 22 #include "mbed_error.h"
kadonotakashi 0:8fdf9a60065b 23 #include "pinmap.h"
kadonotakashi 0:8fdf9a60065b 24 #include "PeripheralPins.h"
kadonotakashi 0:8fdf9a60065b 25 #include "nu_modutil.h"
kadonotakashi 0:8fdf9a60065b 26 #include "nu_miscutil.h"
kadonotakashi 0:8fdf9a60065b 27 #include "nu_bitutil.h"
kadonotakashi 0:8fdf9a60065b 28
kadonotakashi 0:8fdf9a60065b 29 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 30 #include "dma_api.h"
kadonotakashi 0:8fdf9a60065b 31 #include "dma.h"
kadonotakashi 0:8fdf9a60065b 32 #endif
kadonotakashi 0:8fdf9a60065b 33
kadonotakashi 0:8fdf9a60065b 34 #define NU_SPI_FRAME_MIN 8
kadonotakashi 0:8fdf9a60065b 35 #define NU_SPI_FRAME_MAX 32
kadonotakashi 0:8fdf9a60065b 36
kadonotakashi 0:8fdf9a60065b 37 struct nu_spi_var {
kadonotakashi 0:8fdf9a60065b 38 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 39 uint8_t pdma_perp_tx;
kadonotakashi 0:8fdf9a60065b 40 uint8_t pdma_perp_rx;
kadonotakashi 0:8fdf9a60065b 41 #endif
kadonotakashi 0:8fdf9a60065b 42 };
kadonotakashi 0:8fdf9a60065b 43
kadonotakashi 0:8fdf9a60065b 44 static struct nu_spi_var spi0_var = {
kadonotakashi 0:8fdf9a60065b 45 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 46 .pdma_perp_tx = PDMA_SPI0_TX,
kadonotakashi 0:8fdf9a60065b 47 .pdma_perp_rx = PDMA_SPI0_RX
kadonotakashi 0:8fdf9a60065b 48 #endif
kadonotakashi 0:8fdf9a60065b 49 };
kadonotakashi 0:8fdf9a60065b 50 static struct nu_spi_var spi1_var = {
kadonotakashi 0:8fdf9a60065b 51 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 52 .pdma_perp_tx = PDMA_SPI1_TX,
kadonotakashi 0:8fdf9a60065b 53 .pdma_perp_rx = PDMA_SPI1_RX
kadonotakashi 0:8fdf9a60065b 54 #endif
kadonotakashi 0:8fdf9a60065b 55 };
kadonotakashi 0:8fdf9a60065b 56 static struct nu_spi_var spi2_var = {
kadonotakashi 0:8fdf9a60065b 57 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 58 .pdma_perp_tx = PDMA_SPI2_TX,
kadonotakashi 0:8fdf9a60065b 59 .pdma_perp_rx = PDMA_SPI2_RX
kadonotakashi 0:8fdf9a60065b 60 #endif
kadonotakashi 0:8fdf9a60065b 61 };
kadonotakashi 0:8fdf9a60065b 62 static struct nu_spi_var spi3_var = {
kadonotakashi 0:8fdf9a60065b 63 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 64 .pdma_perp_tx = PDMA_SPI3_TX,
kadonotakashi 0:8fdf9a60065b 65 .pdma_perp_rx = PDMA_SPI3_RX
kadonotakashi 0:8fdf9a60065b 66 #endif
kadonotakashi 0:8fdf9a60065b 67 };
kadonotakashi 0:8fdf9a60065b 68 static struct nu_spi_var spi5_var = {
kadonotakashi 0:8fdf9a60065b 69 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 70 .pdma_perp_tx = PDMA_SPI5_TX,
kadonotakashi 0:8fdf9a60065b 71 .pdma_perp_rx = PDMA_SPI5_RX
kadonotakashi 0:8fdf9a60065b 72 #endif
kadonotakashi 0:8fdf9a60065b 73 };
kadonotakashi 0:8fdf9a60065b 74
kadonotakashi 0:8fdf9a60065b 75 /* Synchronous version of SPI_ENABLE()/SPI_DISABLE() macros
kadonotakashi 0:8fdf9a60065b 76 *
kadonotakashi 0:8fdf9a60065b 77 * The SPI peripheral clock is asynchronous with the system clock. In order to make sure the SPI
kadonotakashi 0:8fdf9a60065b 78 * control logic is enabled/disabled, this bit indicates the real status of SPI controller.
kadonotakashi 0:8fdf9a60065b 79 *
kadonotakashi 0:8fdf9a60065b 80 * NOTE: All configurations shall be ready before calling SPI_ENABLE_SYNC().
kadonotakashi 0:8fdf9a60065b 81 * NOTE: Before changing the configurations of SPIx_CTL, SPIx_CLKDIV, SPIx_SSCTL and SPIx_FIFOCTL registers,
kadonotakashi 0:8fdf9a60065b 82 * user shall clear the SPIEN (SPIx_CTL[0]) and confirm the SPIENSTS (SPIx_STATUS[15]) is 0
kadonotakashi 0:8fdf9a60065b 83 * (by SPI_DISABLE_SYNC here).
kadonotakashi 0:8fdf9a60065b 84 */
kadonotakashi 0:8fdf9a60065b 85 __STATIC_INLINE void SPI_ENABLE_SYNC(SPI_T *spi_base)
kadonotakashi 0:8fdf9a60065b 86 {
kadonotakashi 0:8fdf9a60065b 87 if (! (spi_base->CTL & SPI_CTL_SPIEN_Msk)) {
kadonotakashi 0:8fdf9a60065b 88 SPI_ENABLE(spi_base);
kadonotakashi 0:8fdf9a60065b 89 }
kadonotakashi 0:8fdf9a60065b 90 while (! (spi_base->STATUS & SPI_STATUS_SPIENSTS_Msk));
kadonotakashi 0:8fdf9a60065b 91 }
kadonotakashi 0:8fdf9a60065b 92 __STATIC_INLINE void SPI_DISABLE_SYNC(SPI_T *spi_base)
kadonotakashi 0:8fdf9a60065b 93 {
kadonotakashi 0:8fdf9a60065b 94 if (spi_base->CTL & SPI_CTL_SPIEN_Msk) {
kadonotakashi 0:8fdf9a60065b 95 // NOTE: SPI H/W may get out of state without the busy check.
kadonotakashi 0:8fdf9a60065b 96 while (SPI_IS_BUSY(spi_base));
kadonotakashi 0:8fdf9a60065b 97
kadonotakashi 0:8fdf9a60065b 98 SPI_DISABLE(spi_base);
kadonotakashi 0:8fdf9a60065b 99 }
kadonotakashi 0:8fdf9a60065b 100 while (spi_base->STATUS & SPI_STATUS_SPIENSTS_Msk);
kadonotakashi 0:8fdf9a60065b 101 }
kadonotakashi 0:8fdf9a60065b 102
kadonotakashi 0:8fdf9a60065b 103 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 104 static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable);
kadonotakashi 0:8fdf9a60065b 105 static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable);
kadonotakashi 0:8fdf9a60065b 106 static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit);
kadonotakashi 0:8fdf9a60065b 107 static uint32_t spi_master_read_asynch(spi_t *obj);
kadonotakashi 0:8fdf9a60065b 108 static uint32_t spi_event_check(spi_t *obj);
kadonotakashi 0:8fdf9a60065b 109 static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable);
kadonotakashi 0:8fdf9a60065b 110 static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length);
kadonotakashi 0:8fdf9a60065b 111 static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx);
kadonotakashi 0:8fdf9a60065b 112 static uint8_t spi_get_data_width(spi_t *obj);
kadonotakashi 0:8fdf9a60065b 113 static int spi_is_tx_complete(spi_t *obj);
kadonotakashi 0:8fdf9a60065b 114 static int spi_is_rx_complete(spi_t *obj);
kadonotakashi 0:8fdf9a60065b 115 static int spi_writeable(spi_t * obj);
kadonotakashi 0:8fdf9a60065b 116 static int spi_readable(spi_t * obj);
kadonotakashi 0:8fdf9a60065b 117 static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma);
kadonotakashi 0:8fdf9a60065b 118 static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma);
kadonotakashi 0:8fdf9a60065b 119 static uint32_t spi_fifo_depth(spi_t *obj);
kadonotakashi 0:8fdf9a60065b 120 #endif
kadonotakashi 0:8fdf9a60065b 121
kadonotakashi 0:8fdf9a60065b 122 static uint32_t spi_modinit_mask = 0;
kadonotakashi 0:8fdf9a60065b 123
kadonotakashi 0:8fdf9a60065b 124 static const struct nu_modinit_s spi_modinit_tab[] = {
kadonotakashi 0:8fdf9a60065b 125 {SPI_0, SPI0_MODULE, CLK_CLKSEL2_SPI0SEL_PCLK1, MODULE_NoMsk, SPI0_RST, SPI0_IRQn, &spi0_var},
kadonotakashi 0:8fdf9a60065b 126 {SPI_1, SPI1_MODULE, CLK_CLKSEL2_SPI1SEL_PCLK0, MODULE_NoMsk, SPI1_RST, SPI1_IRQn, &spi1_var},
kadonotakashi 0:8fdf9a60065b 127 {SPI_2, SPI2_MODULE, CLK_CLKSEL2_SPI2SEL_PCLK1, MODULE_NoMsk, SPI2_RST, SPI2_IRQn, &spi2_var},
kadonotakashi 0:8fdf9a60065b 128 {SPI_3, SPI3_MODULE, CLK_CLKSEL2_SPI3SEL_PCLK0, MODULE_NoMsk, SPI3_RST, SPI3_IRQn, &spi3_var},
kadonotakashi 0:8fdf9a60065b 129 {SPI_5, SPI5_MODULE, CLK_CLKSEL2_SPI5SEL_PCLK1, MODULE_NoMsk, SPI5_RST, SPI5_IRQn, &spi5_var},
kadonotakashi 0:8fdf9a60065b 130
kadonotakashi 0:8fdf9a60065b 131 {NC, 0, 0, 0, 0, (IRQn_Type) 0, NULL}
kadonotakashi 0:8fdf9a60065b 132 };
kadonotakashi 0:8fdf9a60065b 133
kadonotakashi 0:8fdf9a60065b 134 void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel)
kadonotakashi 0:8fdf9a60065b 135 {
kadonotakashi 0:8fdf9a60065b 136 // Determine which SPI_x the pins are used for
kadonotakashi 0:8fdf9a60065b 137 uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
kadonotakashi 0:8fdf9a60065b 138 uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
kadonotakashi 0:8fdf9a60065b 139 uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
kadonotakashi 0:8fdf9a60065b 140 uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
kadonotakashi 0:8fdf9a60065b 141 uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
kadonotakashi 0:8fdf9a60065b 142 uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
kadonotakashi 0:8fdf9a60065b 143 obj->spi.spi = (SPIName) pinmap_merge(spi_data, spi_cntl);
kadonotakashi 0:8fdf9a60065b 144 MBED_ASSERT((int)obj->spi.spi != NC);
kadonotakashi 0:8fdf9a60065b 145
kadonotakashi 0:8fdf9a60065b 146 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
kadonotakashi 0:8fdf9a60065b 147 MBED_ASSERT(modinit != NULL);
kadonotakashi 0:8fdf9a60065b 148 MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 149
kadonotakashi 0:8fdf9a60065b 150 /* Reset module
kadonotakashi 0:8fdf9a60065b 151 *
kadonotakashi 0:8fdf9a60065b 152 * NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure.
