opencv on mbed

Dependencies:   mbed

opencv2/core/persistence.hpp

Committer:
joeverbout
Date:
2016-03-31
Revision:
0:ea44dc9ed014

File content as of revision 0:ea44dc9ed014:

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_CORE_PERSISTENCE_HPP__
#define __OPENCV_CORE_PERSISTENCE_HPP__

#ifndef __cplusplus
#  error persistence.hpp header must be compiled as C++
#endif

//! @addtogroup core_c
//! @{

/** @brief "black box" representation of the file storage associated with a file on disk.

Several functions that are described below take CvFileStorage\* as inputs and allow the user to
save or to load hierarchical collections that consist of scalar values, standard CXCore objects
(such as matrices, sequences, graphs), and user-defined objects.

OpenCV can read and write data in XML (<http://www.w3c.org/XML>) or YAML (<http://www.yaml.org>)
formats. Below is an example of 3x3 floating-point identity matrix A, stored in XML and YAML files
using CXCore functions:
XML:
@code{.xml}
    <?xml version="1.0">
    <opencv_storage>
    <A type_id="opencv-matrix">
      <rows>3</rows>
      <cols>3</cols>
      <dt>f</dt>
      <data>1. 0. 0. 0. 1. 0. 0. 0. 1.</data>
    </A>
    </opencv_storage>
@endcode
YAML:
@code{.yaml}
    %YAML:1.0
    A: !!opencv-matrix
      rows: 3
      cols: 3
      dt: f
      data: [ 1., 0., 0., 0., 1., 0., 0., 0., 1.]
@endcode
As it can be seen from the examples, XML uses nested tags to represent hierarchy, while YAML uses
indentation for that purpose (similar to the Python programming language).

The same functions can read and write data in both formats; the particular format is determined by
the extension of the opened file, ".xml" for XML files and ".yml" or ".yaml" for YAML.
 */
typedef struct CvFileStorage CvFileStorage;
typedef struct CvFileNode CvFileNode;

//! @} core_c

#include "opencv2/core/types.hpp"
#include "opencv2/core/mat.hpp"

namespace cv {

/** @addtogroup core_xml

XML/YAML file storages.     {#xml_storage}
=======================
Writing to a file storage.
--------------------------
You can store and then restore various OpenCV data structures to/from XML (<http://www.w3c.org/XML>)
or YAML (<http://www.yaml.org>) formats. Also, it is possible store and load arbitrarily complex
data structures, which include OpenCV data structures, as well as primitive data types (integer and
floating-point numbers and text strings) as their elements.

Use the following procedure to write something to XML or YAML:
-# Create new FileStorage and open it for writing. It can be done with a single call to
FileStorage::FileStorage constructor that takes a filename, or you can use the default constructor
and then call FileStorage::open. Format of the file (XML or YAML) is determined from the filename
extension (".xml" and ".yml"/".yaml", respectively)
-# Write all the data you want using the streaming operator `<<`, just like in the case of STL
streams.
-# Close the file using FileStorage::release. FileStorage destructor also closes the file.

Here is an example:
@code
    #include "opencv2/opencv.hpp"
    #include <time.h>

    using namespace cv;

    int main(int, char** argv)
    {
        FileStorage fs("test.yml", FileStorage::WRITE);

        fs << "frameCount" << 5;
        time_t rawtime; time(&rawtime);
        fs << "calibrationDate" << asctime(localtime(&rawtime));
        Mat cameraMatrix = (Mat_<double>(3,3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1);
        Mat distCoeffs = (Mat_<double>(5,1) << 0.1, 0.01, -0.001, 0, 0);
        fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs;
        fs << "features" << "[";
        for( int i = 0; i < 3; i++ )
        {
            int x = rand() % 640;
            int y = rand() % 480;
            uchar lbp = rand() % 256;

            fs << "{:" << "x" << x << "y" << y << "lbp" << "[:";
            for( int j = 0; j < 8; j++ )
                fs << ((lbp >> j) & 1);
            fs << "]" << "}";
        }
        fs << "]";
        fs.release();
        return 0;
    }
@endcode
The sample above stores to XML and integer, text string (calibration date), 2 matrices, and a custom
structure "feature", which includes feature coordinates and LBP (local binary pattern) value. Here
is output of the sample:
@code{.yaml}
%YAML:1.0
frameCount: 5
calibrationDate: "Fri Jun 17 14:09:29 2011\n"
cameraMatrix: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [ 1000., 0., 320., 0., 1000., 240., 0., 0., 1. ]
distCoeffs: !!opencv-matrix
   rows: 5
   cols: 1
   dt: d
   data: [ 1.0000000000000001e-01, 1.0000000000000000e-02,
       -1.0000000000000000e-03, 0., 0. ]
features:
   - { x:167, y:49, lbp:[ 1, 0, 0, 1, 1, 0, 1, 1 ] }
   - { x:298, y:130, lbp:[ 0, 0, 0, 1, 0, 0, 1, 1 ] }
   - { x:344, y:158, lbp:[ 1, 1, 0, 0, 0, 0, 1, 0 ] }
@endcode

As an exercise, you can replace ".yml" with ".xml" in the sample above and see, how the
corresponding XML file will look like.

