ECE4180 Final Project
Dependencies: LSM9DS1_Library Motor mbed-rtos mbed HC_SR04_Ultrasonic_Library
Fork of IMURoomba4_ThrowSumMo by
main.cpp
- Committer:
- jplager3
- Date:
- 2017-05-02
- Revision:
- 0:c29fc80c3ca3
- Child:
- 1:6b8a201f4f90
File content as of revision 0:c29fc80c3ca3:
#include "mbed.h" #include "LSM9DS1.h" #include "rtos.h" //#include "SDFileSystem.h" #include "Motor.h" //#include "wave_player.h" #define PI 3.14159 // Earth's magnetic field varies by location. Add or subtract // a declination to get a more accurate heading. Calculate // your's here: // http://www.ngdc.noaa.gov/geomag-web/#declination #define DECLINATION -4.94 // Declination (degrees) in Atlanta,GA. //collab test Serial pc(USBTX, USBRX); //RawSerial pc(USBTX, USBRX); Serial dev(p28,p27); // //RawSerial dev(p28,p27); //tx, rx DigitalOut myled(LED1); DigitalOut led2(LED2); DigitalOut led4(LED4); //IR sensors on p19(front) & p20 (right) AnalogIn IR1(p19); AnalogIn IR2(p20); //L and R DC motors Motor Left(p21, p14, p13); // green wires. pwm, fwd, rev, add ", 1" for braking Motor Right(p22, p12, p11); // red wires // Speaker out AnalogOut DACout(p18); //must(?) be p18 //SDFileSystem sd(p5, p6, p7, p8, "sd"); //SD card Thread thread1; Thread thread2; Mutex BTmutex; Mutex mutex; // Calculate pitch, roll, and heading. // Pitch/roll calculations taken from this app note: // http://cache.freescale.com/files/sensors/doc/app_note/AN3461.pdf?fpsp=1 // Heading calculations taken from this app note: // http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense_Brochures-documents/Magnetic__Literature_Application_notes-documents/AN203_Compass_Heading_Using_Magnetometers.pdf void printAttitude(float ax, float ay, float az, float mx, float my, float mz) { float roll = atan2(ay, az); float pitch = atan2(-ax, sqrt(ay * ay + az * az)); // touchy trig stuff to use arctan to get compass heading (scale is 0..360) mx = -mx; float heading; if (my == 0.0) heading = (mx < 0.0) ? 180.0 : 0.0; else heading = atan2(mx, my)*360.0/(2.0*PI); //pc.printf("heading atan=%f \n\r",heading); heading -= DECLINATION; //correct for geo location if(heading>180.0) heading = heading - 360.0; else if(heading<-180.0) heading = 360.0 + heading; else if(heading<0.0) heading = 360.0 + heading; // Convert everything from radians to degrees: //heading *= 180.0 / PI; pitch *= 180.0 / PI; roll *= 180.0 / PI; //~pc.printf("Pitch: %f, Roll: %f degress\n\r",pitch,roll); //~pc.printf("Magnetic Heading: %f degress\n\r",heading); } /* void dev_recv() { led2 = !led2; while(dev.readable()) { pc.putc(dev.getc()); } } void pc_recv() { led4 = !led4; while(pc.readable()) { dev.putc(pc.getc()); } }*/ // Driving Methods void forward(float speed){ Left.speed(speed); Right.speed(speed); } void reverse(float speed){ Left.speed(-speed); Right.speed(-speed); } void turnRight(float speed){ Left.speed(speed); Right.speed(-speed); //wait(0.7); } void turnLeft(float speed){ Left.speed(-speed); Right.speed(speed); //wait(0.7); } void stop(){ Left.speed(0.0); Right.speed(0.0); } void IMU(){ //IMU setup LSM9DS1 IMU(p9, p10, 0xD6, 0x3C); // this executes. Pins are correct. Changing them causes fault IMU.begin(); if (!IMU.begin()) { led2=1; pc.printf("Failed to communicate with LSM9DS1.\n"); } IMU.calibrate(1); IMU.calibrateMag(0); //bluetooth setup pc.baud(9600); dev.baud(9600); /*pc.attach(&pc_recv, Serial::RxIrq); dev.attach(&dev_recv, Serial::RxIrq);*/ while(1) { //myled = 1; while(!IMU.magAvailable(X_AXIS)); IMU.readMag(); //myled = 0; while(!IMU.accelAvailable()); IMU.readAccel(); while(!IMU.gyroAvailable()); IMU.readGyro(); BTmutex.lock(); pc.puts(" X axis Y axis Z axis\n\r"); dev.puts(" X axis Y axis Z axis\n\r"); pc.printf("gyro: %9f %9f %9f in deg/s\n\r", IMU.calcGyro(IMU.gx), IMU.calcGyro(IMU.gy), IMU.calcGyro(IMU.gz)); pc.printf("accel: %9f %9f %9f in Gs\n\r", IMU.calcAccel(IMU.ax), IMU.calcAccel(IMU.ay), IMU.calcAccel(IMU.az)); pc.printf("mag: %9f %9f %9f in gauss\n\r", IMU.calcMag(IMU.mx), IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz)); dev.printf("mag: %9f %9f %9f in gauss\n\r", IMU.calcMag(IMU.mx), IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz)); printAttitude(IMU.calcAccel(IMU.ax), IMU.calcAccel(IMU.ay), IMU.calcAccel(IMU.az), IMU.calcMag(IMU.mx), IMU.calcMag(IMU.my), IMU.calcMag(IMU.mz)); BTmutex.unlock(); myled = 1; wait(0.5); myled = 0; wait(0.5); } } void defaultDrive(){ //default behavior for robot //Drive forward until object detected. Stop, turn left, then drive until IR2 says path is clear, then turn right to go around object. forward(0.2); if(IR1 > 0.85) { // this is threshold for collision stop(); Thread::wait(250); // check if path to right is clear if(IR2 < .4){ turnRight(0.3); while(IR1>0.4){}; //turn until path in front is clear stop(); } else { turnLeft(0.3); while(IR1>0.4){}; //execute turn until front IR says path is clear // consider placing Thread::wait(??) within loop to account for IR polling? stop(); //Thread::wait(250); } Thread::wait(250); forward(0.2); /*PICK UP FROM HERE Implement logic to control two scenarios: 1) Roomba has detected obstacle in front, but Right is clear. Has turned right and needs to continue driving 2) Roomba has detected obstacle, Right is blocked. Turn left & drive until Right is clear. Turn back to right (orig. Fwd heading) and continue. 2a) Consider more complex routing to circle around obstacle */ /* //while(IR2>0.5 && IR1<0.8){}; // drive until roomba has passed object. while(IR1<0.8){}; stop(); Thread::wait(250); //check that path in front is clear if(IR1>0.8){ // if not clear, turn left again until front is clear turnLeft(0.3); while(IR1>0.4){} stop(); Thread::wait(250); } else { } Thread::wait(200); while(IR2>0.85 ) forward(0.3); // drive until */ } } int main() { thread1.start(IMU); // start the IMU thread //thread2.start(defaultDrive); forward(0.3); led4=1; while(1){ } }