kadonotakashi 0:8fdf9a60065b 153 */
kadonotakashi 0:8fdf9a60065b 154 SYS_ResetModule_S(modinit->rsetidx);
kadonotakashi 0:8fdf9a60065b 155
kadonotakashi 0:8fdf9a60065b 156 /* Select IP clock source
kadonotakashi 0:8fdf9a60065b 157 *
kadonotakashi 0:8fdf9a60065b 158 * NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure.
kadonotakashi 0:8fdf9a60065b 159 */
kadonotakashi 0:8fdf9a60065b 160 CLK_SetModuleClock_S(modinit->clkidx, modinit->clksrc, modinit->clkdiv);
kadonotakashi 0:8fdf9a60065b 161
kadonotakashi 0:8fdf9a60065b 162 /* Enable IP clock
kadonotakashi 0:8fdf9a60065b 163 *
kadonotakashi 0:8fdf9a60065b 164 * NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure.
kadonotakashi 0:8fdf9a60065b 165 */
kadonotakashi 0:8fdf9a60065b 166 CLK_EnableModuleClock_S(modinit->clkidx);
kadonotakashi 0:8fdf9a60065b 167
kadonotakashi 0:8fdf9a60065b 168 pinmap_pinout(mosi, PinMap_SPI_MOSI);
kadonotakashi 0:8fdf9a60065b 169 pinmap_pinout(miso, PinMap_SPI_MISO);
kadonotakashi 0:8fdf9a60065b 170 pinmap_pinout(sclk, PinMap_SPI_SCLK);
kadonotakashi 0:8fdf9a60065b 171 pinmap_pinout(ssel, PinMap_SPI_SSEL);
kadonotakashi 0:8fdf9a60065b 172
kadonotakashi 0:8fdf9a60065b 173 obj->spi.pin_mosi = mosi;
kadonotakashi 0:8fdf9a60065b 174 obj->spi.pin_miso = miso;
kadonotakashi 0:8fdf9a60065b 175 obj->spi.pin_sclk = sclk;
kadonotakashi 0:8fdf9a60065b 176 obj->spi.pin_ssel = ssel;
kadonotakashi 0:8fdf9a60065b 177
kadonotakashi 0:8fdf9a60065b 178
kadonotakashi 0:8fdf9a60065b 179 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 180 obj->spi.dma_usage = DMA_USAGE_NEVER;
kadonotakashi 0:8fdf9a60065b 181 obj->spi.event = 0;
kadonotakashi 0:8fdf9a60065b 182 obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
kadonotakashi 0:8fdf9a60065b 183 obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
kadonotakashi 0:8fdf9a60065b 184
kadonotakashi 0:8fdf9a60065b 185 /* NOTE: We use vector to judge if asynchronous transfer is on-going (spi_active).
kadonotakashi 0:8fdf9a60065b 186 * At initial time, asynchronous transfer is not on-going and so vector must
kadonotakashi 0:8fdf9a60065b 187 * be cleared to zero for correct judgement. */
kadonotakashi 0:8fdf9a60065b 188 NVIC_SetVector(modinit->irq_n, 0);
kadonotakashi 0:8fdf9a60065b 189 #endif
kadonotakashi 0:8fdf9a60065b 190
kadonotakashi 0:8fdf9a60065b 191 // Mark this module to be inited.
kadonotakashi 0:8fdf9a60065b 192 int i = modinit - spi_modinit_tab;
kadonotakashi 0:8fdf9a60065b 193 spi_modinit_mask |= 1 << i;
kadonotakashi 0:8fdf9a60065b 194 }
kadonotakashi 0:8fdf9a60065b 195
kadonotakashi 0:8fdf9a60065b 196 void spi_free(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 197 {
kadonotakashi 0:8fdf9a60065b 198 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 199 if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
kadonotakashi 0:8fdf9a60065b 200 dma_channel_free(obj->spi.dma_chn_id_tx);
kadonotakashi 0:8fdf9a60065b 201 obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
kadonotakashi 0:8fdf9a60065b 202 }
kadonotakashi 0:8fdf9a60065b 203 if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
kadonotakashi 0:8fdf9a60065b 204 dma_channel_free(obj->spi.dma_chn_id_rx);
kadonotakashi 0:8fdf9a60065b 205 obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
kadonotakashi 0:8fdf9a60065b 206 }
kadonotakashi 0:8fdf9a60065b 207 #endif
kadonotakashi 0:8fdf9a60065b 208
kadonotakashi 0:8fdf9a60065b 209 SPI_Close((SPI_T *) NU_MODBASE(obj->spi.spi));
kadonotakashi 0:8fdf9a60065b 210
kadonotakashi 0:8fdf9a60065b 211 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
kadonotakashi 0:8fdf9a60065b 212 MBED_ASSERT(modinit != NULL);
kadonotakashi 0:8fdf9a60065b 213 MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 214
kadonotakashi 0:8fdf9a60065b 215 SPI_DisableInt(((SPI_T *) NU_MODBASE(obj->spi.spi)), (SPI_FIFO_RXOV_INT_MASK | SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK));
kadonotakashi 0:8fdf9a60065b 216 NVIC_DisableIRQ(modinit->irq_n);
kadonotakashi 0:8fdf9a60065b 217
kadonotakashi 0:8fdf9a60065b 218 /* Disable IP clock
kadonotakashi 0:8fdf9a60065b 219 *
kadonotakashi 0:8fdf9a60065b 220 * NOTE: We must call secure version (from non-secure domain) because SYS/CLK regions are secure.
kadonotakashi 0:8fdf9a60065b 221 */
kadonotakashi 0:8fdf9a60065b 222 CLK_DisableModuleClock_S(modinit->clkidx);
kadonotakashi 0:8fdf9a60065b 223
kadonotakashi 0:8fdf9a60065b 224 // Mark this module to be deinited.