Several things can be noted by looking at the sample code and the output:

-   The produced YAML (and XML) consists of heterogeneous collections that can be nested. There are 2
    types of collections: named collections (mappings) and unnamed collections (sequences). In mappings
    each element has a name and is accessed by name. This is similar to structures and std::map in
    C/C++ and dictionaries in Python. In sequences elements do not have names, they are accessed by
    indices. This is similar to arrays and std::vector in C/C++ and lists, tuples in Python.
    "Heterogeneous" means that elements of each single collection can have different types.

    Top-level collection in YAML/XML is a mapping. Each matrix is stored as a mapping, and the matrix
    elements are stored as a sequence. Then, there is a sequence of features, where each feature is
    represented a mapping, and lbp value in a nested sequence.

-   When you write to a mapping (a structure), you write element name followed by its value. When you
    write to a sequence, you simply write the elements one by one. OpenCV data structures (such as
    cv::Mat) are written in absolutely the same way as simple C data structures - using `<<`
    operator.

-   To write a mapping, you first write the special string `{` to the storage, then write the
    elements as pairs (`fs << <element_name> << <element_value>`) and then write the closing
    `}`.

-   To write a sequence, you first write the special string `[`, then write the elements, then
    write the closing `]`.

-   In YAML (but not XML), mappings and sequences can be written in a compact Python-like inline
    form. In the sample above matrix elements, as well as each feature, including its lbp value, is
    stored in such inline form. To store a mapping/sequence in a compact form, put `:` after the
    opening character, e.g. use `{:` instead of `{` and `[:` instead of `[`. When the
    data is written to XML, those extra `:` are ignored.

Reading data from a file storage.
---------------------------------
To read the previously written XML or YAML file, do the following:
-#  Open the file storage using FileStorage::FileStorage constructor or FileStorage::open method.
    In the current implementation the whole file is parsed and the whole representation of file
    storage is built in memory as a hierarchy of file nodes (see FileNode)

-#  Read the data you are interested in. Use FileStorage::operator [], FileNode::operator []
    and/or FileNodeIterator.

-#  Close the storage using FileStorage::release.

Here is how to read the file created by the code sample above:
@code
    FileStorage fs2("test.yml", FileStorage::READ);

    // first method: use (type) operator on FileNode.
    int frameCount = (int)fs2["frameCount"];

    String date;
    // second method: use FileNode::operator >>
    fs2["calibrationDate"] >> date;

    Mat cameraMatrix2, distCoeffs2;
    fs2["cameraMatrix"] >> cameraMatrix2;
    fs2["distCoeffs"] >> distCoeffs2;

    cout << "frameCount: " << frameCount << endl
         << "calibration date: " << date << endl
         << "camera matrix: " << cameraMatrix2 << endl
         << "distortion coeffs: " << distCoeffs2 << endl;

    FileNode features = fs2["features"];
    FileNodeIterator it = features.begin(), it_end = features.end();
    int idx = 0;
    std::vector<uchar> lbpval;

    // iterate through a sequence using FileNodeIterator
    for( ; it != it_end; ++it, idx++ )
    {
        cout << "feature #" << idx << ": ";
        cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: (";
        // you can also easily read numerical arrays using FileNode >> std::vector operator.
        (*it)["lbp"] >> lbpval;
        for( int i = 0; i < (int)lbpval.size(); i++ )
            cout << " " << (int)lbpval[i];
        cout << ")" << endl;
    }
    fs2.release();
@endcode

Format specification    {#format_spec}
--------------------
`([count]{u|c|w|s|i|f|d})`... where the characters correspond to fundamental C++ types:
-   `u` 8-bit unsigned number
-   `c` 8-bit signed number
-   `w` 16-bit unsigned number
-   `s` 16-bit signed number
-   `i` 32-bit signed number
-   `f` single precision floating-point number
-   `d` double precision floating-point number
-   `r` pointer, 32 lower bits of which are written as a signed integer. The type can be used to
    store structures with links between the elements.

`count` is the optional counter of values of a given type. For example, `2if` means that each array
element is a structure of 2 integers, followed by a single-precision floating-point number. The
equivalent notations of the above specification are `iif`, `2i1f` and so forth. Other examples: `u`
means that the array consists of bytes, and `2d` means the array consists of pairs of doubles.

