Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed FastPWM USBDevice
Fork of USBHID_TestCase by
WoodenDevice.h
- Committer:
- jofo
- Date:
- 2016-10-28
- Revision:
- 7:bb6454b72c57
- Parent:
- 4:3ab1e94b3bc4
File content as of revision 7:bb6454b72c57:
//! A collection of variables that can be set in ~/wooden_haptics.json struct configuration { double diameter_capstan_a; // m double diameter_capstan_b; // m double diameter_capstan_c; // m double length_body_a; // m double length_body_b; // m double length_body_c; // m double diameter_body_a; // m double diameter_body_b; // m double diameter_body_c; // m double workspace_origin_x; // m double workspace_origin_y; // m double workspace_origin_z; // m double workspace_radius; // m (for application information) double torque_constant_motor_a; // Nm/A double torque_constant_motor_b; // Nm/A double torque_constant_motor_c; // Nm/A double current_for_10_v_signal; // A double cpr_encoder_a; // quadrupled counts per revolution double cpr_encoder_b; // quadrupled counts per revolution double cpr_encoder_c; // quadrupled counts per revolution double max_linear_force; // N double max_linear_stiffness; // N/m double max_linear_damping; // N/(m/s) double mass_body_b; // Kg double mass_body_c; // Kg double length_cm_body_b; // m distance to center of mass double length_cm_body_c; // m from previous body double g_constant; // m/s^2 usually 9.81 or 0 to // disable gravity compensation // Set values configuration(const double* k): diameter_capstan_a(k[0]), diameter_capstan_b(k[1]), diameter_capstan_c(k[2]), length_body_a(k[3]), length_body_b(k[4]), length_body_c(k[5]), diameter_body_a(k[6]), diameter_body_b(k[7]), diameter_body_c(k[8]), workspace_origin_x(k[9]), workspace_origin_y(k[10]), workspace_origin_z(k[11]), workspace_radius(k[12]), torque_constant_motor_a(k[13]), torque_constant_motor_b(k[14]), torque_constant_motor_c(k[15]), current_for_10_v_signal(k[16]), cpr_encoder_a(k[17]), cpr_encoder_b(k[18]), cpr_encoder_c(k[19]), max_linear_force(k[20]), max_linear_stiffness(k[21]), max_linear_damping(k[22]), mass_body_b(k[23]), mass_body_c(k[24]), length_cm_body_b(k[25]), length_cm_body_c(k[26]), g_constant(k[27]){} }; configuration default_woody(){ double data[] = { 0.010, 0.010, 0.010, 0.080, 0.205, 0.200, 0.160, 0.120, 0.120, 0.220, 0.000, 0.080, 0.100, 0.0603, 0.0603, 0.0603, 3.0, 4096, 2000, 2000, 12.0, 5000.0, 8.0, 0.170, 0.110, 0.051, 0.091, 9.81}; return configuration(data); } //============================================================================== // Helper functions for getPosition & setForce //============================================================================== double getMotorAngle(int motor, const double cpr, const int encoderValue) { const double pi = 3.14159265359; return 2.0*pi*encoderValue/cpr; } /* void setVolt(double v, int motor){ if(v > 10 || v< -10) { printf("Volt outside +/- 10 Volt\n"); return; } // -10V to +10V is mapped from 0x0000 to 0xFFFF unsigned int signal = (v+10.0)/20.0 * 0xFFFF; S826_DacDataWrite(0,motor,signal,0); } */ struct pose { double Ln; double Lb; double Lc; double tA; // angle of body A (theta_A) double tB; // angle of body B (theta_B) double tC; // angle of body C (theta_C) }; pose calculate_pose(const configuration& c, int* encoderValues) { pose p; double cpr[] = { c.cpr_encoder_a, c.cpr_encoder_b, c.cpr_encoder_c }; double gearRatio[] = { -c.diameter_body_a / c.diameter_capstan_a, -c.diameter_body_b / c.diameter_capstan_b, c.diameter_body_c / c.diameter_capstan_c }; double dofAngle[3]; for(int i=0;i<3;i++) dofAngle[i] = getMotorAngle(i,cpr[i],encoderValues[i]) / gearRatio[i]; // Calculate dof angles (theta) for each body p.Ln = c.length_body_a; p.Lb = c.length_body_b; p.Lc = c.length_body_c; p.tA = dofAngle[0]; p.tB = dofAngle[1]; p.tC = dofAngle[2] - dofAngle[1]; return p; } struct vec { double x; double y; double z; vec(double x, double y, double z):x(x),y(y),z(z) {} }; vec getPosition(const configuration& m_config, int* encoder_values){ double x,y,z; const pose p = calculate_pose(m_config, encoder_values); const double& Ln = p.Ln; const double& Lb = p.Lb; const double& Lc = p.Lc; const double& tA = p.tA; const double& tB = p.tB; const double& tC = p.tC; // Do forward kinematics (thetas -> xyz) x = cos(tA)*(Lb*sin(tB)+Lc*cos(tB+tC)) - m_config.workspace_origin_x; y = sin(tA)*(Lb*sin(tB)+Lc*cos(tB+tC)) - m_config.workspace_origin_y; z = Ln + Lb*cos(tB) - Lc*sin(tB+tC) - m_config.workspace_origin_z; return vec(x,y,z); }