kadonotakashi 0:8fdf9a60065b 225 int i = modinit - spi_modinit_tab;
kadonotakashi 0:8fdf9a60065b 226 spi_modinit_mask &= ~(1 << i);
kadonotakashi 0:8fdf9a60065b 227 }
kadonotakashi 0:8fdf9a60065b 228
kadonotakashi 0:8fdf9a60065b 229 void spi_format(spi_t *obj, int bits, int mode, int slave)
kadonotakashi 0:8fdf9a60065b 230 {
kadonotakashi 0:8fdf9a60065b 231 MBED_ASSERT(bits >= NU_SPI_FRAME_MIN && bits <= NU_SPI_FRAME_MAX);
kadonotakashi 0:8fdf9a60065b 232
kadonotakashi 0:8fdf9a60065b 233 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 234
kadonotakashi 0:8fdf9a60065b 235 SPI_DISABLE_SYNC(spi_base);
kadonotakashi 0:8fdf9a60065b 236
kadonotakashi 0:8fdf9a60065b 237 SPI_Open(spi_base,
kadonotakashi 0:8fdf9a60065b 238 slave ? SPI_SLAVE : SPI_MASTER,
kadonotakashi 0:8fdf9a60065b 239 (mode == 0) ? SPI_MODE_0 : (mode == 1) ? SPI_MODE_1 : (mode == 2) ? SPI_MODE_2 : SPI_MODE_3,
kadonotakashi 0:8fdf9a60065b 240 bits,
kadonotakashi 0:8fdf9a60065b 241 SPI_GetBusClock(spi_base));
kadonotakashi 0:8fdf9a60065b 242 // NOTE: Hardcode to be MSB first.
kadonotakashi 0:8fdf9a60065b 243 SPI_SET_MSB_FIRST(spi_base);
kadonotakashi 0:8fdf9a60065b 244
kadonotakashi 0:8fdf9a60065b 245 if (! slave) {
kadonotakashi 0:8fdf9a60065b 246 // Master
kadonotakashi 0:8fdf9a60065b 247 if (obj->spi.pin_ssel != NC) {
kadonotakashi 0:8fdf9a60065b 248 // Configure SS as low active.
kadonotakashi 0:8fdf9a60065b 249 SPI_EnableAutoSS(spi_base, SPI_SS, SPI_SS_ACTIVE_LOW);
kadonotakashi 0:8fdf9a60065b 250 } else {
kadonotakashi 0:8fdf9a60065b 251 SPI_DisableAutoSS(spi_base);
kadonotakashi 0:8fdf9a60065b 252 }
kadonotakashi 0:8fdf9a60065b 253 } else {
kadonotakashi 0:8fdf9a60065b 254 // Slave
kadonotakashi 0:8fdf9a60065b 255 // Configure SS as low active.
kadonotakashi 0:8fdf9a60065b 256 spi_base->SSCTL &= ~SPI_SSCTL_SSACTPOL_Msk;
kadonotakashi 0:8fdf9a60065b 257 }
kadonotakashi 0:8fdf9a60065b 258
kadonotakashi 0:8fdf9a60065b 259 /* NOTE: M451's/M480's/M2351's SPI_Open() will enable SPI transfer (SPI_CTL_SPIEN_Msk).
kadonotakashi 0:8fdf9a60065b 260 * We cannot use SPI_CTL_SPIEN_Msk for judgement of spi_active().
kadonotakashi 0:8fdf9a60065b 261 * Judge with vector instead. */
kadonotakashi 0:8fdf9a60065b 262 }
kadonotakashi 0:8fdf9a60065b 263
kadonotakashi 0:8fdf9a60065b 264 void spi_frequency(spi_t *obj, int hz)
kadonotakashi 0:8fdf9a60065b 265 {
kadonotakashi 0:8fdf9a60065b 266 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 267
kadonotakashi 0:8fdf9a60065b 268 SPI_DISABLE_SYNC(spi_base);
kadonotakashi 0:8fdf9a60065b 269
kadonotakashi 0:8fdf9a60065b 270 SPI_SetBusClock((SPI_T *) NU_MODBASE(obj->spi.spi), hz);
kadonotakashi 0:8fdf9a60065b 271 }
kadonotakashi 0:8fdf9a60065b 272
kadonotakashi 0:8fdf9a60065b 273
kadonotakashi 0:8fdf9a60065b 274 int spi_master_write(spi_t *obj, int value)
kadonotakashi 0:8fdf9a60065b 275 {
kadonotakashi 0:8fdf9a60065b 276 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 277
kadonotakashi 0:8fdf9a60065b 278 // NOTE: Data in receive FIFO can be read out via ICE.
kadonotakashi 0:8fdf9a60065b 279 SPI_ENABLE_SYNC(spi_base);
kadonotakashi 0:8fdf9a60065b 280
kadonotakashi 0:8fdf9a60065b 281 // Wait for tx buffer empty
kadonotakashi 0:8fdf9a60065b 282 while(! spi_writeable(obj));
kadonotakashi 0:8fdf9a60065b 283 SPI_WRITE_TX(spi_base, value);
kadonotakashi 0:8fdf9a60065b 284
kadonotakashi 0:8fdf9a60065b 285 // Wait for rx buffer full
kadonotakashi 0:8fdf9a60065b 286 while (! spi_readable(obj));
kadonotakashi 0:8fdf9a60065b 287 int value2 = SPI_READ_RX(spi_base);
kadonotakashi 0:8fdf9a60065b 288
kadonotakashi 0:8fdf9a60065b 289 /* We don't call SPI_DISABLE_SYNC here for performance. */
kadonotakashi 0:8fdf9a60065b 290
kadonotakashi 0:8fdf9a60065b 291 return value2;
kadonotakashi 0:8fdf9a60065b 292 }
kadonotakashi 0:8fdf9a60065b 293
kadonotakashi 0:8fdf9a60065b 294 int spi_master_block_write(spi_t *obj, const char *tx_buffer, int tx_length,
kadonotakashi 0:8fdf9a60065b 295 char *rx_buffer, int rx_length, char write_fill) {
kadonotakashi 0:8fdf9a60065b 296 int total = (tx_length > rx_length) ? tx_length : rx_length;
kadonotakashi 0:8fdf9a60065b 297
kadonotakashi 0:8fdf9a60065b 298 for (int i = 0; i < total; i++) {
kadonotakashi 0:8fdf9a60065b 299 char out = (i < tx_length) ? tx_buffer[i] : write_fill;
kadonotakashi 0:8fdf9a60065b 300 char in = spi_master_write(obj, out);
kadonotakashi 0:8fdf9a60065b 301 if (i < rx_length) {
kadonotakashi 0:8fdf9a60065b 302 rx_buffer[i] = in;
kadonotakashi 0:8fdf9a60065b 303 }
kadonotakashi 0:8fdf9a60065b 304 }
kadonotakashi 0:8fdf9a60065b 305
kadonotakashi 0:8fdf9a60065b 306 return total;
kadonotakashi 0:8fdf9a60065b 307 }
kadonotakashi 0:8fdf9a60065b 308
kadonotakashi 0:8fdf9a60065b 309 #if DEVICE_SPISLAVE
kadonotakashi 0:8fdf9a60065b 310 int spi_slave_receive(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 311 {
kadonotakashi 0:8fdf9a60065b 312 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 313
kadonotakashi 0:8fdf9a60065b 314 SPI_ENABLE_SYNC(spi_base);
kadonotakashi 0:8fdf9a60065b 315
kadonotakashi 0:8fdf9a60065b 316 return spi_readable(obj);
kadonotakashi 0:8fdf9a60065b 317 };
kadonotakashi 0:8fdf9a60065b 318
kadonotakashi 0:8fdf9a60065b 319 int spi_slave_read(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 320 {
kadonotakashi 0:8fdf9a60065b 321 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 322
kadonotakashi 0:8fdf9a60065b 323 SPI_ENABLE_SYNC(spi_base);
kadonotakashi 0:8fdf9a60065b 324
kadonotakashi 0:8fdf9a60065b 325 // Wait for rx buffer full
kadonotakashi 0:8fdf9a60065b 326 while (! spi_readable(obj));
kadonotakashi 0:8fdf9a60065b 327 int value = SPI_READ_RX(spi_base);
kadonotakashi 0:8fdf9a60065b 328 return value;
kadonotakashi 0:8fdf9a60065b 329 }
kadonotakashi 0:8fdf9a60065b 330
kadonotakashi 0:8fdf9a60065b 331 void spi_slave_write(spi_t *obj, int value)
kadonotakashi 0:8fdf9a60065b 332 {
kadonotakashi 0:8fdf9a60065b 333 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 334
kadonotakashi 0:8fdf9a60065b 335 SPI_ENABLE_SYNC(spi_base);
kadonotakashi 0:8fdf9a60065b 336
kadonotakashi 0:8fdf9a60065b 337 // Wait for tx buffer empty
kadonotakashi 0:8fdf9a60065b 338 while(! spi_writeable(obj));
kadonotakashi 0:8fdf9a60065b 339 SPI_WRITE_TX(spi_base, value);
kadonotakashi 0:8fdf9a60065b 340 }
kadonotakashi 0:8fdf9a60065b 341 #endif
kadonotakashi 0:8fdf9a60065b 342
kadonotakashi 0:8fdf9a60065b 343 #if DEVICE_SPI_ASYNCH
kadonotakashi 0:8fdf9a60065b 344 void spi_master_transfer(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length, uint8_t bit_width, uint32_t handler, uint32_t event, DMAUsage hint)
kadonotakashi 0:8fdf9a60065b 345 {
kadonotakashi 0:8fdf9a60065b 346 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 347 SPI_SET_DATA_WIDTH(spi_base, bit_width);
kadonotakashi 0:8fdf9a60065b 348
kadonotakashi 0:8fdf9a60065b 349 obj->spi.dma_usage = hint;
kadonotakashi 0:8fdf9a60065b 350 spi_check_dma_usage(&obj->spi.dma_usage, &obj->spi.dma_chn_id_tx, &obj->spi.dma_chn_id_rx);
kadonotakashi 0:8fdf9a60065b 351 uint32_t data_width = spi_get_data_width(obj);
kadonotakashi 0:8fdf9a60065b 352 // Conditions to go DMA way:
kadonotakashi 0:8fdf9a60065b 353 // (1) No DMA support for non-8 multiple data width.