@see @ref filestorage.cpp
*/

//! @{

/** @example filestorage.cpp
A complete example using the FileStorage interface
*/

////////////////////////// XML & YAML I/O //////////////////////////

class CV_EXPORTS FileNode;
class CV_EXPORTS FileNodeIterator;

/** @brief XML/YAML file storage class that encapsulates all the information necessary for writing or reading
data to/from a file.
 */
class CV_EXPORTS_W FileStorage
{
public:
    //! file storage mode
    enum Mode
    {
        READ        = 0, //!< value, open the file for reading
        WRITE       = 1, //!< value, open the file for writing
        APPEND      = 2, //!< value, open the file for appending
        MEMORY      = 4, //!< flag, read data from source or write data to the internal buffer (which is
                         //!< returned by FileStorage::release)
        FORMAT_MASK = (7<<3), //!< mask for format flags
        FORMAT_AUTO = 0,      //!< flag, auto format
        FORMAT_XML  = (1<<3), //!< flag, XML format
        FORMAT_YAML = (2<<3)  //!< flag, YAML format
    };
    enum
    {
        UNDEFINED      = 0,
        VALUE_EXPECTED = 1,
        NAME_EXPECTED  = 2,
        INSIDE_MAP     = 4
    };

    /** @brief The constructors.

    The full constructor opens the file. Alternatively you can use the default constructor and then
    call FileStorage::open.
     */
    CV_WRAP FileStorage();

    /** @overload
    @param source Name of the file to open or the text string to read the data from. Extension of the
    file (.xml or .yml/.yaml) determines its format (XML or YAML respectively). Also you can append .gz
    to work with compressed files, for example myHugeMatrix.xml.gz. If both FileStorage::WRITE and
    FileStorage::MEMORY flags are specified, source is used just to specify the output file format (e.g.
    mydata.xml, .yml etc.).
    @param flags Mode of operation. See  FileStorage::Mode
    @param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and
    you should use 8-bit encoding instead of it.
    */
    CV_WRAP FileStorage(const String& source, int flags, const String& encoding=String());

    /** @overload */
    FileStorage(CvFileStorage* fs, bool owning=true);

    //! the destructor. calls release()
    virtual ~FileStorage();

    /** @brief Opens a file.

    See description of parameters in FileStorage::FileStorage. The method calls FileStorage::release
    before opening the file.
    @param filename Name of the file to open or the text string to read the data from.
       Extension of the file (.xml or .yml/.yaml) determines its format (XML or YAML respectively).
        Also you can append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both
        FileStorage::WRITE and FileStorage::MEMORY flags are specified, source is used just to specify
        the output file format (e.g. mydata.xml, .yml etc.).
    @param flags Mode of operation. One of FileStorage::Mode
    @param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and
    you should use 8-bit encoding instead of it.
     */
    CV_WRAP virtual bool open(const String& filename, int flags, const String& encoding=String());

    /** @brief Checks whether the file is opened.

    @returns true if the object is associated with the current file and false otherwise. It is a
    good practice to call this method after you tried to open a file.
     */
    CV_WRAP virtual bool isOpened() const;

    /** @brief Closes the file and releases all the memory buffers.

    Call this method after all I/O operations with the storage are finished.
     */
    CV_WRAP virtual void release();

    /** @brief Closes the file and releases all the memory buffers.

    Call this method after all I/O operations with the storage are finished. If the storage was
    opened for writing data and FileStorage::WRITE was specified
     */
    CV_WRAP virtual String releaseAndGetString();

    /** @brief Returns the first element of the top-level mapping.
    @returns The first element of the top-level mapping.
     */
    CV_WRAP FileNode getFirstTopLevelNode() const;

    /** @brief Returns the top-level mapping
    @param streamidx Zero-based index of the stream. In most cases there is only one stream in the file.
    However, YAML supports multiple streams and so there can be several.
    @returns The top-level mapping.
     */
    CV_WRAP FileNode root(int streamidx=0) const;

    /** @brief Returns the specified element of the top-level mapping.
    @param nodename Name of the file node.
    @returns Node with the given name.
     */
    FileNode operator[](const String& nodename) const;

    /** @overload */
    CV_WRAP FileNode operator[](const char* nodename) const;

    /** @brief Returns the obsolete C FileStorage structure.
    @returns Pointer to the underlying C FileStorage structure
     */
    CvFileStorage* operator *() { return fs.get(); }

    /** @overload */
    const CvFileStorage* operator *() const { return fs.get(); }

    /** @brief Writes multiple numbers.

