Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: 2022_TICE_Electrolyse
DS1820.cpp
- Committer:
- hudakz
- Date:
- 2020-07-20
- Revision:
- 23:74a4ff420541
- Parent:
- 22:16537aa25bd9
- Child:
- 24:d683d826dccd
- Child:
- 25:12178901f65d
File content as of revision 23:74a4ff420541:
/*
* Dallas' DS1820 family temperature sensor.
* This library depends on the OneWire library (Dallas' 1-Wire bus protocol implementation)
* available at <http://developer.mbed.org/users/hudakz/code/OneWire/>
*
* Example of use:
*
* Single sensor.
*
* #include "mbed.h"
* #include "DS1820.h"
*
* Serial pc(USBTX, USBRX);
* DigitalOut led(LED1);
* OneWire oneWire(D8); // substitute D8 with actual mbed pin name connected 1-wire bus
* float temp = 0;
* int result = 0;
*
* int main()
* {
* pc.printf("\r\n--Starting--\r\n");
* if (ds1820.begin()) {
* while (1) {
* ds1820.startConversion(); // start temperature conversion from analog to digital
* ThisThread::sleep_for(1000);// let DS1820 complete the temperature conversion
* result = ds1820.read(temp); // read temperature from DS1820 and perform cyclic redundancy check (CRC)
* switch (result) {
* case 0: // no errors -> 'temp' contains the value of measured temperature
* pc.printf("temp = %3.1f%cC\r\n", temp, 176);
* break;
*
* case 1: // no sensor present -> 'temp' is not updated
* pc.printf("no sensor present\n\r");
* break;
*
* case 2: // CRC error -> 'temp' is not updated
* pc.printf("CRC error\r\n");
* }
*
* led = !led;
* }
* }
* else
* pc.printf("No DS1820 sensor found!\r\n");
* }
*
*
* More sensors connected to the same 1-wire bus.
*
* #include "mbed.h"
* #include "DS1820.h"
*
* #define SENSORS_COUNT 64 // number of DS1820 sensors to be connected to the 1-wire bus (max 256)
*
* Serial pc(USBTX, USBRX);
* DigitalOut led(LED1);
* OneWire oneWire(D8); // substitute D8 with actual mbed pin name connected to the DS1820 data pin
* DS1820* ds1820[SENSORS_COUNT];
* int sensors_found = 0; // counts the actually found DS1820 sensors
* float temp = 0;
* int result = 0;
*
* int main() {
* int i = 0;
*
* pc.printf("\r\n Starting \r\n");
* //Enumerate (i.e. detect) DS1820 sensors on the 1-wire bus
* for(i = 0; i < SENSORS_COUNT; i++) {
* ds1820[i] = new DS1820(&oneWire);
* if(!ds1820[i]->begin()) {
* delete ds1820[i];
* break;
* }
* }
*
* sensors_found = i;
*
* if (sensors_found == 0) {
* pc.printf("No DS1820 sensor found!\r\n");
* return -1;
* }
* else
* pc.printf("Found %d sensors.\r\n", sensors_found);
*
* while(1) {
* pc.printf("-------------------\r\n");
* for(i = 0; i < sensors_found; i++)
* ds1820[i]->startConversion(); // start temperature conversion from analog to digital
* ThisThread::sleep_for(1000); // let DS1820s complete the temperature conversion
* for(int i = 0; i < sensors_found; i++) {
* if(ds1820[i]->isPresent())
* pc.printf("temp[%d] = %3.1f%cC\r\n", i, ds1820[i]->read(), 176); // read temperature
* }
* }
* }
*
*/
#include "DS1820.h"
#define DEBUG 0
//* Initializing static members
uint8_t DS1820::lastAddr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
/**
* @brief Constructs a generic DS1820 sensor
* @note begin() must be called to detect and initialize the actual model
* @param pin: Name of data pin
* @retval
*/
DS1820::DS1820(PinName pin, int sample_point_us /* = 13 */) {
oneWire = new OneWire(pin, sample_point_us);
present = false;
model_s = false;
}
/**
* @brief Constructs a generic DS1820 sensor
* @note begin() must be called to detect and initialize the actual model
* @param pin: Name of data pin
* @retval
*/
DS1820::DS1820(OneWire* wire) :
oneWire(wire) {
present = false;
model_s = false;
}
/**
* @brief Detects and initializes the actual DS1820 model
* @note
* @param
* @retval true: if a DS1820 family sensor was detected and initialized
false: otherwise
*/
bool DS1820::begin(void) {
#if DEBUG
printf("lastAddr =");
for(uint8_t i = 0; i < 8; i++) {
printf(" %x", lastAddr[i]);
}
printf("\r\n");
#endif