kadonotakashi 0:8fdf9a60065b 354 // (2) tx length >= rx length. Otherwise, as tx DMA is done, no bus activity for remaining rx.
kadonotakashi 0:8fdf9a60065b 355 if ((data_width % 8) ||
kadonotakashi 0:8fdf9a60065b 356 (tx_length < rx_length)) {
kadonotakashi 0:8fdf9a60065b 357 obj->spi.dma_usage = DMA_USAGE_NEVER;
kadonotakashi 0:8fdf9a60065b 358 dma_channel_free(obj->spi.dma_chn_id_tx);
kadonotakashi 0:8fdf9a60065b 359 obj->spi.dma_chn_id_tx = DMA_ERROR_OUT_OF_CHANNELS;
kadonotakashi 0:8fdf9a60065b 360 dma_channel_free(obj->spi.dma_chn_id_rx);
kadonotakashi 0:8fdf9a60065b 361 obj->spi.dma_chn_id_rx = DMA_ERROR_OUT_OF_CHANNELS;
kadonotakashi 0:8fdf9a60065b 362 }
kadonotakashi 0:8fdf9a60065b 363
kadonotakashi 0:8fdf9a60065b 364 // SPI IRQ is necessary for both interrupt way and DMA way
kadonotakashi 0:8fdf9a60065b 365 spi_enable_event(obj, event, 1);
kadonotakashi 0:8fdf9a60065b 366 spi_buffer_set(obj, tx, tx_length, rx, rx_length);
kadonotakashi 0:8fdf9a60065b 367
kadonotakashi 0:8fdf9a60065b 368 SPI_ENABLE_SYNC(spi_base);
kadonotakashi 0:8fdf9a60065b 369
kadonotakashi 0:8fdf9a60065b 370 if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
kadonotakashi 0:8fdf9a60065b 371 // Interrupt way
kadonotakashi 0:8fdf9a60065b 372 spi_master_write_asynch(obj, spi_fifo_depth(obj) / 2);
kadonotakashi 0:8fdf9a60065b 373 spi_enable_vector_interrupt(obj, handler, 1);
kadonotakashi 0:8fdf9a60065b 374 spi_master_enable_interrupt(obj, 1);
kadonotakashi 0:8fdf9a60065b 375 } else {
kadonotakashi 0:8fdf9a60065b 376 // DMA way
kadonotakashi 0:8fdf9a60065b 377 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
kadonotakashi 0:8fdf9a60065b 378 MBED_ASSERT(modinit != NULL);
kadonotakashi 0:8fdf9a60065b 379 MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 380
kadonotakashi 0:8fdf9a60065b 381 PDMA_T *pdma_base = dma_modbase();
kadonotakashi 0:8fdf9a60065b 382
kadonotakashi 0:8fdf9a60065b 383 // Configure tx DMA
kadonotakashi 0:8fdf9a60065b 384 pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_tx; // Enable this DMA channel
kadonotakashi 0:8fdf9a60065b 385 PDMA_SetTransferMode(pdma_base,
kadonotakashi 0:8fdf9a60065b 386 obj->spi.dma_chn_id_tx,
kadonotakashi 0:8fdf9a60065b 387 ((struct nu_spi_var *) modinit->var)->pdma_perp_tx, // Peripheral connected to this PDMA
kadonotakashi 0:8fdf9a60065b 388 0, // Scatter-gather disabled
kadonotakashi 0:8fdf9a60065b 389 0); // Scatter-gather descriptor address
kadonotakashi 0:8fdf9a60065b 390 PDMA_SetTransferCnt(pdma_base,
kadonotakashi 0:8fdf9a60065b 391 obj->spi.dma_chn_id_tx,
kadonotakashi 0:8fdf9a60065b 392 (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
kadonotakashi 0:8fdf9a60065b 393 tx_length);
kadonotakashi 0:8fdf9a60065b 394 PDMA_SetTransferAddr(pdma_base,
kadonotakashi 0:8fdf9a60065b 395 obj->spi.dma_chn_id_tx,
kadonotakashi 0:8fdf9a60065b 396 (uint32_t) tx, // NOTE:
kadonotakashi 0:8fdf9a60065b 397 // NUC472: End of source address
kadonotakashi 0:8fdf9a60065b 398 // M451/M480/M2351: Start of source address
kadonotakashi 0:8fdf9a60065b 399 PDMA_SAR_INC, // Source address incremental
kadonotakashi 0:8fdf9a60065b 400 (uint32_t) &spi_base->TX, // Destination address
kadonotakashi 0:8fdf9a60065b 401 PDMA_DAR_FIX); // Destination address fixed
kadonotakashi 0:8fdf9a60065b 402 PDMA_SetBurstType(pdma_base,
kadonotakashi 0:8fdf9a60065b 403 obj->spi.dma_chn_id_tx,
kadonotakashi 0:8fdf9a60065b 404 PDMA_REQ_SINGLE, // Single mode
kadonotakashi 0:8fdf9a60065b 405 0); // Burst size
kadonotakashi 0:8fdf9a60065b 406 PDMA_EnableInt(pdma_base,
kadonotakashi 0:8fdf9a60065b 407 obj->spi.dma_chn_id_tx,
kadonotakashi 0:8fdf9a60065b 408 PDMA_INT_TRANS_DONE); // Interrupt type
kadonotakashi 0:8fdf9a60065b 409 // Register DMA event handler
kadonotakashi 0:8fdf9a60065b 410 dma_set_handler(obj->spi.dma_chn_id_tx, (uint32_t) spi_dma_handler_tx, (uint32_t) obj, DMA_EVENT_ALL);
kadonotakashi 0:8fdf9a60065b 411
kadonotakashi 0:8fdf9a60065b 412 // Configure rx DMA
kadonotakashi 0:8fdf9a60065b 413 pdma_base->CHCTL |= 1 << obj->spi.dma_chn_id_rx; // Enable this DMA channel
kadonotakashi 0:8fdf9a60065b 414 PDMA_SetTransferMode(pdma_base,
kadonotakashi 0:8fdf9a60065b 415 obj->spi.dma_chn_id_rx,
kadonotakashi 0:8fdf9a60065b 416 ((struct nu_spi_var *) modinit->var)->pdma_perp_rx, // Peripheral connected to this PDMA
kadonotakashi 0:8fdf9a60065b 417 0, // Scatter-gather disabled
kadonotakashi 0:8fdf9a60065b 418 0); // Scatter-gather descriptor address
kadonotakashi 0:8fdf9a60065b 419 PDMA_SetTransferCnt(pdma_base,
kadonotakashi 0:8fdf9a60065b 420 obj->spi.dma_chn_id_rx,
kadonotakashi 0:8fdf9a60065b 421 (data_width == 8) ? PDMA_WIDTH_8 : (data_width == 16) ? PDMA_WIDTH_16 : PDMA_WIDTH_32,
kadonotakashi 0:8fdf9a60065b 422 rx_length);
kadonotakashi 0:8fdf9a60065b 423 PDMA_SetTransferAddr(pdma_base,
kadonotakashi 0:8fdf9a60065b 424 obj->spi.dma_chn_id_rx,
kadonotakashi 0:8fdf9a60065b 425 (uint32_t) &spi_base->RX, // Source address
kadonotakashi 0:8fdf9a60065b 426 PDMA_SAR_FIX, // Source address fixed
kadonotakashi 0:8fdf9a60065b 427 (uint32_t) rx, // NOTE:
kadonotakashi 0:8fdf9a60065b 428 // NUC472: End of destination address
kadonotakashi 0:8fdf9a60065b 429 // M451/M480/M2351: Start of destination address
kadonotakashi 0:8fdf9a60065b 430 PDMA_DAR_INC); // Destination address incremental
kadonotakashi 0:8fdf9a60065b 431 PDMA_SetBurstType(pdma_base,
kadonotakashi 0:8fdf9a60065b 432 obj->spi.dma_chn_id_rx,
kadonotakashi 0:8fdf9a60065b 433 PDMA_REQ_SINGLE, // Single mode
kadonotakashi 0:8fdf9a60065b 434 0); // Burst size
kadonotakashi 0:8fdf9a60065b 435 PDMA_EnableInt(pdma_base,
kadonotakashi 0:8fdf9a60065b 436 obj->spi.dma_chn_id_rx,
kadonotakashi 0:8fdf9a60065b 437 PDMA_INT_TRANS_DONE); // Interrupt type
kadonotakashi 0:8fdf9a60065b 438 // Register DMA event handler
kadonotakashi 0:8fdf9a60065b 439 dma_set_handler(obj->spi.dma_chn_id_rx, (uint32_t) spi_dma_handler_rx, (uint32_t) obj, DMA_EVENT_ALL);
kadonotakashi 0:8fdf9a60065b 440
kadonotakashi 0:8fdf9a60065b 441 /* Start tx/rx DMA transfer
kadonotakashi 0:8fdf9a60065b 442 *
kadonotakashi 0:8fdf9a60065b 443 * If we have both PDMA and SPI interrupts enabled and PDMA priority is lower than SPI priority,
kadonotakashi 0:8fdf9a60065b 444 * we would trap in SPI interrupt handler endlessly with the sequence:
kadonotakashi 0:8fdf9a60065b 445 *
kadonotakashi 0:8fdf9a60065b 446 * 1. PDMA TX transfer done interrupt occurs and is well handled.