    Writes one or more numbers of the specified format to the currently written structure. Usually it is
    more convenient to use operator `<<` instead of this method.
    @param fmt Specification of each array element, see @ref format_spec "format specification"
    @param vec Pointer to the written array.
    @param len Number of the uchar elements to write.
     */
    void writeRaw( const String& fmt, const uchar* vec, size_t len );

    /** @brief Writes the registered C structure (CvMat, CvMatND, CvSeq).
    @param name Name of the written object.
    @param obj Pointer to the object.
    @see ocvWrite for details.
     */
    void writeObj( const String& name, const void* obj );

    /** @brief Returns the normalized object name for the specified name of a file.
    @param filename Name of a file
    @returns The normalized object name.
     */
    static String getDefaultObjectName(const String& filename);

    Ptr<CvFileStorage> fs; //!< the underlying C FileStorage structure
    String elname; //!< the currently written element
    std::vector<char> structs; //!< the stack of written structures
    int state; //!< the writer state
};

template<> CV_EXPORTS void DefaultDeleter<CvFileStorage>::operator ()(CvFileStorage* obj) const;

/** @brief File Storage Node class.

The node is used to store each and every element of the file storage opened for reading. When
XML/YAML file is read, it is first parsed and stored in the memory as a hierarchical collection of
nodes. Each node can be a “leaf” that is contain a single number or a string, or be a collection of
other nodes. There can be named collections (mappings) where each element has a name and it is
accessed by a name, and ordered collections (sequences) where elements do not have names but rather
accessed by index. Type of the file node can be determined using FileNode::type method.

Note that file nodes are only used for navigating file storages opened for reading. When a file
storage is opened for writing, no data is stored in memory after it is written.
 */
class CV_EXPORTS_W_SIMPLE FileNode
{
public:
    //! type of the file storage node
    enum Type
    {
        NONE      = 0, //!< empty node
        INT       = 1, //!< an integer
        REAL      = 2, //!< floating-point number
        FLOAT     = REAL, //!< synonym or REAL
        STR       = 3, //!< text string in UTF-8 encoding
        STRING    = STR, //!< synonym for STR
        REF       = 4, //!< integer of size size_t. Typically used for storing complex dynamic structures where some elements reference the others
        SEQ       = 5, //!< sequence
        MAP       = 6, //!< mapping
        TYPE_MASK = 7,
        FLOW      = 8,  //!< compact representation of a sequence or mapping. Used only by YAML writer
        USER      = 16, //!< a registered object (e.g. a matrix)
        EMPTY     = 32, //!< empty structure (sequence or mapping)
        NAMED     = 64  //!< the node has a name (i.e. it is element of a mapping)
    };
    /** @brief The constructors.

    These constructors are used to create a default file node, construct it from obsolete structures or
    from the another file node.
     */
    CV_WRAP FileNode();

    /** @overload
    @param fs Pointer to the obsolete file storage structure.
    @param node File node to be used as initialization for the created file node.
    */
    FileNode(const CvFileStorage* fs, const CvFileNode* node);

    /** @overload
    @param node File node to be used as initialization for the created file node.
    */
    FileNode(const FileNode& node);

    /** @brief Returns element of a mapping node or a sequence node.
    @param nodename Name of an element in the mapping node.
    @returns Returns the element with the given identifier.
     */
    FileNode operator[](const String& nodename) const;

    /** @overload
    @param nodename Name of an element in the mapping node.
    */
    CV_WRAP FileNode operator[](const char* nodename) const;

    /** @overload
    @param i Index of an element in the sequence node.
    */
    CV_WRAP FileNode operator[](int i) const;

    /** @brief Returns type of the node.
    @returns Type of the node. See FileNode::Type
     */
    CV_WRAP int type() const;

    //! returns true if the node is empty
    CV_WRAP bool empty() const;
    //! returns true if the node is a "none" object
    CV_WRAP bool isNone() const;
    //! returns true if the node is a sequence
    CV_WRAP bool isSeq() const;
    //! returns true if the node is a mapping
    CV_WRAP bool isMap() const;
    //! returns true if the node is an integer
    CV_WRAP bool isInt() const;
    //! returns true if the node is a floating-point number
    CV_WRAP bool isReal() const;
    //! returns true if the node is a text string
    CV_WRAP bool isString() const;
    //! returns true if the node has a name
    CV_WRAP bool isNamed() const;
    //! returns the node name or an empty string if the node is nameless
    CV_WRAP String name() const;
    //! returns the number of elements in the node, if it is a sequence or mapping, or 1 otherwise.
    CV_WRAP size_t size() const;
    //! returns the node content as an integer. If the node stores floating-point number, it is rounded.
    operator int() const;
    //! returns the node content as float
    operator float() const;
    //! returns the node content as double
    operator double() const;
    //! returns the node content as text string
    operator String() const;
#ifndef OPENCV_NOSTL
    operator std::string() const;
#endif

    //! returns pointer to the underlying file node
    CvFileNode* operator *();
    //! returns pointer to the underlying file node
    const CvFileNode* operator* () const;

    //! returns iterator pointing to the first node element
    FileNodeIterator begin() const;
    //! returns iterator pointing to the element following the last node element
    FileNodeIterator end() const;

    /** @brief Reads node elements to the buffer with the specified format.

