Joe Verbout
/
main
opencv on mbed
opencv2/flann/composite_index.h
- Committer:
- joeverbout
- Date:
- 2016-03-31
- Revision:
- 0:ea44dc9ed014
File content as of revision 0:ea44dc9ed014:
/*********************************************************************** * Software License Agreement (BSD License) * * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. * * THE BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *************************************************************************/ #ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_ #define OPENCV_FLANN_COMPOSITE_INDEX_H_ #include "general.h" #include "nn_index.h" #include "kdtree_index.h" #include "kmeans_index.h" namespace cvflann { /** * Index parameters for the CompositeIndex. */ struct CompositeIndexParams : public IndexParams { CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11, flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) { (*this)["algorithm"] = FLANN_INDEX_KMEANS; // number of randomized trees to use (for kdtree) (*this)["trees"] = trees; // branching factor (*this)["branching"] = branching; // max iterations to perform in one kmeans clustering (kmeans tree) (*this)["iterations"] = iterations; // algorithm used for picking the initial cluster centers for kmeans tree (*this)["centers_init"] = centers_init; // cluster boundary index. Used when searching the kmeans tree (*this)["cb_index"] = cb_index; } }; /** * This index builds a kd-tree index and a k-means index and performs nearest * neighbour search both indexes. This gives a slight boost in search performance * as some of the neighbours that are missed by one index are found by the other. */ template <typename Distance> class CompositeIndex : public NNIndex<Distance> { public: typedef typename Distance::ElementType ElementType; typedef typename Distance::ResultType DistanceType; /** * Index constructor * @param inputData dataset containing the points to index * @param params Index parameters * @param d Distance functor * @return */ CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(), Distance d = Distance()) : index_params_(params) { kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d); kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d); } CompositeIndex(const CompositeIndex&); CompositeIndex& operator=(const CompositeIndex&); virtual ~CompositeIndex() { delete kdtree_index_; delete kmeans_index_; } /** * @return The index type */ flann_algorithm_t getType() const { return FLANN_INDEX_COMPOSITE; } /** * @return Size of the index */ size_t size() const { return kdtree_index_->size(); } /** * \returns The dimensionality of the features in this index. */ size_t veclen() const { return kdtree_index_->veclen(); } /** * \returns The amount of memory (in bytes) used by the index. */ int usedMemory() const { return kmeans_index_->usedMemory() + kdtree_index_->usedMemory(); } /** * \brief Builds the index */ void buildIndex() { Logger::info("Building kmeans tree...\n"); kmeans_index_->buildIndex(); Logger::info("Building kdtree tree...\n"); kdtree_index_->buildIndex(); } /** * \brief Saves the index to a stream * \param stream The stream to save the index to */ void saveIndex(FILE* stream) { kmeans_index_->saveIndex(stream); kdtree_index_->saveIndex(stream); } /** * \brief Loads the index from a stream * \param stream The stream from which the index is loaded */ void loadIndex(FILE* stream) { kmeans_index_->loadIndex(stream); kdtree_index_->loadIndex(stream); } /** * \returns The index parameters */ IndexParams getParameters() const { return index_params_; } /** * \brief Method that searches for nearest-neighbours */ void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) { kmeans_index_->findNeighbors(result, vec, searchParams); kdtree_index_->findNeighbors(result, vec, searchParams); } private: /** The k-means index */ KMeansIndex<Distance>* kmeans_index_; /** The kd-tree index */ KDTreeIndex<Distance>* kdtree_index_; /** The index parameters */ const IndexParams index_params_; }; } #endif //OPENCV_FLANN_COMPOSITE_INDEX_H_