se quito el led de debug de la bibilioteca
Fork of eeprom_1 by
eeprom.h
- Committer:
- sanru95
- Date:
- 2018-07-03
- Revision:
- 4:e323cdfbc089
- Parent:
- 3:925096a4c7f0
File content as of revision 4:e323cdfbc089:
#ifndef __EEPROM__H_ #define __EEPROM__H_ //EEPROM Structure: #define EEPROM_ADRESS_EEPROM_INIT 1 #define EEPROM_ADRESS_PROD_MODE 4 #define EEPROM_ADRESS_CONTROL_MODE 5 #define EEPROM_ADRESS_LEGACY_MODE 6 #define EEPROM_ADRESS_FEED_SCREW 7 #define EEPROM_ADRESS_INPUT_FILTER 8 #define EEPROM_ADRESS_MODBUS_ID 9 #define EEPROM_ADRESS_LENGUAGE 10 #define EEPROM_ADRESS_LAST_TIME 25 // Includes #include <string> #include "mbed.h" // Example /* #include <string> #include "mbed.h" #include "eeprom.h" #define EEPROM_ADDR 0x0 // I2c EEPROM address is 0x00 #define SDA p9 // I2C SDA pin #define SCL p10 // I2C SCL pin #define MIN(X,Y) ((X) < (Y) ? (X) : (Y)) #define MAX(X,Y) ((X) > (Y) ? (X) : (Y)) DigitalOut led2(LED2); typedef struct _MyData { int16_t sdata; int32_t idata; float fdata; } MyData; static void myerror(std::string msg) { printf("Error %s\n",msg.c_str()); exit(1); } void eeprom_test(void) { EEPROM ep(SDA,SCL,EEPROM_ADDR,EEPROM::T24C64); // 24C64 eeprom with sda = p9 and scl = p10 uint8_t data[256],data_r[256]; int8_t ival; uint16_t s; int16_t sdata,sdata_r; int32_t ldata[1024]; int32_t eeprom_size,max_size; uint32_t addr; int32_t idata,idata_r; uint32_t i,j,k,l,t,id; float fdata,fdata_r; MyData md,md_r; eeprom_size = ep.getSize(); max_size = MIN(eeprom_size,256); printf("Test EEPROM I2C model %s of %d bytes\n\n",ep.getName(),eeprom_size); // Test sequential read byte (max_size first bytes) for(i = 0;i < max_size;i++) { ep.read(i,ival); data_r[i] = ival; if(ep.getError() != 0) myerror(ep.getErrorMessage()); } printf("Test sequential read %d first bytes :\n",max_size); for(i = 0;i < max_size/16;i++) { for(j = 0;j < 16;j++) { addr = i * 16 + j; printf("%3d ",(uint8_t)data_r[addr]); } printf("\n"); } // Test sequential read byte (max_size last bytes) for(i = 0;i < max_size;i++) { addr = eeprom_size - max_size + i; ep.read(addr,ival); data_r[i] = ival; if(ep.getError() != 0) myerror(ep.getErrorMessage()); } printf("\nTest sequential read %d last bytes :\n",max_size); for(i = 0;i < max_size/16;i++) { for(j = 0;j < 16;j++) { addr = i * 16 + j; printf("%3d ",(uint8_t)data_r[addr]); } printf("\n"); } // Test write byte (max_size first bytes) for(i = 0;i < max_size;i++) data[i] = i; for(i = 0;i < max_size;i++) { ep.write(i,(int8_t)data[i]); if(ep.getError() != 0) myerror(ep.getErrorMessage()); } // Test read byte (max_size first bytes) for(i = 0;i < max_size;i++) { ep.read(i,(int8_t&)ival); data_r[i] = (uint8_t)ival; if(ep.getError() != 0) myerror(ep.getErrorMessage()); } printf("\nTest write and read %d first bytes :\n",max_size); for(i = 0;i < max_size/16;i++) { for(j = 0;j < 16;j++) { addr = i * 16 + j; printf("%3d ",(uint8_t)data_r[addr]); } printf("\n"); } // Test current address read byte (max_size first bytes) ep.read((uint32_t)0,(int8_t&)ival); // current address is 0 data_r[0] = (uint8_t)ival; if(ep.getError() != 0) myerror(ep.getErrorMessage()); for(i = 1;i < max_size;i++) { ep.read((int8_t&)ival); data_r[i] = (uint8_t)ival; if(ep.getError() != 0) myerror(ep.getErrorMessage()); } printf("\nTest current address read %d first bytes :\n",max_size); for(i = 0;i < max_size/16;i++) { for(j = 0;j < 16;j++) { addr = i * 16 + j; printf("%3d ",(uint8_t)data_r[addr]); } printf("\n"); } // Test sequential read byte (first max_size bytes) ep.read((uint32_t)0,(int8_t *)data_r,(uint32_t) max_size); if(ep.getError() != 0) myerror(ep.getErrorMessage()); printf("\nTest sequential read %d first bytes :\n",max_size); for(i = 0;i < max_size/16;i++) { for(j = 0;j < 16;j++) { addr = i * 16 + j; printf("%3d ",(uint8_t)data_r[addr]); } printf("\n"); } // Test write short, long, float sdata = -15202; addr = eeprom_size - 16; ep.write(addr,(int16_t)sdata); // short write at address eeprom_size - 16 if(ep.getError() != 0) myerror(ep.getErrorMessage()); idata = 45123; addr = eeprom_size - 12; ep.write(addr,(int32_t)idata); // long write at address eeprom_size - 12 if(ep.getError() != 0) myerror(ep.getErrorMessage()); fdata = -12.26; addr = eeprom_size - 8; ep.write(addr,(float)fdata); // float write at address eeprom_size - 8 if(ep.getError() != 0) myerror(ep.getErrorMessage()); // Test read short, long, float printf("\nTest write and read short (%d), long (%d), float (%f) :\n", sdata,idata,fdata); ep.read((uint32_t)(eeprom_size - 16),(int16_t&)sdata_r); if(ep.getError() != 0) myerror(ep.getErrorMessage()); printf("sdata %d\n",sdata_r); ep.read((uint32_t)(eeprom_size - 12),(int32_t&)idata_r); if(ep.getError() != 0) myerror(ep.getErrorMessage()); printf("idata %d\n",idata_r); ep.read((uint32_t)(eeprom_size - 8),fdata_r); if(ep.getError() != 0) myerror(ep.getErrorMessage()); printf("fdata %f\n",fdata_r); // Test read and write a structure md.sdata = -15203; md.idata = 45124; md.fdata = -12.27; ep.write((uint32_t)(eeprom_size - 32),(void *)&md,sizeof(md)); // write a structure eeprom_size - 32 if(ep.getError() != 0) myerror(ep.getErrorMessage()); printf("\nTest write and read a structure (%d %d %f) :\n",md.sdata,md.idata,md.fdata); ep.read((uint32_t)(eeprom_size - 32),(void *)&md_r,sizeof(md_r)); if(ep.getError() != 0) myerror(ep.getErrorMessage()); printf("md.sdata %d\n",md_r.sdata); printf("md.idata %d\n",md_r.idata); printf("md.fdata %f\n",md_r.fdata); // Test read and write of an array of the first max_size bytes for(i = 0;i < max_size;i++) data[i] = max_size - i - 1; ep.write((uint32_t)(0),data,(uint32_t)max_size); if(ep.getError() != 0) myerror(ep.getErrorMessage()); ep.read((uint32_t)(0),data_r,(uint32_t)max_size); if(ep.getError() != 0) myerror(ep.getErrorMessage()); printf("\nTest write and read an array of the first %d bytes :\n",max_size); for(i = 0;i < max_size/16;i++) { for(j = 0;j < 16;j++) { addr = i * 16 + j; printf("%3d ",(uint8_t)data_r[addr]); } printf("\n"); } printf("\n"); // Test write and read an array of int32 s = eeprom_size / 4; // size of eeprom in int32 int ldata_size = sizeof(ldata) / 4; // size of data array in int32 l = s / ldata_size; // loop index // size of read / write in bytes t = eeprom_size; if(t > ldata_size * 4) t = ldata_size * 4; printf("Test write and read an array of %d int32 (write entire memory) :\n",t/4); // Write entire eeprom if(l) { for(k = 0;k < l;k++) { for(i = 0;i < ldata_size;i++) ldata[i] = ldata_size * k + i; addr = k * ldata_size * 4; ep.write(addr,(void *)ldata,t); if(ep.getError() != 0) myerror(ep.getErrorMessage()); } printf("Write OK\n"); // Read entire eeprom id = 0; for(k = 0;k < l;k++) { addr = k * ldata_size * 4; ep.read(addr,(void *)ldata,t); if(ep.getError() != 0) myerror(ep.getErrorMessage()); // format outputs with 8 words rows for(i = 0;i < ldata_size / 8;i++) { id++; printf("%4d ",id); for(j = 0;j < 8;j++) { addr = i * 8 + j; printf("%5d ",ldata[addr]); } printf("\n"); } } } else { for(i = 0;i < s;i++) ldata[i] = i; addr = 0; ep.write(addr,(void *)ldata,t); if(ep.getError() != 0) myerror(ep.getErrorMessage()); printf("Write OK\n"); // Read entire eeprom id = 0; addr = 0; ep.read(addr,(void *)ldata,t); if(ep.getError() != 0) myerror(ep.getErrorMessage()); // format outputs with 8 words rows for(i = 0;i < s / 8;i++) { id++; printf("%4d ",id); for(j = 0;j < 8;j++) { addr = i * 8 + j; printf("%5d ",ldata[addr]); } printf("\n"); } } // clear eeprom printf("\nClear eeprom\n"); ep.clear(); if(ep.getError() != 0) myerror(ep.getErrorMessage()); printf("End\n"); } int main() { eeprom_test(); return(0); } */ // Defines #define EEPROM_Address 0xa0 #define EEPROM_NoError 0x00 #define EEPROM_BadAddress 0x01 #define EEPROM_I2cError 0x02 #define EEPROM_ParamError 0x03 #define EEPROM_OutOfRange 0x04 #define EEPROM_MallocError 0x05 #define EEPROM_MaxError 6 static std::string _ErrorMessageEEPROM[EEPROM_MaxError] = { "", "Bad chip address", "I2C error (nack)", "Invalid parameter", "Data address out of range", "Memory allocation error" }; /** EEPROM Class */ class EEPROM { public: enum TypeEeprom {T24C01=128,T24C02=256,T24C04=512,T24C08=1024,T24C16=2048, T24C32=4096,T24C64=8192,T24C128=16384,T24C256=32768, T24C512=65536,T24C1024=131072,T24C1025=131073} Type; /** * Constructor, initialize the eeprom on i2c interface. * @param sda sda i2c pin (PinName) * @param scl scl i2c pin (PinName) * @param address eeprom address, according to eeprom type (uint8_t) * @param type eeprom type (TypeEeprom) * @return none */ EEPROM(PinName sda, PinName scl, uint8_t address, TypeEeprom type); /** * Random read byte * @param address start address (uint32_t) * @param data byte to read (int8_t&) * @return none */ void read(uint32_t address, int8_t& data); /** * Random read short * @param address start address (uint32_t) * @param data short to read (int16_t&) * @return none */ void read(uint32_t address, int16_t& data); /** * Random read long * @param address start address (uint32_t) * @param data long to read (int32_t&) * @return none */ void read(uint32_t address, int32_t& data); /** * Random read float * @param address start address (uint32_t) * @param data float to read (float&) * @return none */ void read(uint32_t address, float& data); /** * Random read anything * @param address start address (uint32_t) * @param data data to read (void *) * @param size number of bytes to read (uint32_t) * @return none */ void read(uint32_t address, void *data, uint32_t size); /** * Current address read byte * @param data byte to read (int8_t&) * @return none */ void read(int8_t& data); /** * Sequential read byte * @param address start address (uint32_t) * @param data bytes array to read (int8_t[]&) * @param size number of bytes to read (uint32_t) * @return none */ void read(uint32_t address, int8_t *data, uint32_t size); /** * Write byte * @param address start address (uint32_t) * @param data byte to write (int8_t) * @return none */ void write(uint32_t address, int8_t data); /** * Write short * @param address start address (uint32_t) * @param data short to write (int16_t) * @return none */ void write(uint32_t address, int16_t data); /** * Write long * @param address start address (uint32_t) * @param data long to write (int32_t) * @return none */ void write(uint32_t address, int32_t data); /** * Write float * @param address start address (uint32_t) * @param data float to write (float) * @return none */ void write(uint32_t address, float data); /** * Write anything (use the page write mode) * @param address start address (uint32_t) * @param data data to write (void *) * @param size number of bytes to write (uint32_t) * @return none */ void write(uint32_t address, void *data, uint32_t size); /** * Write array of bytes (use the page mode) * @param address start address (uint32_t) * @param data bytes array to write (int8_t[]) * @param size number of bytes to write (uint32_t) * @return none */ void write(uint32_t address, int8_t data[], uint32_t size); /** * Wait eeprom ready * @param none * @return none */ void ready(void); /** * Get eeprom size in bytes * @param none * @return size in bytes (uint32_t) */ uint32_t getSize(void); /** * Get eeprom name * @param none * @return name (const char*) */ const char* getName(void); /** * Clear eeprom (write with 0) * @param none * @return none */ void clear(void); /** * Get the current error number (EEPROM_NoError if no error) * @param none * @return none */ uint8_t getError(void); /** * Get current error message * @param none * @return current error message(std::string) */ std::string getErrorMessage(void) { return(_ErrorMessageEEPROM[_errnum]); } //---------- local variables ---------- private: I2C _i2c; // Local i2c communication interface instance int _address; // Local i2c address uint8_t _errnum; // Error number TypeEeprom _type; // EEPROM type uint8_t _page_write; // Page write size uint8_t _page_number; // Number of page uint32_t _size; // Size in bytes bool checkAddress(uint32_t address); // Check address range static const char * const _name[]; // eeprom name //------------------------------------- }; #endif