kadonotakashi 0:8fdf9a60065b 447 * 2. SPI RX FIFO threshold interrupt occurs. Trap here because PDMA RX transfer done interrupt doesn't get handled.
kadonotakashi 0:8fdf9a60065b 448 * 3. PDMA RX transfer done interrupt occurs but it cannot be handled due to above.
kadonotakashi 0:8fdf9a60065b 449 *
kadonotakashi 0:8fdf9a60065b 450 * To fix it, we don't enable SPI TX/RX threshold interrupts but keep SPI vector handler set to be called
kadonotakashi 0:8fdf9a60065b 451 * in PDMA TX/RX transfer done interrupt handlers (spi_dma_handler_tx/spi_dma_handler_rx).
kadonotakashi 0:8fdf9a60065b 452 */
kadonotakashi 0:8fdf9a60065b 453 NVIC_SetVector(modinit->irq_n, handler);
kadonotakashi 0:8fdf9a60065b 454
kadonotakashi 0:8fdf9a60065b 455 /* Order to enable PDMA TX/RX functions
kadonotakashi 0:8fdf9a60065b 456 *
kadonotakashi 0:8fdf9a60065b 457 * H/W spec: In SPI Master mode with full duplex transfer, if both TX and RX PDMA functions are
kadonotakashi 0:8fdf9a60065b 458 * enabled, RX PDMA function cannot be enabled prior to TX PDMA function. User can enable
kadonotakashi 0:8fdf9a60065b 459 * TX PDMA function firstly or enable both functions simultaneously.
kadonotakashi 0:8fdf9a60065b 460 * Per real test, it is safer to start RX PDMA first and then TX PDMA. Otherwise, receive FIFO is
kadonotakashi 0:8fdf9a60065b 461 * subject to overflow by TX DMA.
kadonotakashi 0:8fdf9a60065b 462 *
kadonotakashi 0:8fdf9a60065b 463 * With the above conflicts, we enable PDMA TX/RX functions simultaneously.
kadonotakashi 0:8fdf9a60065b 464 */
kadonotakashi 0:8fdf9a60065b 465 spi_base->PDMACTL |= (SPI_PDMACTL_TXPDMAEN_Msk | SPI_PDMACTL_RXPDMAEN_Msk);
kadonotakashi 0:8fdf9a60065b 466
kadonotakashi 0:8fdf9a60065b 467 /* Don't enable SPI TX/RX threshold interrupts as commented above */
kadonotakashi 0:8fdf9a60065b 468 }
kadonotakashi 0:8fdf9a60065b 469 }
kadonotakashi 0:8fdf9a60065b 470
kadonotakashi 0:8fdf9a60065b 471 /**
kadonotakashi 0:8fdf9a60065b 472 * Abort an SPI transfer
kadonotakashi 0:8fdf9a60065b 473 * This is a helper function for event handling. When any of the events listed occurs, the HAL will abort any ongoing
kadonotakashi 0:8fdf9a60065b 474 * transfers
kadonotakashi 0:8fdf9a60065b 475 * @param[in] obj The SPI peripheral to stop
kadonotakashi 0:8fdf9a60065b 476 */
kadonotakashi 0:8fdf9a60065b 477 void spi_abort_asynch(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 478 {
kadonotakashi 0:8fdf9a60065b 479 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 480 PDMA_T *pdma_base = dma_modbase();
kadonotakashi 0:8fdf9a60065b 481
kadonotakashi 0:8fdf9a60065b 482 if (obj->spi.dma_usage != DMA_USAGE_NEVER) {
kadonotakashi 0:8fdf9a60065b 483 // Receive FIFO Overrun in case of tx length > rx length on DMA way
kadonotakashi 0:8fdf9a60065b 484 if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
kadonotakashi 0:8fdf9a60065b 485 spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
kadonotakashi 0:8fdf9a60065b 486 }
kadonotakashi 0:8fdf9a60065b 487
kadonotakashi 0:8fdf9a60065b 488 if (obj->spi.dma_chn_id_tx != DMA_ERROR_OUT_OF_CHANNELS) {
kadonotakashi 0:8fdf9a60065b 489 PDMA_DisableInt(pdma_base, obj->spi.dma_chn_id_tx, PDMA_INT_TRANS_DONE);
kadonotakashi 0:8fdf9a60065b 490 // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
kadonotakashi 0:8fdf9a60065b 491 pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_tx);
kadonotakashi 0:8fdf9a60065b 492 }
kadonotakashi 0:8fdf9a60065b 493 SPI_DISABLE_TX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
kadonotakashi 0:8fdf9a60065b 494
kadonotakashi 0:8fdf9a60065b 495 if (obj->spi.dma_chn_id_rx != DMA_ERROR_OUT_OF_CHANNELS) {
kadonotakashi 0:8fdf9a60065b 496 PDMA_DisableInt(pdma_base, obj->spi.dma_chn_id_rx, PDMA_INT_TRANS_DONE);
kadonotakashi 0:8fdf9a60065b 497 // NOTE: On NUC472, next PDMA transfer will fail with PDMA_STOP() called. Cause is unknown.
kadonotakashi 0:8fdf9a60065b 498 pdma_base->CHCTL &= ~(1 << obj->spi.dma_chn_id_rx);
kadonotakashi 0:8fdf9a60065b 499 }
kadonotakashi 0:8fdf9a60065b 500 SPI_DISABLE_RX_PDMA(((SPI_T *) NU_MODBASE(obj->spi.spi)));
kadonotakashi 0:8fdf9a60065b 501 }
kadonotakashi 0:8fdf9a60065b 502
kadonotakashi 0:8fdf9a60065b 503 // Necessary for both interrupt way and DMA way
kadonotakashi 0:8fdf9a60065b 504 spi_enable_vector_interrupt(obj, 0, 0);
kadonotakashi 0:8fdf9a60065b 505 spi_master_enable_interrupt(obj, 0);
kadonotakashi 0:8fdf9a60065b 506
kadonotakashi 0:8fdf9a60065b 507 /* Necessary for accessing FIFOCTL below */
kadonotakashi 0:8fdf9a60065b 508 SPI_DISABLE_SYNC(spi_base);
kadonotakashi 0:8fdf9a60065b 509
kadonotakashi 0:8fdf9a60065b 510 SPI_ClearRxFIFO(spi_base);
kadonotakashi 0:8fdf9a60065b 511 SPI_ClearTxFIFO(spi_base);
kadonotakashi 0:8fdf9a60065b 512 }
kadonotakashi 0:8fdf9a60065b 513
kadonotakashi 0:8fdf9a60065b 514 /**
kadonotakashi 0:8fdf9a60065b 515 * Handle the SPI interrupt
kadonotakashi 0:8fdf9a60065b 516 * Read frames until the RX FIFO is empty. Write at most as many frames as were read. This way,
kadonotakashi 0:8fdf9a60065b 517 * it is unlikely that the RX FIFO will overflow.
kadonotakashi 0:8fdf9a60065b 518 * @param[in] obj The SPI peripheral that generated the interrupt
kadonotakashi 0:8fdf9a60065b 519 * @return
kadonotakashi 0:8fdf9a60065b 520 */
kadonotakashi 0:8fdf9a60065b 521 uint32_t spi_irq_handler_asynch(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 522 {
kadonotakashi 0:8fdf9a60065b 523 // Check for SPI events
kadonotakashi 0:8fdf9a60065b 524 uint32_t event = spi_event_check(obj);
kadonotakashi 0:8fdf9a60065b 525 if (event) {
kadonotakashi 0:8fdf9a60065b 526 spi_abort_asynch(obj);
kadonotakashi 0:8fdf9a60065b 527 }
kadonotakashi 0:8fdf9a60065b 528
kadonotakashi 0:8fdf9a60065b 529 return (obj->spi.event & event) | ((event & SPI_EVENT_COMPLETE) ? SPI_EVENT_INTERNAL_TRANSFER_COMPLETE : 0);
kadonotakashi 0:8fdf9a60065b 530 }
kadonotakashi 0:8fdf9a60065b 531
kadonotakashi 0:8fdf9a60065b 532 uint8_t spi_active(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 533 {
kadonotakashi 0:8fdf9a60065b 534 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
kadonotakashi 0:8fdf9a60065b 535 MBED_ASSERT(modinit != NULL);
kadonotakashi 0:8fdf9a60065b 536 MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 537
kadonotakashi 0:8fdf9a60065b 538 /* Vector will be cleared when asynchronous transfer is finished or aborted.
