Basic xdot code to check how many memory is available for user APP after initializing libxdot lorawan stack
src/dot_util.cpp
- Committer:
- jose_23991
- Date:
- 2021-07-07
- Revision:
- 43:97fd5b4de956
File content as of revision 43:97fd5b4de956:
#include "dot_util.h" #if defined(TARGET_XDOT_L151CC) #include "xdot_low_power.h" #endif #if defined(TARGET_MTS_MDOT_F411RE) uint32_t portA[6]; uint32_t portB[6]; uint32_t portC[6]; uint32_t portD[6]; uint32_t portH[6]; #endif lora::ChannelPlan* create_channel_plan() { lora::ChannelPlan* plan; #if CHANNEL_PLAN == CP_US915 plan = new lora::ChannelPlan_US915(); #elif CHANNEL_PLAN == CP_AU915 plan = new lora::ChannelPlan_AU915(); #elif CHANNEL_PLAN == CP_EU868 plan = new lora::ChannelPlan_EU868(); #elif CHANNEL_PLAN == CP_KR920 plan = new lora::ChannelPlan_KR920(); #elif CHANNEL_PLAN == CP_IN865 plan = new lora::ChannelPlan_IN865(); #elif CHANNEL_PLAN == CP_AS923 plan = new lora::ChannelPlan_AS923(); #elif CHANNEL_PLAN == CP_AS923_2 plan = new lora::ChannelPlan_AS923(); #elif CHANNEL_PLAN == CP_AS923_3 plan = new lora::ChannelPlan_AS923(); #elif CHANNEL_PLAN == CP_AS923_JAPAN plan = new lora::ChannelPlan_AS923_Japan(); #elif CHANNEL_PLAN == CP_AS923_JAPAN1 plan = new lora::ChannelPlan_AS923_Japan1(); #elif CHANNEL_PLAN == CP_AS923_JAPAN2 plan = new lora::ChannelPlan_AS923_Japan2(); #elif CHANNEL_PLAN == CP_RU864 plan = new lora::ChannelPlan_RU864(); #else plan = new lora::ChannelPlan_US915(); #endif return plan; } void display_config() { // display configuration and library version information logInfo("====================="); logInfo("general configuration"); logInfo("====================="); logInfo("version ------------------ %s", dot->getId().c_str()); logInfo("device ID/EUI ------------ %s", mts::Text::bin2hexString(dot->getDeviceId()).c_str()); logInfo("default channel plan ----- %s", mDot::FrequencyBandStr(dot->getDefaultFrequencyBand()).c_str()); logInfo("current channel plan ----- %s", mDot::FrequencyBandStr(dot->getFrequencyBand()).c_str()); if (lora::ChannelPlan::IsPlanFixed(dot->getFrequencyBand())) { logInfo("frequency sub band ------- %u", dot->getFrequencySubBand()); } std::string network_mode_str("Undefined"); uint8_t network_mode = dot->getPublicNetwork(); if (network_mode == lora::PRIVATE_MTS) network_mode_str = "Private MTS"; else if (network_mode == lora::PUBLIC_LORAWAN) network_mode_str = "Public LoRaWAN"; else if (network_mode == lora::PRIVATE_LORAWAN) network_mode_str = "Private LoRaWAN"; logInfo("public network ----------- %s", network_mode_str.c_str()); logInfo("========================="); logInfo("credentials configuration"); logInfo("========================="); logInfo("device class ------------- %s", dot->getClass().c_str()); logInfo("network join mode -------- %s", mDot::JoinModeStr(dot->getJoinMode()).c_str()); if (dot->getJoinMode() == mDot::MANUAL || dot->getJoinMode() == mDot::PEER_TO_PEER) { logInfo("network address ---------- %s", mts::Text::bin2hexString(dot->getNetworkAddress()).c_str()); logInfo("network session key------- %s", mts::Text::bin2hexString(dot->getNetworkSessionKey()).c_str()); logInfo("data session key---------- %s", mts::Text::bin2hexString(dot->getDataSessionKey()).c_str()); } else { logInfo("network name ------------- %s", dot->getNetworkName().c_str()); logInfo("network phrase ----------- %s", dot->getNetworkPassphrase().c_str()); logInfo("network EUI -------------- %s", mts::Text::bin2hexString(dot->getNetworkId()).c_str()); logInfo("network KEY -------------- %s", mts::Text::bin2hexString(dot->getNetworkKey()).c_str()); } logInfo("========================"); logInfo("communication parameters"); logInfo("========================"); if (dot->getJoinMode() == mDot::PEER_TO_PEER) { logInfo("TX frequency ------------- %lu", dot->getTxFrequency()); } else { logInfo("acks --------------------- %s, %u attempts", dot->getAck() > 0 ? "on" : "off", dot->getAck()); } logInfo("TX datarate -------------- %s", mDot::DataRateStr(dot->getTxDataRate()).c_str()); logInfo("TX power ----------------- %lu dBm", dot->getTxPower()); logInfo("antenna gain ------------- %u dBm", dot->getAntennaGain()); logInfo("LBT ---------------------- %s", dot->getLbtTimeUs() ? "on" : "off"); if (dot->getLbtTimeUs()) { logInfo("LBT time ----------------- %lu us", dot->getLbtTimeUs()); logInfo("LBT threshold ------------ %d dBm", dot->getLbtThreshold()); } } void update_ota_config_name_phrase(std::string network_name, std::string network_passphrase, uint8_t frequency_sub_band, lora::NetworkType network_type, uint8_t ack) { std::string current_network_name = dot->getNetworkName(); std::string current_network_passphrase = dot->getNetworkPassphrase(); uint8_t current_frequency_sub_band = dot->getFrequencySubBand(); uint8_t current_network_type = dot->getPublicNetwork(); uint8_t current_ack = dot->getAck(); if (current_network_name != network_name) { logInfo("changing network name from \"%s\" to \"%s\"", current_network_name.c_str(), network_name.c_str()); if (dot->setNetworkName(network_name) != mDot::MDOT_OK) { logError("failed to set network name to \"%s\"", network_name.c_str()); } } if (current_network_passphrase != network_passphrase) { logInfo("changing network passphrase from \"%s\" to \"%s\"", current_network_passphrase.c_str(), network_passphrase.c_str()); if (dot->setNetworkPassphrase(network_passphrase) != mDot::MDOT_OK) { logError("failed to set network passphrase to \"%s\"", network_passphrase.c_str()); } } if (lora::ChannelPlan::IsPlanFixed(dot->getFrequencyBand())) { if (current_frequency_sub_band != frequency_sub_band) { logInfo("changing frequency sub band from %u to %u", current_frequency_sub_band, frequency_sub_band); if (dot->setFrequencySubBand(frequency_sub_band) != mDot::MDOT_OK) { logError("failed to set frequency sub band to %u", frequency_sub_band); } } } if (current_network_type != network_type) { if (dot->setPublicNetwork(network_type) != mDot::MDOT_OK) { logError("failed to set network type"); } } if (current_ack != ack) { logInfo("changing acks from %u to %u", current_ack, ack); if (dot->setAck(ack) != mDot::MDOT_OK) { logError("failed to set acks to %u", ack); } } } void update_ota_config_id_key(uint8_t *network_id, uint8_t *network_key, uint8_t frequency_sub_band, lora::NetworkType network_type, uint8_t ack) { std::vector<uint8_t> current_network_id = dot->getNetworkId(); std::vector<uint8_t> current_network_key = dot->getNetworkKey(); uint8_t current_frequency_sub_band = dot->getFrequencySubBand(); uint8_t current_network_type = dot->getPublicNetwork(); uint8_t current_ack = dot->getAck(); std::vector<uint8_t> network_id_vector(network_id, network_id + 8); std::vector<uint8_t> network_key_vector(network_key, network_key + 16); if (current_network_id != network_id_vector) { logInfo("changing network ID from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_network_id).c_str(), mts::Text::bin2hexString(network_id_vector).c_str()); if (dot->setNetworkId(network_id_vector) != mDot::MDOT_OK) { logError("failed to set network ID to \"%s\"", mts::Text::bin2hexString(network_id_vector).c_str()); } } if (current_network_key != network_key_vector) { logInfo("changing network KEY from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_network_key).c_str(), mts::Text::bin2hexString(network_key_vector).c_str()); if (dot->setNetworkKey(network_key_vector) != mDot::MDOT_OK) { logError("failed to set network KEY to \"%s\"", mts::Text::bin2hexString(network_key_vector).c_str()); } } if (lora::ChannelPlan::IsPlanFixed(dot->getFrequencyBand())) { if (current_frequency_sub_band != frequency_sub_band) { logInfo("changing frequency sub band from %u to %u", current_frequency_sub_band, frequency_sub_band); if (dot->setFrequencySubBand(frequency_sub_band) != mDot::MDOT_OK) { logError("failed to set frequency sub band to %u", frequency_sub_band); } } } if (current_network_type != network_type) { if (dot->setPublicNetwork(network_type) != mDot::MDOT_OK) { logError("failed to set network type"); } } if (current_ack != ack) { logInfo("changing acks from %u to %u", current_ack, ack); if (dot->setAck(ack) != mDot::MDOT_OK) { logError("failed to set acks to %u", ack); } } } void update_manual_config(uint8_t *network_address, uint8_t *network_session_key, uint8_t *data_session_key, uint8_t frequency_sub_band, lora::NetworkType network_type, uint8_t ack) { std::vector<uint8_t> current_network_address = dot->getNetworkAddress(); std::vector<uint8_t> current_network_session_key = dot->getNetworkSessionKey(); std::vector<uint8_t> current_data_session_key = dot->getDataSessionKey(); uint8_t current_frequency_sub_band = dot->getFrequencySubBand(); uint8_t current_network_type = dot->getPublicNetwork(); uint8_t current_ack = dot->getAck(); std::vector<uint8_t> network_address_vector(network_address, network_address + 4); std::vector<uint8_t> network_session_key_vector(network_session_key, network_session_key + 16); std::vector<uint8_t> data_session_key_vector(data_session_key, data_session_key + 16); if (current_network_address != network_address_vector) { logInfo("changing network address from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_network_address).c_str(), mts::Text::bin2hexString(network_address_vector).c_str()); if (dot->setNetworkAddress(network_address_vector) != mDot::MDOT_OK) { logError("failed to set network address to \"%s\"", mts::Text::bin2hexString(network_address_vector).c_str()); } } if (current_network_session_key != network_session_key_vector) { logInfo("changing network session key from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_network_session_key).c_str(), mts::Text::bin2hexString(network_session_key_vector).c_str()); if (dot->setNetworkSessionKey(network_session_key_vector) != mDot::MDOT_OK) { logError("failed to set network session key to \"%s\"", mts::Text::bin2hexString(network_session_key_vector).c_str()); } } if (current_data_session_key != data_session_key_vector) { logInfo("changing data session key from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_data_session_key).c_str(), mts::Text::bin2hexString(data_session_key_vector).c_str()); if (dot->setDataSessionKey(data_session_key_vector) != mDot::MDOT_OK) { logError("failed to set data session key to \"%s\"", mts::Text::bin2hexString(data_session_key_vector).c_str()); } } if (current_frequency_sub_band != frequency_sub_band) { logInfo("changing frequency sub band from %u to %u", current_frequency_sub_band, frequency_sub_band); if (dot->setFrequencySubBand(frequency_sub_band) != mDot::MDOT_OK) { logError("failed to set frequency sub band to %u", frequency_sub_band); } } if (current_network_type != network_type) { if (dot->setPublicNetwork(network_type) != mDot::MDOT_OK) { logError("failed to set network type"); } } if (current_ack != ack) { logInfo("changing acks from %u to %u", current_ack, ack); if (dot->setAck(ack) != mDot::MDOT_OK) { logError("failed to set acks to %u", ack); } } } void update_peer_to_peer_config(uint8_t *network_address, uint8_t *network_session_key, uint8_t *data_session_key, uint32_t tx_frequency, uint8_t tx_datarate, uint8_t tx_power) { std::vector<uint8_t> current_network_address = dot->getNetworkAddress(); std::vector<uint8_t> current_network_session_key = dot->getNetworkSessionKey(); std::vector<uint8_t> current_data_session_key = dot->getDataSessionKey(); uint32_t current_tx_frequency = dot->getTxFrequency(); uint8_t current_tx_datarate = dot->getTxDataRate(); uint8_t current_tx_power = dot->getTxPower(); std::vector<uint8_t> network_address_vector(network_address, network_address + 4); std::vector<uint8_t> network_session_key_vector(network_session_key, network_session_key + 16); std::vector<uint8_t> data_session_key_vector(data_session_key, data_session_key + 16); if (current_network_address != network_address_vector) { logInfo("changing network address from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_network_address).c_str(), mts::Text::bin2hexString(network_address_vector).c_str()); if (dot->setNetworkAddress(network_address_vector) != mDot::MDOT_OK) { logError("failed to set network address to \"%s\"", mts::Text::bin2hexString(network_address_vector).c_str()); } } if (current_network_session_key != network_session_key_vector) { logInfo("changing network session key from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_network_session_key).c_str(), mts::Text::bin2hexString(network_session_key_vector).c_str()); if (dot->setNetworkSessionKey(network_session_key_vector) != mDot::MDOT_OK) { logError("failed to set network session key to \"%s\"", mts::Text::bin2hexString(network_session_key_vector).c_str()); } } if (current_data_session_key != data_session_key_vector) { logInfo("changing data session key from \"%s\" to \"%s\"", mts::Text::bin2hexString(current_data_session_key).c_str(), mts::Text::bin2hexString(data_session_key_vector).c_str()); if (dot->setDataSessionKey(data_session_key_vector) != mDot::MDOT_OK) { logError("failed to set data session key to \"%s\"", mts::Text::bin2hexString(data_session_key_vector).c_str()); } } if (current_tx_frequency != tx_frequency) { logInfo("changing TX frequency from %lu to %lu", current_tx_frequency, tx_frequency); if (dot->setTxFrequency(tx_frequency) != mDot::MDOT_OK) { logError("failed to set TX frequency to %lu", tx_frequency); } } if (current_tx_datarate != tx_datarate) { logInfo("changing TX datarate from %u to %u", current_tx_datarate, tx_datarate); if (dot->setTxDataRate(tx_datarate) != mDot::MDOT_OK) { logError("failed to set TX datarate to %u", tx_datarate); } } if (current_tx_power != tx_power) { logInfo("changing TX power from %u to %u", current_tx_power, tx_power); if (dot->setTxPower(tx_power) != mDot::MDOT_OK) { logError("failed to set TX power to %u", tx_power); } } } void update_network_link_check_config(uint8_t link_check_count, uint8_t link_check_threshold) { uint8_t current_link_check_count = dot->getLinkCheckCount(); uint8_t current_link_check_threshold = dot->getLinkCheckThreshold(); if (current_link_check_count != link_check_count) { logInfo("changing link check count from %u to %u", current_link_check_count, link_check_count); if (dot->setLinkCheckCount(link_check_count) != mDot::MDOT_OK) { logError("failed to set link check count to %u", link_check_count); } } if (current_link_check_threshold != link_check_threshold) { logInfo("changing link check threshold from %u to %u", current_link_check_threshold, link_check_threshold); if (dot->setLinkCheckThreshold(link_check_threshold) != mDot::MDOT_OK) { logError("failed to set link check threshold to %u", link_check_threshold); } } } void join_network() { int32_t j_attempts = 0; int32_t ret = mDot::MDOT_ERROR; // attempt to join the network while (ret != mDot::MDOT_OK) { logInfo("attempt %d to join network", ++j_attempts); ret = dot->joinNetwork(); if (ret != mDot::MDOT_OK) { logError("failed to join network %d:%s", ret, mDot::getReturnCodeString(ret).c_str()); // in some frequency bands we need to wait until another channel is available before transmitting again uint32_t delay_s = (dot->getNextTxMs() / 1000) + 1; if (delay_s < 5) { logInfo("waiting %lu s until next free channel", delay_s); ThisThread::sleep_for(std::chrono::seconds(delay_s)); } else { logInfo("sleeping %lu s until next free channel", delay_s); dot->sleep(delay_s, mDot::RTC_ALARM, false); } } } } void