if(!oneWire->search(lastAddr)) {
#if DEBUG
printf("No addresses.\r\n");
#endif
oneWire->reset_search();
ThisThread::sleep_for(250);
return false;
}
for (int i = 0; i < 8; i++)
addr[i] = lastAddr[i];
#if DEBUG
printf("ROM =");
for(uint8_t i = 0; i < 8; i++) {
printf(" %x", addr[i]);
}
printf("\r\n");
#endif
if(OneWire::crc8(addr, 7) == addr[7]) {
present = true;
// the first ROM byte indicates which chip
switch(addr[0]) {
case 0x10:
model_s = true;
#if DEBUG
printf("DS18S20 or old DS1820\r\n");
#endif
break;
case 0x28:
model_s = false;
#if DEBUG
printf("DS18B20\r\n");
#endif
break;
case 0x22:
model_s = false;
#if DEBUG
printf("DS1822\r\n");
#endif
break;
default:
present = false;
#if DEBUG
printf("Device doesn't belong to the DS1820 family\r\n");
#endif
return false;
}
return true;
}
else {
#if DEBUG
printf("Invalid CRC!\r\n");
#endif
return false;
}
}
/**
* @brief Informs about presence of a DS1820 sensor.
* @note begin() shall be called before using this function
* if a generic DS1820 instance was created by the user.
* No need to call begin() for a specific DS1820 instance.
* @param
* @retval true: when a DS1820 sensor is present
* false: otherwise
*/
bool DS1820::isPresent(void) {
return present;
}
/**
* @brief Sets temperature-to-digital conversion resolution.
* @note The configuration register allows the user to set the resolution
* of the temperature-to-digital conversion to 9, 10, 11, or 12 bits.
* Defaults to 12-bit resolution for DS18B20.
* DS18S20 allows only 9-bit resolution.
* @param res: Resolution of the temperature-to-digital conversion in bits.
* @retval
*/
void DS1820::setResolution(uint8_t res) {
// keep resolution within limits
if(res > 12)
res = 12;
if(res < 9)
res = 9;
if(model_s)
res = 9;
oneWire->reset();
oneWire->select(addr);
oneWire->write_byte(0xBE); // to read Scratchpad
for(uint8_t i = 0; i < 9; i++) // read Scratchpad bytes
data[i] = oneWire->read_byte();
data[4] |= (res - 9) << 5; // update configuration byte (set resolution)
oneWire->reset();
oneWire->select(addr);
oneWire->write_byte(0x4E); // to write into Scratchpad
for(uint8_t i = 2; i < 5; i++) // write three bytes (2nd, 3rd, 4th) into Scratchpad
oneWire->write_byte(data[i]);
}
/**
* @brief Starts temperature conversion
* @note The time to complete the converion depends on the selected resolution:
* 9-bit resolution -> max conversion time = 93.75ms
* 10-bit resolution -> max conversion time = 187.5ms
* 11-bit resolution -> max conversion time = 375ms
* 12-bit resolution -> max conversion time = 750ms
* @param
* @retval
*/
void DS1820::startConversion(void) {
if(present) {
oneWire->reset();
oneWire->select(addr);
oneWire->write_byte(0x44); //start temperature conversion
}
}
/**
* @brief Reads temperature from the chip's Scratchpad
* @note
* @param
* @retval Floating point temperature value
*/
float DS1820::read(void) {
if(present) {
oneWire->reset();
oneWire->select(addr);
oneWire->write_byte(0xBE); // to read Scratchpad
for(uint8_t i = 0; i < 9; i++) // reading scratchpad registers
data[i] = oneWire->read_byte();
// Convert the raw bytes to a 16-bit unsigned value
uint16_t* p_word = reinterpret_cast < uint16_t * > (&data[0]);
#if DEBUG
printf("raw = %#x\r\n", *p_word);
#endif
if(model_s) {
*p_word = *p_word << 3; // 9-bit resolution
if(data[7] == 0x10) {
// "count remain" gives full 12-bit resolution
*p_word = (*p_word & 0xFFF0) + 12 - data[6];
}
}
else {
uint8_t cfg = (data[4] & 0x60); // default 12-bit resolution
// at lower resolution, the low bits are undefined, so let's clear them
if(cfg == 0x00)
*p_word = *p_word &~7; // 9-bit resolution
else
if(cfg == 0x20)
*p_word = *p_word &~3; // 10-bit resolution
else
if(cfg == 0x40)
*p_word = *p_word &~1; // 11-bit resolution
}
// Convert the raw bytes to a 16-bit signed fixed point value :
// 1 sign bit, 7 integer bits, 8 fractional bits (two’s compliment
// and the LSB of the 16-bit binary number represents 1/256th of a unit).