    Usually it is more convenient to use operator `>>` instead of this method.
    @param fmt Specification of each array element. See @ref format_spec "format specification"
    @param vec Pointer to the destination array.
    @param len Number of elements to read. If it is greater than number of remaining elements then all
    of them will be read.
     */
    void readRaw( const String& fmt, uchar* vec, size_t len ) const;

    //! reads the registered object and returns pointer to it
    void* readObj() const;

    // do not use wrapper pointer classes for better efficiency
    const CvFileStorage* fs;
    const CvFileNode* node;
};


/** @brief used to iterate through sequences and mappings.

A standard STL notation, with node.begin(), node.end() denoting the beginning and the end of a
sequence, stored in node. See the data reading sample in the beginning of the section.
 */
class CV_EXPORTS FileNodeIterator
{
public:
    /** @brief The constructors.

    These constructors are used to create a default iterator, set it to specific element in a file node
    or construct it from another iterator.
     */
    FileNodeIterator();

    /** @overload
    @param fs File storage for the iterator.
    @param node File node for the iterator.
    @param ofs Index of the element in the node. The created iterator will point to this element.
    */
    FileNodeIterator(const CvFileStorage* fs, const CvFileNode* node, size_t ofs=0);

    /** @overload
    @param it Iterator to be used as initialization for the created iterator.
    */
    FileNodeIterator(const FileNodeIterator& it);

    //! returns the currently observed element
    FileNode operator *() const;
    //! accesses the currently observed element methods
    FileNode operator ->() const;

    //! moves iterator to the next node
    FileNodeIterator& operator ++ ();
    //! moves iterator to the next node
    FileNodeIterator operator ++ (int);
    //! moves iterator to the previous node
    FileNodeIterator& operator -- ();
    //! moves iterator to the previous node
    FileNodeIterator operator -- (int);
    //! moves iterator forward by the specified offset (possibly negative)
    FileNodeIterator& operator += (int ofs);
    //! moves iterator backward by the specified offset (possibly negative)
    FileNodeIterator& operator -= (int ofs);

    /** @brief Reads node elements to the buffer with the specified format.

    Usually it is more convenient to use operator `>>` instead of this method.
    @param fmt Specification of each array element. See @ref format_spec "format specification"
    @param vec Pointer to the destination array.
    @param maxCount Number of elements to read. If it is greater than number of remaining elements then
    all of them will be read.
     */
    FileNodeIterator& readRaw( const String& fmt, uchar* vec,
                               size_t maxCount=(size_t)INT_MAX );

    struct SeqReader
    {
      int          header_size;
      void*        seq;        /* sequence, beign read; CvSeq      */
      void*        block;      /* current block;        CvSeqBlock */
      schar*       ptr;        /* pointer to element be read next */
      schar*       block_min;  /* pointer to the beginning of block */
      schar*       block_max;  /* pointer to the end of block */
      int          delta_index;/* = seq->first->start_index   */
      schar*       prev_elem;  /* pointer to previous element */
    };

    const CvFileStorage* fs;
    const CvFileNode* container;
    SeqReader reader;
    size_t remaining;
};

//! @} core_xml

/////////////////// XML & YAML I/O implementation //////////////////

//! @relates cv::FileStorage
//! @{

CV_EXPORTS void write( FileStorage& fs, const String& name, int value );
CV_EXPORTS void write( FileStorage& fs, const String& name, float value );
CV_EXPORTS void write( FileStorage& fs, const String& name, double value );
CV_EXPORTS void write( FileStorage& fs, const String& name, const String& value );
CV_EXPORTS void write( FileStorage& fs, const String& name, const Mat& value );
CV_EXPORTS void write( FileStorage& fs, const String& name, const SparseMat& value );
CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<KeyPoint>& value);
CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<DMatch>& value);

CV_EXPORTS void writeScalar( FileStorage& fs, int value );
CV_EXPORTS void writeScalar( FileStorage& fs, float value );
CV_EXPORTS void writeScalar( FileStorage& fs, double value );
CV_EXPORTS void writeScalar( FileStorage& fs, const String& value );