kadonotakashi 0:8fdf9a60065b 539 Use it to judge if asynchronous transfer is on-going. */
kadonotakashi 0:8fdf9a60065b 540 uint32_t vec = NVIC_GetVector(modinit->irq_n);
kadonotakashi 0:8fdf9a60065b 541 return vec ? 1 : 0;
kadonotakashi 0:8fdf9a60065b 542 }
kadonotakashi 0:8fdf9a60065b 543
kadonotakashi 0:8fdf9a60065b 544 static int spi_writeable(spi_t * obj)
kadonotakashi 0:8fdf9a60065b 545 {
kadonotakashi 0:8fdf9a60065b 546 // Receive FIFO must not be full to avoid receive FIFO overflow on next transmit/receive
kadonotakashi 0:8fdf9a60065b 547 return (! SPI_GET_TX_FIFO_FULL_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi))));
kadonotakashi 0:8fdf9a60065b 548 }
kadonotakashi 0:8fdf9a60065b 549
kadonotakashi 0:8fdf9a60065b 550 static int spi_readable(spi_t * obj)
kadonotakashi 0:8fdf9a60065b 551 {
kadonotakashi 0:8fdf9a60065b 552 return ! SPI_GET_RX_FIFO_EMPTY_FLAG(((SPI_T *) NU_MODBASE(obj->spi.spi)));
kadonotakashi 0:8fdf9a60065b 553 }
kadonotakashi 0:8fdf9a60065b 554
kadonotakashi 0:8fdf9a60065b 555 static void spi_enable_event(spi_t *obj, uint32_t event, uint8_t enable)
kadonotakashi 0:8fdf9a60065b 556 {
kadonotakashi 0:8fdf9a60065b 557 obj->spi.event &= ~SPI_EVENT_ALL;
kadonotakashi 0:8fdf9a60065b 558 obj->spi.event |= (event & SPI_EVENT_ALL);
kadonotakashi 0:8fdf9a60065b 559 if (event & SPI_EVENT_RX_OVERFLOW) {
kadonotakashi 0:8fdf9a60065b 560 SPI_EnableInt((SPI_T *) NU_MODBASE(obj->spi.spi), SPI_FIFO_RXOV_INT_MASK);
kadonotakashi 0:8fdf9a60065b 561 }
kadonotakashi 0:8fdf9a60065b 562 }
kadonotakashi 0:8fdf9a60065b 563
kadonotakashi 0:8fdf9a60065b 564 static void spi_enable_vector_interrupt(spi_t *obj, uint32_t handler, uint8_t enable)
kadonotakashi 0:8fdf9a60065b 565 {
kadonotakashi 0:8fdf9a60065b 566 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
kadonotakashi 0:8fdf9a60065b 567 MBED_ASSERT(modinit != NULL);
kadonotakashi 0:8fdf9a60065b 568 MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 569
kadonotakashi 0:8fdf9a60065b 570 if (enable) {
kadonotakashi 0:8fdf9a60065b 571 NVIC_SetVector(modinit->irq_n, handler);
kadonotakashi 0:8fdf9a60065b 572 NVIC_EnableIRQ(modinit->irq_n);
kadonotakashi 0:8fdf9a60065b 573 } else {
kadonotakashi 0:8fdf9a60065b 574 NVIC_DisableIRQ(modinit->irq_n);
kadonotakashi 0:8fdf9a60065b 575 NVIC_SetVector(modinit->irq_n, 0);
kadonotakashi 0:8fdf9a60065b 576 }
kadonotakashi 0:8fdf9a60065b 577 }
kadonotakashi 0:8fdf9a60065b 578
kadonotakashi 0:8fdf9a60065b 579 static void spi_master_enable_interrupt(spi_t *obj, uint8_t enable)
kadonotakashi 0:8fdf9a60065b 580 {
kadonotakashi 0:8fdf9a60065b 581 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 582
kadonotakashi 0:8fdf9a60065b 583 if (enable) {
kadonotakashi 0:8fdf9a60065b 584 uint32_t fifo_depth = spi_fifo_depth(obj);
kadonotakashi 0:8fdf9a60065b 585 SPI_SetFIFO(spi_base, fifo_depth / 2, fifo_depth / 2);
kadonotakashi 0:8fdf9a60065b 586 // Enable tx/rx FIFO threshold interrupt
kadonotakashi 0:8fdf9a60065b 587 SPI_EnableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK);
kadonotakashi 0:8fdf9a60065b 588 } else {
kadonotakashi 0:8fdf9a60065b 589 SPI_DisableInt(spi_base, SPI_FIFO_RXTH_INT_MASK | SPI_FIFO_TXTH_INT_MASK);
kadonotakashi 0:8fdf9a60065b 590 }
kadonotakashi 0:8fdf9a60065b 591 }
kadonotakashi 0:8fdf9a60065b 592
kadonotakashi 0:8fdf9a60065b 593 static uint32_t spi_event_check(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 594 {
kadonotakashi 0:8fdf9a60065b 595 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 596 uint32_t event = 0;
kadonotakashi 0:8fdf9a60065b 597
kadonotakashi 0:8fdf9a60065b 598 if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
kadonotakashi 0:8fdf9a60065b 599 uint32_t n_rec = spi_master_read_asynch(obj);
kadonotakashi 0:8fdf9a60065b 600 spi_master_write_asynch(obj, n_rec);
kadonotakashi 0:8fdf9a60065b 601 }
kadonotakashi 0:8fdf9a60065b 602
kadonotakashi 0:8fdf9a60065b 603 if (spi_is_tx_complete(obj) && spi_is_rx_complete(obj)) {
kadonotakashi 0:8fdf9a60065b 604 event |= SPI_EVENT_COMPLETE;
kadonotakashi 0:8fdf9a60065b 605 }
kadonotakashi 0:8fdf9a60065b 606
kadonotakashi 0:8fdf9a60065b 607 // Receive FIFO Overrun
kadonotakashi 0:8fdf9a60065b 608 if (spi_base->STATUS & SPI_STATUS_RXOVIF_Msk) {
kadonotakashi 0:8fdf9a60065b 609 spi_base->STATUS = SPI_STATUS_RXOVIF_Msk;
kadonotakashi 0:8fdf9a60065b 610 // In case of tx length > rx length on DMA way
kadonotakashi 0:8fdf9a60065b 611 if (obj->spi.dma_usage == DMA_USAGE_NEVER) {
kadonotakashi 0:8fdf9a60065b 612 event |= SPI_EVENT_RX_OVERFLOW;
kadonotakashi 0:8fdf9a60065b 613 }
kadonotakashi 0:8fdf9a60065b 614 }
kadonotakashi 0:8fdf9a60065b 615
kadonotakashi 0:8fdf9a60065b 616 // Receive Time-Out
kadonotakashi 0:8fdf9a60065b 617 if (spi_base->STATUS & SPI_STATUS_RXTOIF_Msk) {
kadonotakashi 0:8fdf9a60065b 618 spi_base->STATUS = SPI_STATUS_RXTOIF_Msk;
kadonotakashi 0:8fdf9a60065b 619 // Not using this IF. Just clear it.
kadonotakashi 0:8fdf9a60065b 620 }
kadonotakashi 0:8fdf9a60065b 621 // Transmit FIFO Under-Run
kadonotakashi 0:8fdf9a60065b 622 if (spi_base->STATUS & SPI_STATUS_TXUFIF_Msk) {
kadonotakashi 0:8fdf9a60065b 623 spi_base->STATUS = SPI_STATUS_TXUFIF_Msk;
kadonotakashi 0:8fdf9a60065b 624 event |= SPI_EVENT_ERROR;
kadonotakashi 0:8fdf9a60065b 625 }
kadonotakashi 0:8fdf9a60065b 626
kadonotakashi 0:8fdf9a60065b 627 return event;
kadonotakashi 0:8fdf9a60065b 628 }
kadonotakashi 0:8fdf9a60065b 629
kadonotakashi 0:8fdf9a60065b 630 /**
kadonotakashi 0:8fdf9a60065b 631 * Send words from the SPI TX buffer until the send limit is reached or the TX FIFO is full
kadonotakashi 0:8fdf9a60065b 632 * tx_limit is provided to ensure that the number of SPI frames (words) in flight can be managed.