sleep_wake_rtc_only(bool deepsleep) { // in some frequency bands we need to wait until another channel is available before transmitting again // wait at least 10s between transmissions uint32_t delay_s = dot->getNextTxMs() / 1000; if (delay_s < 10) { delay_s = 10; } logInfo("%ssleeping %lus", deepsleep ? "deep" : "", delay_s); logInfo("application will %s after waking up", deepsleep ? "execute from beginning" : "resume"); // lowest current consumption in sleep mode can only be achieved by configuring IOs as analog inputs with no pull resistors // the library handles all internal IOs automatically, but the external IOs are the application's responsibility // certain IOs may require internal pullup or pulldown resistors because leaving them floating would cause extra current consumption // for xDot: UART_*, I2C_*, SPI_*, GPIO*, WAKE // for mDot: XBEE_*, USBTX, USBRX, PB_0, PB_1 // steps are: // * save IO configuration // * configure IOs to reduce current consumption // * sleep // * restore IO configuration if (! deepsleep) { // save the GPIO state. sleep_save_io(); // configure GPIOs for lowest current sleep_configure_io(); } // go to sleep/deepsleep for delay_s seconds and wake using the RTC alarm dot->sleep(delay_s, mDot::RTC_ALARM, deepsleep); if (! deepsleep) { // restore the GPIO state. sleep_restore_io(); } } void sleep_wake_interrupt_only(bool deepsleep) { #if defined (TARGET_XDOT_L151CC) if (deepsleep) { // for xDot, WAKE pin (connected to S2 on xDot-DK) is the only pin that can wake the processor from deepsleep // it is automatically configured when INTERRUPT or RTC_ALARM_OR_INTERRUPT is the wakeup source and deepsleep is true in the mDot::sleep call } else { // configure WAKE pin (connected to S2 on xDot-DK) as the pin that will wake the xDot from low power modes // other pins can be confgured instead: GPIO0-3 or UART_RX dot->setWakePin(WAKE); } logInfo("%ssleeping until interrupt on %s pin", deepsleep ? "deep" : "", deepsleep ? "WAKE" : mDot::pinName2Str(dot->getWakePin()).c_str()); #else if (deepsleep) { // for mDot, XBEE_DIO7 pin is the only pin that can wake the processor from deepsleep // it is automatically configured when INTERRUPT or RTC_ALARM_OR_INTERRUPT is the wakeup source and deepsleep is true in the mDot::sleep call } else { // configure XBEE_DIO7 pin as the pin that will wake the mDot from low power modes // other pins can be confgured instead: XBEE_DIO2-6, XBEE_DI8, XBEE_DIN dot->setWakePin(XBEE_DIO7); } logInfo("%ssleeping until interrupt on %s pin", deepsleep ? "deep" : "", deepsleep ? "DIO7" : mDot::pinName2Str(dot->getWakePin()).c_str()); #endif logInfo("application will %s after waking up", deepsleep ? "execute from beginning" : "resume"); // lowest current consumption in sleep mode can only be achieved by configuring IOs as analog inputs with no pull resistors // the library handles all internal IOs automatically, but the external IOs are the application's responsibility // certain IOs may require internal pullup or pulldown resistors because leaving them floating would cause extra current consumption // for xDot: UART_*, I2C_*, SPI_*, GPIO*, WAKE // for mDot: XBEE_*, USBTX, USBRX, PB_0, PB_1 // steps are: // * save IO configuration // * configure IOs to reduce current consumption // * sleep // * restore IO configuration if (! deepsleep) { // save the GPIO state. sleep_save_io(); // configure GPIOs for lowest current sleep_configure_io(); } // go to sleep/deepsleep and wake on rising edge of configured wake pin (only the WAKE pin in deepsleep) // since we're not waking on the RTC alarm, the interval is ignored dot->sleep(0, mDot::INTERRUPT, deepsleep); if (! deepsleep) { // restore the GPIO state. sleep_restore_io(); } } void sleep_wake_rtc_or_interrupt(bool deepsleep) { // in some frequency bands we need to wait until