//! @}

//! @relates cv::FileNode
//! @{

CV_EXPORTS void read(const FileNode& node, int& value, int default_value);
CV_EXPORTS void read(const FileNode& node, float& value, float default_value);
CV_EXPORTS void read(const FileNode& node, double& value, double default_value);
CV_EXPORTS void read(const FileNode& node, String& value, const String& default_value);
CV_EXPORTS void read(const FileNode& node, Mat& mat, const Mat& default_mat = Mat() );
CV_EXPORTS void read(const FileNode& node, SparseMat& mat, const SparseMat& default_mat = SparseMat() );
CV_EXPORTS void read(const FileNode& node, std::vector<KeyPoint>& keypoints);
CV_EXPORTS void read(const FileNode& node, std::vector<DMatch>& matches);

template<typename _Tp> static inline void read(const FileNode& node, Point_<_Tp>& value, const Point_<_Tp>& default_value)
{
    std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
    value = temp.size() != 2 ? default_value : Point_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]));
}

template<typename _Tp> static inline void read(const FileNode& node, Point3_<_Tp>& value, const Point3_<_Tp>& default_value)
{
    std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
    value = temp.size() != 3 ? default_value : Point3_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]),
                                                            saturate_cast<_Tp>(temp[2]));
}

template<typename _Tp> static inline void read(const FileNode& node, Size_<_Tp>& value, const Size_<_Tp>& default_value)
{
    std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
    value = temp.size() != 2 ? default_value : Size_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]));
}

template<typename _Tp> static inline void read(const FileNode& node, Complex<_Tp>& value, const Complex<_Tp>& default_value)
{
    std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
    value = temp.size() != 2 ? default_value : Complex<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]));
}

template<typename _Tp> static inline void read(const FileNode& node, Rect_<_Tp>& value, const Rect_<_Tp>& default_value)
{
    std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
    value = temp.size() != 4 ? default_value : Rect_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]),
                                                          saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3]));
}

template<typename _Tp, int cn> static inline void read(const FileNode& node, Vec<_Tp, cn>& value, const Vec<_Tp, cn>& default_value)
{
    std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
    value = temp.size() != cn ? default_value : Vec<_Tp, cn>(&temp[0]);
}

template<typename _Tp> static inline void read(const FileNode& node, Scalar_<_Tp>& value, const Scalar_<_Tp>& default_value)
{
    std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp;
    value = temp.size() != 4 ? default_value : Scalar_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]),
                                                            saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3]));
}

static inline void read(const FileNode& node, Range& value, const Range& default_value)
{
    Point2i temp(value.start, value.end); const Point2i default_temp = Point2i(default_value.start, default_value.end);
    read(node, temp, default_temp);
    value.start = temp.x; value.end = temp.y;
}

//! @}

/** @brief Writes string to a file storage.
@relates cv::FileStorage
 */
CV_EXPORTS FileStorage& operator << (FileStorage& fs, const String& str);

//! @cond IGNORED

namespace internal
{
    class CV_EXPORTS WriteStructContext
    {
    public:
        WriteStructContext(FileStorage& _fs, const String& name, int flags, const String& typeName = String());
        ~WriteStructContext();
    private:
        FileStorage* fs;
    };

    template<typename _Tp, int numflag> class VecWriterProxy
    {
    public:
        VecWriterProxy( FileStorage* _fs ) : fs(_fs) {}
        void operator()(const std::vector<_Tp>& vec) const
        {
            size_t count = vec.size();
            for (size_t i = 0; i < count; i++)
                write(*fs, vec[i]);
        }
    private:
        FileStorage* fs;
    };

    template<typename _Tp> class VecWriterProxy<_Tp, 1>
    {
    public:
        VecWriterProxy( FileStorage* _fs ) : fs(_fs) {}
        void operator()(const std::vector<_Tp>& vec) const
        {
            int _fmt = DataType<_Tp>::fmt;
            char fmt[] = { (char)((_fmt >> 8) + '1'), (char)_fmt, '\0' };
            fs->writeRaw(fmt, !vec.empty() ? (uchar*)&vec[0] : 0, vec.size() * sizeof(_Tp));
        }
    private:
        FileStorage* fs;
    };

    template<typename _Tp, int numflag> class VecReaderProxy
    {
    public:
        VecReaderProxy( FileNodeIterator* _it ) : it(_it) {}
        void operator()(std::vector<_Tp>& vec, size_t count) const
        {
            count = std::min(count, it->remaining);
            vec.resize(count);
            for (size_t i = 0; i < count; i++, ++(*it))
                read(**it, vec[i], _Tp());
        }
    private:
        FileNodeIterator* it;
    };

    template<typename _Tp> class VecReaderProxy<_Tp, 1>
    {
    public:
        VecReaderProxy( FileNodeIterator* _it ) : it(_it) {}
        void operator()(std::vector<_Tp>& vec, size_t count) const
        {
            size_t remaining = it->remaining;
            size_t cn = DataType<_Tp>::channels;
            int _fmt = DataType<_Tp>::fmt;
            char fmt[] = { (char)((_fmt >> 8)+'1'), (char)_fmt, '\0' };
            size_t remaining1 = remaining / cn;
            count = count < remaining1 ? count : remaining1;
            vec.resize(count);
            it->readRaw(fmt, !vec.empty() ? (uchar*)&vec[0] : 0, count*sizeof(_Tp));
        }
    private:
        FileNodeIterator* it;
    };