kadonotakashi 0:8fdf9a60065b 633 * @param[in] obj The SPI object on which to operate
kadonotakashi 0:8fdf9a60065b 634 * @param[in] tx_limit The maximum number of words to send
kadonotakashi 0:8fdf9a60065b 635 * @return The number of SPI words that have been transfered
kadonotakashi 0:8fdf9a60065b 636 */
kadonotakashi 0:8fdf9a60065b 637 static uint32_t spi_master_write_asynch(spi_t *obj, uint32_t tx_limit)
kadonotakashi 0:8fdf9a60065b 638 {
kadonotakashi 0:8fdf9a60065b 639 uint32_t n_words = 0;
kadonotakashi 0:8fdf9a60065b 640 uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
kadonotakashi 0:8fdf9a60065b 641 uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
kadonotakashi 0:8fdf9a60065b 642 uint32_t max_tx = NU_MAX(tx_rmn, rx_rmn);
kadonotakashi 0:8fdf9a60065b 643 max_tx = NU_MIN(max_tx, tx_limit);
kadonotakashi 0:8fdf9a60065b 644 uint8_t data_width = spi_get_data_width(obj);
kadonotakashi 0:8fdf9a60065b 645 uint8_t bytes_per_word = (data_width + 7) / 8;
kadonotakashi 0:8fdf9a60065b 646 uint8_t *tx = (uint8_t *)(obj->tx_buff.buffer) + bytes_per_word * obj->tx_buff.pos;
kadonotakashi 0:8fdf9a60065b 647 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 648
kadonotakashi 0:8fdf9a60065b 649 while ((n_words < max_tx) && spi_writeable(obj)) {
kadonotakashi 0:8fdf9a60065b 650 if (spi_is_tx_complete(obj)) {
kadonotakashi 0:8fdf9a60065b 651 // Transmit dummy as transmit buffer is empty
kadonotakashi 0:8fdf9a60065b 652 SPI_WRITE_TX(spi_base, 0);
kadonotakashi 0:8fdf9a60065b 653 } else {
kadonotakashi 0:8fdf9a60065b 654 switch (bytes_per_word) {
kadonotakashi 0:8fdf9a60065b 655 case 4:
kadonotakashi 0:8fdf9a60065b 656 SPI_WRITE_TX(spi_base, nu_get32_le(tx));
kadonotakashi 0:8fdf9a60065b 657 tx += 4;
kadonotakashi 0:8fdf9a60065b 658 break;
kadonotakashi 0:8fdf9a60065b 659 case 2:
kadonotakashi 0:8fdf9a60065b 660 SPI_WRITE_TX(spi_base, nu_get16_le(tx));
kadonotakashi 0:8fdf9a60065b 661 tx += 2;
kadonotakashi 0:8fdf9a60065b 662 break;
kadonotakashi 0:8fdf9a60065b 663 case 1:
kadonotakashi 0:8fdf9a60065b 664 SPI_WRITE_TX(spi_base, *((uint8_t *) tx));
kadonotakashi 0:8fdf9a60065b 665 tx += 1;
kadonotakashi 0:8fdf9a60065b 666 break;
kadonotakashi 0:8fdf9a60065b 667 }
kadonotakashi 0:8fdf9a60065b 668
kadonotakashi 0:8fdf9a60065b 669 obj->tx_buff.pos ++;
kadonotakashi 0:8fdf9a60065b 670 }
kadonotakashi 0:8fdf9a60065b 671 n_words ++;
kadonotakashi 0:8fdf9a60065b 672 }
kadonotakashi 0:8fdf9a60065b 673
kadonotakashi 0:8fdf9a60065b 674 //Return the number of words that have been sent
kadonotakashi 0:8fdf9a60065b 675 return n_words;
kadonotakashi 0:8fdf9a60065b 676 }
kadonotakashi 0:8fdf9a60065b 677
kadonotakashi 0:8fdf9a60065b 678 /**
kadonotakashi 0:8fdf9a60065b 679 * Read SPI words out of the RX FIFO
kadonotakashi 0:8fdf9a60065b 680 * Continues reading words out of the RX FIFO until the following condition is met:
kadonotakashi 0:8fdf9a60065b 681 * o There are no more words in the FIFO
kadonotakashi 0:8fdf9a60065b 682 * OR BOTH OF:
kadonotakashi 0:8fdf9a60065b 683 * o At least as many words as the TX buffer have been received
kadonotakashi 0:8fdf9a60065b 684 * o At least as many words as the RX buffer have been received
kadonotakashi 0:8fdf9a60065b 685 * This way, RX overflows are not generated when the TX buffer size exceeds the RX buffer size
kadonotakashi 0:8fdf9a60065b 686 * @param[in] obj The SPI object on which to operate
kadonotakashi 0:8fdf9a60065b 687 * @return Returns the number of words extracted from the RX FIFO
kadonotakashi 0:8fdf9a60065b 688 */
kadonotakashi 0:8fdf9a60065b 689 static uint32_t spi_master_read_asynch(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 690 {
kadonotakashi 0:8fdf9a60065b 691 uint32_t n_words = 0;
kadonotakashi 0:8fdf9a60065b 692 uint32_t tx_rmn = obj->tx_buff.length - obj->tx_buff.pos;
kadonotakashi 0:8fdf9a60065b 693 uint32_t rx_rmn = obj->rx_buff.length - obj->rx_buff.pos;
kadonotakashi 0:8fdf9a60065b 694 uint32_t max_rx = NU_MAX(tx_rmn, rx_rmn);
kadonotakashi 0:8fdf9a60065b 695 uint8_t data_width = spi_get_data_width(obj);
kadonotakashi 0:8fdf9a60065b 696 uint8_t bytes_per_word = (data_width + 7) / 8;
kadonotakashi 0:8fdf9a60065b 697 uint8_t *rx = (uint8_t *)(obj->rx_buff.buffer) + bytes_per_word * obj->rx_buff.pos;
kadonotakashi 0:8fdf9a60065b 698 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 699
kadonotakashi 0:8fdf9a60065b 700 while ((n_words < max_rx) && spi_readable(obj)) {
kadonotakashi 0:8fdf9a60065b 701 if (spi_is_rx_complete(obj)) {
kadonotakashi 0:8fdf9a60065b 702 // Disregard as receive buffer is full
kadonotakashi 0:8fdf9a60065b 703 SPI_READ_RX(spi_base);
kadonotakashi 0:8fdf9a60065b 704 } else {
kadonotakashi 0:8fdf9a60065b 705 switch (bytes_per_word) {
kadonotakashi 0:8fdf9a60065b 706 case 4: {
kadonotakashi 0:8fdf9a60065b 707 uint32_t val = SPI_READ_RX(spi_base);
kadonotakashi 0:8fdf9a60065b 708 nu_set32_le(rx, val);
kadonotakashi 0:8fdf9a60065b 709 rx += 4;
kadonotakashi 0:8fdf9a60065b 710 break;
kadonotakashi 0:8fdf9a60065b 711 }
kadonotakashi 0:8fdf9a60065b 712 case 2: {
kadonotakashi 0:8fdf9a60065b 713 uint16_t val = SPI_READ_RX(spi_base);
kadonotakashi 0:8fdf9a60065b 714 nu_set16_le(rx, val);
kadonotakashi 0:8fdf9a60065b 715 rx += 2;
kadonotakashi 0:8fdf9a60065b 716 break;
kadonotakashi 0:8fdf9a60065b 717 }
kadonotakashi 0:8fdf9a60065b 718 case 1:
kadonotakashi 0:8fdf9a60065b 719 *rx ++ = SPI_READ_RX(spi_base);
kadonotakashi 0:8fdf9a60065b 720 break;
kadonotakashi 0:8fdf9a60065b 721 }
kadonotakashi 0:8fdf9a60065b 722
kadonotakashi 0:8fdf9a60065b 723 obj->rx_buff.pos ++;
kadonotakashi 0:8fdf9a60065b 724 }
kadonotakashi 0:8fdf9a60065b 725 n_words ++;
kadonotakashi 0:8fdf9a60065b 726 }
kadonotakashi 0:8fdf9a60065b 727
kadonotakashi 0:8fdf9a60065b 728 // Return the number of words received
kadonotakashi 0:8fdf9a60065b 729 return n_words;
kadonotakashi 0:8fdf9a60065b 730 }
kadonotakashi 0:8fdf9a60065b 731
kadonotakashi 0:8fdf9a60065b 732 static void spi_buffer_set(spi_t *obj, const void *tx, size_t tx_length, void *rx, size_t rx_length)
kadonotakashi 0:8fdf9a60065b 733 {
kadonotakashi 0:8fdf9a60065b 734 obj->tx_buff.buffer = (void *) tx;
kadonotakashi 0:8fdf9a60065b 735 obj->tx_buff.length = tx_length;
kadonotakashi 0:8fdf9a60065b 736 obj->tx_buff.pos = 0;
kadonotakashi 0:8fdf9a60065b 737 obj->tx_buff.width = spi_get_data_width(obj);