*p_word = *p_word << 4;
// Convert to floating point value
return(toFloat(*p_word));
}
else
return 0;
}
/**
* @brief Reads temperature from chip's scratchpad.
* @note Verifies data integrity by calculating cyclic redundancy check (CRC).
* If the calculated CRC dosn't match the one stored in chip's scratchpad register
* the temperature variable is not updated and CRC error code is returned.
* @param temp: The temperature variable to be updated by this routine.
* (It's passed as reference to floating point.)
* @retval error code:
* 0 - no errors ('temp' contains the temperature measured)
* 1 - sensor not present ('temp' is not updated)
* 2 - CRC error ('temp' is not updated)
*/
uint8_t DS1820::read(float& temp) {
if(present) {
oneWire->reset();
oneWire->select(addr);
oneWire->write_byte(0xBE); // to read Scratchpad
for(uint8_t i = 0; i < 9; i++) // reading scratchpad registers
data[i] = oneWire->read_byte();
if(oneWire->crc8(data, 8) != data[8]) // if calculated CRC does not match the stored one
{
#if DEBUG
for(uint8_t i = 0; i < 9; i++)
printf("data[%d]=0x%.2x\r\n", i, data[i]);
#endif
return 2; // return with CRC error
}
// Convert the raw bytes to a 16bit unsigned value
uint16_t* p_word = reinterpret_cast < uint16_t * > (&data[0]);
#if DEBUG
printf("raw = %#x\r\n", *p_word);
#endif
if(model_s) {
*p_word = *p_word << 3; // 9 bit resolution, max conversion time = 750ms
if(data[7] == 0x10) {
// "count remain" gives full 12 bit resolution
*p_word = (*p_word & 0xFFF0) + 12 - data[6];
}
// Convert the raw bytes to a 16bit signed fixed point value :
// 1 sign bit, 7 integer bits, 8 fractional bits (two's compliment
// and the LSB of the 16bit binary number represents 1/256th of a unit).
*p_word = *p_word << 4;
// Convert to floating point value
temp = toFloat(*p_word);
return 0; // return with no errors
}
else {
uint8_t cfg = (data[4] & 0x60); // default 12bit resolution, max conversion time = 750ms
// at lower resolution, the low bits are undefined, so let's clear them
if(cfg == 0x00)
*p_word = *p_word &~7; // 9bit resolution, max conversion time = 93.75ms
else
if(cfg == 0x20)
*p_word = *p_word &~3; // 10bit resolution, max conversion time = 187.5ms
else
if(cfg == 0x40)
*p_word = *p_word &~1; // 11bit resolution, max conversion time = 375ms
// Convert the raw bytes to a 16bit signed fixed point value :
// 1 sign bit, 7 integer bits, 8 fractional bits (two's complement
// and the LSB of the 16bit binary number represents 1/256th of a unit).
*p_word = *p_word << 4;
// Convert to floating point value
temp = toFloat(*p_word);
return 0; // return with no errors
}
}
else
return 1; // error, sensor is not present
}
/**
* @brief Converts a 16-bit signed fixed point value to floating point value
* @note The 16-bit unsigned integer represnts actually
* a 16-bit signed fixed point value:
* 1 sign bit, 7 integer bits, 8 fractional bits (two’s complement
* and the LSB of the 16-bit binary number represents 1/256th of a unit).
* @param 16-bit unsigned integer
* @retval Floating point value
*/
float DS1820::toFloat(uint16_t word) {
if(word & 0x8000)
return (-float(uint16_t(~word + 1)) / 256.0f);
else
return (float(word) / 256.0f);
}