} // internal

//! @endcond

//! @relates cv::FileStorage
//! @{

template<typename _Tp> static inline
void write(FileStorage& fs, const _Tp& value)
{
    write(fs, String(), value);
}

template<> inline
void write( FileStorage& fs, const int& value )
{
    writeScalar(fs, value);
}

template<> inline
void write( FileStorage& fs, const float& value )
{
    writeScalar(fs, value);
}

template<> inline
void write( FileStorage& fs, const double& value )
{
    writeScalar(fs, value);
}

template<> inline
void write( FileStorage& fs, const String& value )
{
    writeScalar(fs, value);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const Point_<_Tp>& pt )
{
    write(fs, pt.x);
    write(fs, pt.y);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const Point3_<_Tp>& pt )
{
    write(fs, pt.x);
    write(fs, pt.y);
    write(fs, pt.z);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const Size_<_Tp>& sz )
{
    write(fs, sz.width);
    write(fs, sz.height);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const Complex<_Tp>& c )
{
    write(fs, c.re);
    write(fs, c.im);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const Rect_<_Tp>& r )
{
    write(fs, r.x);
    write(fs, r.y);
    write(fs, r.width);
    write(fs, r.height);
}

template<typename _Tp, int cn> static inline
void write(FileStorage& fs, const Vec<_Tp, cn>& v )
{
    for(int i = 0; i < cn; i++)
        write(fs, v.val[i]);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const Scalar_<_Tp>& s )
{
    write(fs, s.val[0]);
    write(fs, s.val[1]);
    write(fs, s.val[2]);
    write(fs, s.val[3]);
}

static inline
void write(FileStorage& fs, const Range& r )
{
    write(fs, r.start);
    write(fs, r.end);
}

template<typename _Tp> static inline
void write( FileStorage& fs, const std::vector<_Tp>& vec )
{
    cv::internal::VecWriterProxy<_Tp, DataType<_Tp>::fmt != 0> w(&fs);
    w(vec);
}


template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Point_<_Tp>& pt )
{
    cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
    write(fs, pt);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Point3_<_Tp>& pt )
{
    cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
    write(fs, pt);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Size_<_Tp>& sz )
{
    cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
    write(fs, sz);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Complex<_Tp>& c )
{
    cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
    write(fs, c);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Rect_<_Tp>& r )
{
    cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
    write(fs, r);
}

template<typename _Tp, int cn> static inline
void write(FileStorage& fs, const String& name, const Vec<_Tp, cn>& v )
{
    cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
    write(fs, v);
}

template<typename _Tp> static inline
void write(FileStorage& fs, const String& name, const Scalar_<_Tp>& s )
{
    cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
    write(fs, s);
}

static inline
void write(FileStorage& fs, const String& name, const Range& r )
{
    cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW);
    write(fs, r);
}

template<typename _Tp> static inline
void write( FileStorage& fs, const String& name, const std::vector<_Tp>& vec )
{
    cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0));
    write(fs, vec);
}

//! @} FileStorage

//! @relates cv::FileNode
//! @{

static inline
void read(const FileNode& node, bool& value, bool default_value)
{
    int temp;
    read(node, temp, (int)default_value);
    value = temp != 0;
}

static inline
void read(const FileNode& node, uchar& value, uchar default_value)
{
    int temp;
    read(node, temp, (int)default_value);
    value = saturate_cast<uchar>(temp);
}

static inline
void read(const FileNode& node, schar& value, schar default_value)
{
    int temp;
    read(node, temp, (int)default_value);
    value = saturate_cast<schar>(temp);
}

static inline
void read(const FileNode& node, ushort& value, ushort default_value)
{
    int temp;
    read(node, temp, (int)default_value);
    value = saturate_cast<ushort>(temp);
}

static inline
void read(const FileNode& node, short& value, short default_value)
{
    int temp;
    read(node, temp, (int)default_value);
    value = saturate_cast<short>(temp);
}

template<typename _Tp> static inline
void read( FileNodeIterator& it, std::vector<_Tp>& vec, size_t maxCount = (size_t)INT_MAX )
{
    cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it);
    r(vec, maxCount);
}

template<typename _Tp> static inline
void read( const FileNode& node, std::vector<_Tp>& vec, const std::vector<_Tp>& default_value = std::vector<_Tp>() )
{
    if(!node.node)
        vec = default_value;
    else
    {
        FileNodeIterator it = node.begin();
        read( it, vec );
    }
}