kadonotakashi 0:8fdf9a60065b 738 obj->rx_buff.buffer = rx;
kadonotakashi 0:8fdf9a60065b 739 obj->rx_buff.length = rx_length;
kadonotakashi 0:8fdf9a60065b 740 obj->rx_buff.pos = 0;
kadonotakashi 0:8fdf9a60065b 741 obj->rx_buff.width = spi_get_data_width(obj);
kadonotakashi 0:8fdf9a60065b 742 }
kadonotakashi 0:8fdf9a60065b 743
kadonotakashi 0:8fdf9a60065b 744 static void spi_check_dma_usage(DMAUsage *dma_usage, int *dma_ch_tx, int *dma_ch_rx)
kadonotakashi 0:8fdf9a60065b 745 {
kadonotakashi 0:8fdf9a60065b 746 if (*dma_usage != DMA_USAGE_NEVER) {
kadonotakashi 0:8fdf9a60065b 747 if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS) {
kadonotakashi 0:8fdf9a60065b 748 *dma_ch_tx = dma_channel_allocate(DMA_CAP_NONE);
kadonotakashi 0:8fdf9a60065b 749 }
kadonotakashi 0:8fdf9a60065b 750 if (*dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
kadonotakashi 0:8fdf9a60065b 751 *dma_ch_rx = dma_channel_allocate(DMA_CAP_NONE);
kadonotakashi 0:8fdf9a60065b 752 }
kadonotakashi 0:8fdf9a60065b 753
kadonotakashi 0:8fdf9a60065b 754 if (*dma_ch_tx == DMA_ERROR_OUT_OF_CHANNELS || *dma_ch_rx == DMA_ERROR_OUT_OF_CHANNELS) {
kadonotakashi 0:8fdf9a60065b 755 *dma_usage = DMA_USAGE_NEVER;
kadonotakashi 0:8fdf9a60065b 756 }
kadonotakashi 0:8fdf9a60065b 757 }
kadonotakashi 0:8fdf9a60065b 758
kadonotakashi 0:8fdf9a60065b 759 if (*dma_usage == DMA_USAGE_NEVER) {
kadonotakashi 0:8fdf9a60065b 760 dma_channel_free(*dma_ch_tx);
kadonotakashi 0:8fdf9a60065b 761 *dma_ch_tx = DMA_ERROR_OUT_OF_CHANNELS;
kadonotakashi 0:8fdf9a60065b 762 dma_channel_free(*dma_ch_rx);
kadonotakashi 0:8fdf9a60065b 763 *dma_ch_rx = DMA_ERROR_OUT_OF_CHANNELS;
kadonotakashi 0:8fdf9a60065b 764 }
kadonotakashi 0:8fdf9a60065b 765 }
kadonotakashi 0:8fdf9a60065b 766
kadonotakashi 0:8fdf9a60065b 767 static uint8_t spi_get_data_width(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 768 {
kadonotakashi 0:8fdf9a60065b 769 SPI_T *spi_base = (SPI_T *) NU_MODBASE(obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 770
kadonotakashi 0:8fdf9a60065b 771 uint32_t data_width = ((spi_base->CTL & SPI_CTL_DWIDTH_Msk) >> SPI_CTL_DWIDTH_Pos);
kadonotakashi 0:8fdf9a60065b 772 if (data_width == 0) {
kadonotakashi 0:8fdf9a60065b 773 data_width = 32;
kadonotakashi 0:8fdf9a60065b 774 }
kadonotakashi 0:8fdf9a60065b 775
kadonotakashi 0:8fdf9a60065b 776 return data_width;
kadonotakashi 0:8fdf9a60065b 777 }
kadonotakashi 0:8fdf9a60065b 778
kadonotakashi 0:8fdf9a60065b 779 static int spi_is_tx_complete(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 780 {
kadonotakashi 0:8fdf9a60065b 781 return (obj->tx_buff.pos == obj->tx_buff.length);
kadonotakashi 0:8fdf9a60065b 782 }
kadonotakashi 0:8fdf9a60065b 783
kadonotakashi 0:8fdf9a60065b 784 static int spi_is_rx_complete(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 785 {
kadonotakashi 0:8fdf9a60065b 786 return (obj->rx_buff.pos == obj->rx_buff.length);
kadonotakashi 0:8fdf9a60065b 787 }
kadonotakashi 0:8fdf9a60065b 788
kadonotakashi 0:8fdf9a60065b 789 static void spi_dma_handler_tx(uint32_t id, uint32_t event_dma)
kadonotakashi 0:8fdf9a60065b 790 {
kadonotakashi 0:8fdf9a60065b 791 spi_t *obj = (spi_t *) id;
kadonotakashi 0:8fdf9a60065b 792
kadonotakashi 0:8fdf9a60065b 793 // FIXME: Pass this error to caller
kadonotakashi 0:8fdf9a60065b 794 if (event_dma & DMA_EVENT_ABORT) {
kadonotakashi 0:8fdf9a60065b 795 }
kadonotakashi 0:8fdf9a60065b 796 // Expect SPI IRQ will catch this transfer done event
kadonotakashi 0:8fdf9a60065b 797 if (event_dma & DMA_EVENT_TRANSFER_DONE) {
kadonotakashi 0:8fdf9a60065b 798 obj->tx_buff.pos = obj->tx_buff.length;
kadonotakashi 0:8fdf9a60065b 799 }
kadonotakashi 0:8fdf9a60065b 800 // FIXME: Pass this error to caller
kadonotakashi 0:8fdf9a60065b 801 if (event_dma & DMA_EVENT_TIMEOUT) {
kadonotakashi 0:8fdf9a60065b 802 }
kadonotakashi 0:8fdf9a60065b 803
kadonotakashi 0:8fdf9a60065b 804 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
kadonotakashi 0:8fdf9a60065b 805 MBED_ASSERT(modinit != NULL);
kadonotakashi 0:8fdf9a60065b 806 MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 807
kadonotakashi 0:8fdf9a60065b 808 void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
kadonotakashi 0:8fdf9a60065b 809 vec();
kadonotakashi 0:8fdf9a60065b 810 }
kadonotakashi 0:8fdf9a60065b 811
kadonotakashi 0:8fdf9a60065b 812 static void spi_dma_handler_rx(uint32_t id, uint32_t event_dma)
kadonotakashi 0:8fdf9a60065b 813 {
kadonotakashi 0:8fdf9a60065b 814 spi_t *obj = (spi_t *) id;
kadonotakashi 0:8fdf9a60065b 815
kadonotakashi 0:8fdf9a60065b 816 // FIXME: Pass this error to caller
kadonotakashi 0:8fdf9a60065b 817 if (event_dma & DMA_EVENT_ABORT) {
kadonotakashi 0:8fdf9a60065b 818 }
kadonotakashi 0:8fdf9a60065b 819 // Expect SPI IRQ will catch this transfer done event
kadonotakashi 0:8fdf9a60065b 820 if (event_dma & DMA_EVENT_TRANSFER_DONE) {
kadonotakashi 0:8fdf9a60065b 821 obj->rx_buff.pos = obj->rx_buff.length;
kadonotakashi 0:8fdf9a60065b 822 }
kadonotakashi 0:8fdf9a60065b 823 // FIXME: Pass this error to caller
kadonotakashi 0:8fdf9a60065b 824 if (event_dma & DMA_EVENT_TIMEOUT) {
kadonotakashi 0:8fdf9a60065b 825 }
kadonotakashi 0:8fdf9a60065b 826
kadonotakashi 0:8fdf9a60065b 827 const struct nu_modinit_s *modinit = get_modinit(obj->spi.spi, spi_modinit_tab);
kadonotakashi 0:8fdf9a60065b 828 MBED_ASSERT(modinit != NULL);
kadonotakashi 0:8fdf9a60065b 829 MBED_ASSERT(modinit->modname == (int) obj->spi.spi);
kadonotakashi 0:8fdf9a60065b 830
kadonotakashi 0:8fdf9a60065b 831 void (*vec)(void) = (void (*)(void)) NVIC_GetVector(modinit->irq_n);
kadonotakashi 0:8fdf9a60065b 832 vec();
kadonotakashi 0:8fdf9a60065b 833 }
kadonotakashi 0:8fdf9a60065b 834
kadonotakashi 0:8fdf9a60065b 835 /** Return FIFO depth of the SPI peripheral
kadonotakashi 0:8fdf9a60065b 836 *
kadonotakashi 0:8fdf9a60065b 837 * @details
kadonotakashi 0:8fdf9a60065b 838 * M2351
kadonotakashi 0:8fdf9a60065b 839 * SPI0/1/2/3 8 if data width <=16; 4 otherwise
kadonotakashi 0:8fdf9a60065b 840 */
kadonotakashi 0:8fdf9a60065b 841 static uint32_t spi_fifo_depth(spi_t *obj)
kadonotakashi 0:8fdf9a60065b 842 {
kadonotakashi 0:8fdf9a60065b 843 return (spi_get_data_width(obj) <= 16) ? 8 : 4;
kadonotakashi 0:8fdf9a60065b 844 }
kadonotakashi 0:8fdf9a60065b 845
kadonotakashi 0:8fdf9a60065b 846 #endif
kadonotakashi 0:8fdf9a60065b 847
kadonotakashi 0:8fdf9a60065b 848 #endif