another channel is available before transmitting again // wait at least 10s between transmissions uint32_t delay_s = dot->getNextTxMs() / 1000; if (delay_s < 10) { delay_s = 10; } #if defined (TARGET_XDOT_L151CC) if (deepsleep) { // for xDot, WAKE pin (connected to S2 on xDot-DK) is the only pin that can wake the processor from deepsleep // it is automatically configured when INTERRUPT or RTC_ALARM_OR_INTERRUPT is the wakeup source and deepsleep is true in the mDot::sleep call } else { // configure WAKE pin (connected to S2 on xDot-DK) as the pin that will wake the xDot from low power modes // other pins can be confgured instead: GPIO0-3 or UART_RX dot->setWakePin(WAKE); } logInfo("%ssleeping %lus or until interrupt on %s pin", deepsleep ? "deep" : "", delay_s, deepsleep ? "WAKE" : mDot::pinName2Str(dot->getWakePin()).c_str()); #else if (deepsleep) { // for mDot, XBEE_DIO7 pin is the only pin that can wake the processor from deepsleep // it is automatically configured when INTERRUPT or RTC_ALARM_OR_INTERRUPT is the wakeup source and deepsleep is true in the mDot::sleep call } else { // configure XBEE_DIO7 pin as the pin that will wake the mDot from low power modes // other pins can be confgured instead: XBEE_DIO2-6, XBEE_DI8, XBEE_DIN dot->setWakePin(XBEE_DIO7); } logInfo("%ssleeping %lus or until interrupt on %s pin", deepsleep ? "deep" : "", delay_s, deepsleep ? "DIO7" : mDot::pinName2Str(dot->getWakePin()).c_str()); #endif logInfo("application will %s after waking up", deepsleep ? "execute from beginning" : "resume"); // lowest current consumption in sleep mode can only be achieved by configuring IOs as analog inputs with no pull resistors // the library handles all internal IOs automatically, but the external IOs are the application's responsibility // certain IOs may require internal pullup or pulldown resistors because leaving them floating would cause extra current consumption // for xDot: UART_*, I2C_*, SPI_*, GPIO*, WAKE // for mDot: XBEE_*, USBTX, USBRX, PB_0, PB_1 // steps are: // * save IO configuration // * configure IOs to reduce current consumption // * sleep // * restore IO configuration if (! deepsleep) { // save the GPIO state. sleep_save_io(); // configure GPIOs for lowest current sleep_configure_io(); } // go to sleep/deepsleep and wake using the RTC alarm after delay_s seconds or rising edge of configured wake pin (only the WAKE pin in deepsleep) // whichever comes first will wake the xDot dot->sleep(delay_s, mDot::RTC_ALARM_OR_INTERRUPT, deepsleep); if (! deepsleep) { // restore the GPIO state. sleep_restore_io(); } } void sleep_save_io() { #if defined(TARGET_XDOT_L151CC) xdot_save_gpio_state(); #else portA[0] = GPIOA->MODER; portA[1] = GPIOA->OTYPER; portA[2] = GPIOA->OSPEEDR; portA[3] = GPIOA->PUPDR; portA[4] = GPIOA->AFR[0]; portA[5] = GPIOA->AFR[1]; portB[0] = GPIOB->MODER; portB[1] = GPIOB->OTYPER; portB[2] = GPIOB->OSPEEDR; portB[3] = GPIOB->PUPDR; portB[4] = GPIOB->AFR[0]; portB[5] = GPIOB->AFR[1]; portC[0] = GPIOC->MODER; portC[1] = GPIOC->OTYPER; portC[2] = GPIOC->OSPEEDR; portC[3] = GPIOC->PUPDR; portC[4] = GPIOC->AFR[0]; portC[5] = GPIOC->AFR[1]; portD[0] = GPIOD->MODER; portD[1] = GPIOD->OTYPER; portD[2] = GPIOD->OSPEEDR; portD[3] = GPIOD->PUPDR; portD[4] = GPIOD->AFR[0]; portD[5] = GPIOD->AFR[1]; portH[0] = GPIOH->MODER; portH[1] = GPIOH->OTYPER; portH[2] = GPIOH->OSPEEDR; portH[3] = GPIOH->PUPDR; portH[4] = GPIOH->AFR[0]; portH[5] = GPIOH->AFR[1]; #endif } void sleep_configure_io() { #if defined(TARGET_XDOT_L151CC) // GPIO Ports Clock Enable __GPIOA_CLK_ENABLE(); __GPIOB_CLK_ENABLE(); __GPIOC_CLK_ENABLE(); __GPIOH_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct; // UART1_TX, UART1_RTS & UART1_CTS to analog nopull - RX could be a wakeup source GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_11 | GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); // I2C_SDA & I2C_SCL to analog nopull GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); // SPI_MOSI, SPI_MISO, SPI_SCK, & SPI_NSS to analog nopull GPIO_InitStruct.Pin = GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); // iterate through potential wake pins - leave the configured wake pin alone if one is needed if (dot->getWakePin() != WAKE || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } if (dot->getWakePin() != GPIO0 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } if (dot->getWakePin() != GPIO1 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } if (dot->getWakePin() != GPIO2 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } if (dot->getWakePin() != GPIO3 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } if (dot->getWakePin() != UART1_RX || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_10; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } #else /* GPIO Ports Clock Enable */ __GPIOA_CLK_ENABLE(); __GPIOB_CLK_ENABLE(); __GPIOC_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct; // XBEE_DOUT, XBEE_DIN, XBEE_DO8, XBEE_RSSI, USBTX, USBRX, PA_12, PA_13, PA_14 & PA_15 to analog nopull GPIO_InitStruct.Pin = GPIO_PIN_2 | GPIO_PIN_6 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); // PB_0, PB_1, PB_3 & PB_4 to analog nopull GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_3 | GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); // PC_9 & PC_13 to analog nopull GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); // iterate through potential wake pins - leave the configured wake pin alone if one is needed // XBEE_DIN - PA3 // XBEE_DIO2 - PA5 // XBEE_DIO3 - PA4 // XBEE_DIO4 - PA7 // XBEE_DIO5 - PC1 // XBEE_DIO6 - PA1 // XBEE_DIO7 - PA0 // XBEE_SLEEPRQ - PA11 if (dot->getWakePin() != XBEE_DIN || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } if (dot->getWakePin() != XBEE_DIO2 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } if (dot->getWakePin() != XBEE_DIO3 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } if (dot->getWakePin() != XBEE_DIO4 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } if (dot->getWakePin() != XBEE_DIO5 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); } if (dot->getWakePin() != XBEE_DIO6 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } if (dot->getWakePin() != XBEE_DIO7 || dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } if (dot->getWakePin() != XBEE_SLEEPRQ|| dot->getWakeMode() == mDot::RTC_ALARM) { GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } #endif } void sleep_restore_io() { #if defined(TARGET_XDOT_L151CC) xdot_restore_gpio_state(); #else GPIOA->MODER = portA[0]; GPIOA->OTYPER = portA[1]; GPIOA->OSPEEDR = portA[2]; GPIOA->PUPDR = portA[3]; GPIOA->AFR[0] = portA[4]; GPIOA->AFR[1] = portA[5]; GPIOB->MODER = portB[0]; GPIOB->OTYPER = portB[1]; GPIOB->OSPEEDR = portB[2]; GPIOB->PUPDR = portB[3]; GPIOB->AFR[0] = portB[4]; GPIOB->AFR[1] = portB[5]; GPIOC->MODER = portC[0]; GPIOC->OTYPER = portC[1]; GPIOC->OSPEEDR = portC[2]; GPIOC->PUPDR = portC[3]; GPIOC->AFR[0] = portC[4]; GPIOC->AFR[1] = portC[5]; GPIOD->MODER = portD[0]; GPIOD->OTYPER = portD[1]; GPIOD->OSPEEDR = portD[2]; GPIOD->PUPDR = portD[3]; GPIOD->AFR[0] = portD[4]; GPIOD->AFR[1] = portD[5]; GPIOH->MODER = portH[0]; GPIOH->OTYPER = portH[1]; GPIOH->OSPEEDR = portH[2]; GPIOH->PUPDR = portH[3]; GPIOH->AFR[0] = portH[4]; GPIOH->AFR[1] = portH[5]; #endif } int send_data(std::vector<uint8_t> data) { int32_t ret; ret = dot->send(data); if (ret != mDot::MDOT_OK) { logError("failed to send data to %s [%d][%s]", dot->getJoinMode() == mDot::PEER_TO_PEER ? "peer" : "gateway", ret, mDot::getReturnCodeString(ret).c_str()); } else { logInfo("successfully sent data to %s", dot->getJoinMode() == mDot::PEER_TO_PEER ? "peer" : "gateway"); } return ret; }