//! @} FileNode

//! @relates cv::FileStorage
//! @{

/** @brief Writes data to a file storage.
 */
template<typename _Tp> static inline
FileStorage& operator << (FileStorage& fs, const _Tp& value)
{
    if( !fs.isOpened() )
        return fs;
    if( fs.state == FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP )
        CV_Error( Error::StsError, "No element name has been given" );
    write( fs, fs.elname, value );
    if( fs.state & FileStorage::INSIDE_MAP )
        fs.state = FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP;
    return fs;
}

/** @brief Writes data to a file storage.
 */
static inline
FileStorage& operator << (FileStorage& fs, const char* str)
{
    return (fs << String(str));
}

/** @brief Writes data to a file storage.
 */
static inline
FileStorage& operator << (FileStorage& fs, char* value)
{
    return (fs << String(value));
}

//! @} FileStorage

//! @relates cv::FileNodeIterator
//! @{

/** @brief Reads data from a file storage.
 */
template<typename _Tp> static inline
FileNodeIterator& operator >> (FileNodeIterator& it, _Tp& value)
{
    read( *it, value, _Tp());
    return ++it;
}

/** @brief Reads data from a file storage.
 */
template<typename _Tp> static inline
FileNodeIterator& operator >> (FileNodeIterator& it, std::vector<_Tp>& vec)
{
    cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it);
    r(vec, (size_t)INT_MAX);
    return it;
}

//! @} FileNodeIterator

//! @relates cv::FileNode
//! @{

/** @brief Reads data from a file storage.
 */
template<typename _Tp> static inline
void operator >> (const FileNode& n, _Tp& value)
{
    read( n, value, _Tp());
}

/** @brief Reads data from a file storage.
 */
template<typename _Tp> static inline
void operator >> (const FileNode& n, std::vector<_Tp>& vec)
{
    FileNodeIterator it = n.begin();
    it >> vec;
}

//! @} FileNode

//! @relates cv::FileNodeIterator
//! @{

static inline
bool operator == (const FileNodeIterator& it1, const FileNodeIterator& it2)
{
    return it1.fs == it2.fs && it1.container == it2.container &&
        it1.reader.ptr == it2.reader.ptr && it1.remaining == it2.remaining;
}

static inline
bool operator != (const FileNodeIterator& it1, const FileNodeIterator& it2)
{
    return !(it1 == it2);
}

static inline
ptrdiff_t operator - (const FileNodeIterator& it1, const FileNodeIterator& it2)
{
    return it2.remaining - it1.remaining;
}

static inline
bool operator < (const FileNodeIterator& it1, const FileNodeIterator& it2)
{
    return it1.remaining > it2.remaining;
}

//! @} FileNodeIterator

//! @cond IGNORED

inline FileNode FileStorage::getFirstTopLevelNode() const { FileNode r = root(); FileNodeIterator it = r.begin(); return it != r.end() ? *it : FileNode(); }
inline FileNode::FileNode() : fs(0), node(0) {}
inline FileNode::FileNode(const CvFileStorage* _fs, const CvFileNode* _node) : fs(_fs), node(_node) {}
inline FileNode::FileNode(const FileNode& _node) : fs(_node.fs), node(_node.node) {}
inline bool FileNode::empty() const    { return node   == 0;    }
inline bool FileNode::isNone() const   { return type() == NONE; }
inline bool FileNode::isSeq() const    { return type() == SEQ;  }
inline bool FileNode::isMap() const    { return type() == MAP;  }
inline bool FileNode::isInt() const    { return type() == INT;  }
inline bool FileNode::isReal() const   { return type() == REAL; }
inline bool FileNode::isString() const { return type() == STR;  }
inline CvFileNode* FileNode::operator *() { return (CvFileNode*)node; }
inline const CvFileNode* FileNode::operator* () const { return node; }
inline FileNode::operator int() const    { int value;    read(*this, value, 0);     return value; }
inline FileNode::operator float() const  { float value;  read(*this, value, 0.f);   return value; }
inline FileNode::operator double() const { double value; read(*this, value, 0.);    return value; }
inline FileNode::operator String() const { String value; read(*this, value, value); return value; }
inline FileNodeIterator FileNode::begin() const { return FileNodeIterator(fs, node); }
inline FileNodeIterator FileNode::end() const   { return FileNodeIterator(fs, node, size()); }
inline void FileNode::readRaw( const String& fmt, uchar* vec, size_t len ) const { begin().readRaw( fmt, vec, len ); }
inline FileNode FileNodeIterator::operator *() const  { return FileNode(fs, (const CvFileNode*)(const void*)reader.ptr); }
inline FileNode FileNodeIterator::operator ->() const { return FileNode(fs, (const CvFileNode*)(const void*)reader.ptr); }
inline String::String(const FileNode& fn): cstr_(0), len_(0) { read(fn, *this, *this); }

//! @endcond

} // cv

#endif // __OPENCV_CORE_PERSISTENCE_HPP__